1
|
Jones BJ, Greene BL. Singlet oxygen-mediated photochemical cross-linking of an engineered fluorescent flavoprotein iLOV. J Biol Chem 2024; 300:107845. [PMID: 39357827 PMCID: PMC11541845 DOI: 10.1016/j.jbc.2024.107845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Genetically encoded photoactive proteins are integral tools in modern biochemical and molecular biological research. Within this tool box, truncated variants of the phototropin two light-oxygen-voltage flavoprotein have been developed to photochemically generate singlet oxygen (1O2) in vitro and in vivo, yet the effect of 1O2 on these genetically encoded photosensitizers remains underexplored. In this study, we demonstrate that the "improved" light-oxygen-voltage flavoprotein is capable of photochemical 1O2 generation. Once generated, 1O2 induces protein oligomerization via covalent cross-linking. The molecular targets of protein oligomerization by cross-linking are not endogenous tryptophans or tyrosines, but rather primarily histidines. Substitution of surface-exposed histidines for serine or glycine residues effectively eliminates protein cross-linking. When used in biochemical applications, such protein-protein cross-links may interfere with native biological responses to 1O2, which can be ameliorated by substitution of the surface exposed histidines of improved" light-oxygen-voltage or other 1O2-generating flavoproteins.
Collapse
Affiliation(s)
- Benjamin J Jones
- Department of Chemistry and Biochemistry the University of California Santa Barbara, Santa Barbara, California, USA
| | - Brandon L Greene
- Department of Chemistry and Biochemistry the University of California Santa Barbara, Santa Barbara, California, USA; Biomolecular Science and Engineering Program, The University of California Santa Barbara, Santa Barbara, California, USA.
| |
Collapse
|
2
|
Kabir M, Ghosh P, Gozem S. Electronic Structure Methods for Simulating Flavin's Spectroscopy and Photophysics: Comparison of Multi-reference, TD-DFT, and Single-Reference Wave Function Methods. J Phys Chem B 2024; 128:7545-7557. [PMID: 39074870 PMCID: PMC11317985 DOI: 10.1021/acs.jpcb.4c03748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
The use of flavins and flavoproteins in photocatalytic, sensing, and biotechnological applications has led to a growing interest in computationally modeling the excited-state electronic structure and photophysics of flavin. However, there is limited consensus regarding which computational methods are appropriate for modeling flavin's photophysics. We compare the energies of low-lying excited states of flavin computed with time-dependent density functional theory (TD-DFT), equation-of-motion coupled cluster (EOM-EE-CCSD), scaled opposite-spin configuration interaction [SOS-CIS(D)], multiconfiguration pair-density functional theory (MC-PDFT), and several multireference perturbation theory (MR-PT2) methods. In the first part, we focus on excitation energies of the first singlet excited state (S1) of five different redox and protonation states of flavin, with the goal of finding a suitable active space for MR-PT2 calculations. In the second part, we construct two sets of one-dimensional potential energy surfaces connecting the S0 and S1 equilibrium geometries (S0-S1 path) and the S1 (π,π*) and S2 (n,π*) equilibrium geometries (S1-S2 path). The first path therefore follows a Franck-Condon active mode of flavin while the second path maps crossings points between low-lying singlet and triplet states in flavin. We discuss the similarities and differences in the TD-DFT, EOM-EE-CCSD, SOS-CIS(D), MC-PDFT and MR-PT2 energy profiles along these paths. We find that (TD-)DFT methods are suitable for applications such as simulating the spectra of flavins but are inconsistent with several other methods when used for some geometry optimizations and when describing the energetics of dark (n,π*) states. MR-PT2 methods show promise for the simulation of flavin's low-lying excited states, but the selection of orbitals for the active space and the number of roots used for state averaging must be done carefully to avoid artifacts. Some properties, such as the intersystem crossing geometry and energy between the S1 (π,π*) and T2 (n,π*) states, may require additional benchmarking before they can be determined quantitatively.
Collapse
Affiliation(s)
- Mohammad
Pabel Kabir
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Paulami Ghosh
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
3
|
Le DPN, Hastings G, Gozem S. How Aqueous Solvation Impacts the Frequencies and Intensities of Infrared Absorption Bands in Flavin: The Quest for a Suitable Solvent Model. Molecules 2024; 29:520. [PMID: 38276598 PMCID: PMC10818357 DOI: 10.3390/molecules29020520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
FTIR spectroscopy accompanied by quantum chemical simulations can reveal important information about molecular structure and intermolecular interactions in the condensed phase. Simulations typically account for the solvent either through cluster quantum mechanical (QM) models, polarizable continuum models (PCM), or hybrid quantum mechanical/molecular mechanical (QM/MM) models. Recently, we studied the effect of aqueous solvent interactions on the vibrational frequencies of lumiflavin, a minimal flavin model, using cluster QM and PCM models. Those models successfully reproduced the relative frequencies of four prominent stretching modes of flavin's isoalloxazine ring in the diagnostic 1450-1750 cm-1 range but poorly reproduced the relative band intensities. Here, we extend our studies on this system and account for solvation through a series of increasingly sophisticated models. Only by combining elements of QM clusters, QM/MM, and PCM approaches do we obtain an improved agreement with the experiment. The study sheds light more generally on factors that can impact the computed frequencies and intensities of IR bands in solution.
Collapse
Affiliation(s)
- D. P. Ngan Le
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (D.P.N.L.); (G.H.)
| | - Gary Hastings
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (D.P.N.L.); (G.H.)
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (D.P.N.L.); (G.H.)
| |
Collapse
|
4
|
Nikolaev A, Tropina EV, Boldyrev KN, Maksimov EG, Borshchevskiy V, Mishin A, Yudenko A, Kuzmin A, Kuznetsova E, Semenov O, Remeeva A, Gushchin I. Two distinct mechanisms of flavoprotein spectral tuning revealed by low-temperature and time-dependent spectroscopy. Protein Sci 2024; 33:e4851. [PMID: 38038877 PMCID: PMC10731561 DOI: 10.1002/pro.4851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/22/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Flavins such as flavin mononucleotide or flavin adenine dinucleotide are bound by diverse proteins, yet have very similar spectra when in the oxidized state. Recently, we developed new variants of flavin-binding protein CagFbFP exhibiting notable blue (Q148V) or red (I52V A85Q) shifts of fluorescence emission maxima. Here, we use time-resolved and low-temperature spectroscopy to show that whereas the chromophore environment is static in Q148V, an additional protein-flavin hydrogen bond is formed upon photoexcitation in the I52V A85Q variant. Consequently, in Q148V, excitation, emission, and phosphorescence spectra are shifted, whereas in I52V A85Q, excitation and low-temperature phosphorescence spectra are relatively unchanged, while emission spectrum is altered. We also determine the x-ray structures of the two variants to reveal the flavin environment and complement the spectroscopy data. Our findings illustrate two distinct color-tuning mechanisms of flavin-binding proteins and could be helpful for the engineering of new variants with improved optical properties.
Collapse
Affiliation(s)
- Andrey Nikolaev
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Elena V. Tropina
- Institute of Spectroscopy RASTroitskMoscowRussia
- National Research University Higher School of EconomicsMoscowRussia
| | | | | | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Alexander Kuzmin
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Elizaveta Kuznetsova
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| |
Collapse
|
5
|
Kabir MP, Ouedraogo D, Orozco-Gonzalez Y, Gadda G, Gozem S. Alternative Strategy for Spectral Tuning of Flavin-Binding Fluorescent Proteins. J Phys Chem B 2023; 127:1301-1311. [PMID: 36740810 PMCID: PMC9940217 DOI: 10.1021/acs.jpcb.2c06475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
iLOV is an engineered flavin-binding fluorescent protein (FbFP) with applications for in vivo cellular imaging. To expand the range of applications of FbFPs for multicolor imaging and FRET-based biosensing, it is desirable to understand how to modify their absorption and emission wavelengths (i.e., through spectral tuning). There is particular interest in developing FbFPs that absorb and emit light at longer wavelengths, which has proven challenging thus far. Existing spectral tuning strategies that do not involve chemical modification of the flavin cofactor have focused on placing positively charged amino acids near flavin's C4a and N5 atoms. Guided by previously reported electrostatic spectral tunning maps (ESTMs) of the flavin cofactor and by quantum mechanical/molecular mechanical (QM/MM) calculations reported in this work, we suggest an alternative strategy: placing a negatively charged amino acid near flavin's N1 atom. We predict that a single-point mutant, iLOV-Q430E, has a slightly red-shifted absorption and fluorescence maximum wavelength relative to iLOV. To validate our theoretical prediction, we experimentally expressed and purified iLOV-Q430E and measured its spectral properties. We found that the Q430E mutation results in a slight change in absorption and a 4-8 nm red shift in the fluorescence relative to iLOV, in good agreement with the computational predictions. Molecular dynamics simulations showed that the carboxylate side chain of the glutamate in iLOV-Q430E points away from the flavin cofactor, which leads to a future expectation that further red shifting may be achieved by bringing the side chain closer to the cofactor.
Collapse
|
6
|
Fine spectral tuning of a flavin-binding fluorescent protein for multicolor imaging. J Biol Chem 2023; 299:102977. [PMID: 36738792 PMCID: PMC10023982 DOI: 10.1016/j.jbc.2023.102977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Flavin-binding fluorescent proteins are promising genetically encoded tags for microscopy. However, spectral properties of their chromophores (riboflavin, flavin mononucleotide, and flavin adenine dinucleotide) are notoriously similar even between different protein families, which limits applications of flavoproteins in multicolor imaging. Here, we present a palette of 22 finely tuned fluorescent tags based on the thermostable LOV domain from Chloroflexus aggregans. We performed site saturation mutagenesis of three amino acid positions in the flavin-binding pocket, including the photoactive cysteine, to obtain variants with fluorescence emission maxima uniformly covering the wavelength range from 486 to 512 nm. We demonstrate three-color imaging based on spectral separation and two-color fluorescence lifetime imaging of bacteria, as well as two-color imaging of mammalian cells (HEK293T), using the proteins from the palette. These results highlight the possibility of fine spectral tuning of flavoproteins and pave the way for further applications of flavin-binding fluorescent proteins in fluorescence microscopy.
Collapse
|
7
|
Wehler P, Armbruster D, Günter A, Schleicher E, Di Ventura B, Öztürk MA. Experimental Characterization of In Silico Red-Shift-Predicted iLOV L470T/Q489K and iLOV V392K/F410V/A426S Mutants. ACS OMEGA 2022; 7:19555-19560. [PMID: 35722011 PMCID: PMC9202016 DOI: 10.1021/acsomega.2c01283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
iLOV is a flavin mononucleotide-binding fluorescent protein used for in vivo cellular imaging similar to the green fluorescent protein. To expand the range of applications of iLOV, spectrally tuned red-shifted variants are desirable to reduce phototoxicity and allow for better tissue penetration. In this report, we experimentally tested two iLOV mutants, iLOVL470T/Q489K and iLOVV392K/F410V/A426S, which were previously computationally proposed by (KhrenovaJ. Phys. Chem. B2017, 121 ( (43), ), pp 10018-10025) to have red-shifted excitation and emission spectra. While iLOVL470T/Q489K is about 20% brighter compared to the WT in vitro, it exhibits a blue shift in contrast to quantum mechanics/molecular mechanics (QM/MM) predictions. Additional optical characterization of an iLOVV392K mutant revealed that V392 is essential for cofactor binding and, accordingly, variants with V392K mutation are unable to bind to FMN. iLOVL470T/Q489K and iLOVV392K/F410V/A426S are expressed at low levels and have no detectable fluorescence in living cells, preventing their utilization in imaging applications.
Collapse
Affiliation(s)
- Pierre Wehler
- Institute
of Biology II, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Centers
for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Daniel Armbruster
- Institute
of Biology II, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Centers
for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Andreas Günter
- Institute
of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Erik Schleicher
- Institute
of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Barbara Di Ventura
- Institute
of Biology II, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Centers
for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Mehmet Ali Öztürk
- Institute
of Biology II, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Centers
for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| |
Collapse
|
8
|
Understanding flavin electronic structure and spectra. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Gozem S, Krylov AI. The
ezSpectra
suite: An easy‐to‐use toolkit for spectroscopy modeling. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1546] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Samer Gozem
- Department of Chemistry Georgia State University Atlanta Georgia USA
| | - Anna I. Krylov
- Department of Chemistry University of Southern California Los Angeles California USA
| |
Collapse
|
10
|
Röllen K, Granzin J, Remeeva A, Davari MD, Gensch T, Nazarenko VV, Kovalev K, Bogorodskiy A, Borshchevskiy V, Hemmer S, Schwaneberg U, Gordeliy V, Jaeger KE, Batra-Safferling R, Gushchin I, Krauss U. The molecular basis of spectral tuning in blue- and red-shifted flavin-binding fluorescent proteins. J Biol Chem 2021; 296:100662. [PMID: 33862085 PMCID: PMC8131319 DOI: 10.1016/j.jbc.2021.100662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/09/2023] Open
Abstract
Photoactive biological systems modify the optical properties of their chromophores, known as spectral tuning. Determining the molecular origin of spectral tuning is instrumental for understanding the function and developing applications of these biomolecules. Spectral tuning in flavin-binding fluorescent proteins (FbFPs), an emerging class of fluorescent reporters, is limited by their dependency on protein-bound flavins, whose structure and hence electronic properties cannot be altered by mutation. A blue-shifted variant of the plant-derived improved light, oxygen, voltage FbFP has been created by introducing a lysine within the flavin-binding pocket, but the molecular basis of this shift remains unconfirmed. We here structurally characterize the blue-shifted improved light, oxygen, voltage variant and construct a new blue-shifted CagFbFP protein by introducing an analogous mutation. X-ray structures of both proteins reveal displacement of the lysine away from the chromophore and opening up of the structure as instrumental for the blue shift. Site saturation mutagenesis and high-throughput screening yielded a red-shifted variant, and structural analysis revealed that the lysine side chain of the blue-shifted variant is stabilized close to the flavin by a secondary mutation, accounting for the red shift. Thus, a single additional mutation in a blue-shifted variant is sufficient to generate a red-shifted FbFP. Using spectroscopy, X-ray crystallography, and quantum mechanics molecular mechanics calculations, we provide a firm structural and functional understanding of spectral tuning in FbFPs. We also show that the identified blue- and red-shifted variants allow for two-color microscopy based on spectral separation. In summary, the generated blue- and red-shifted variants represent promising new tools for application in life sciences.
Collapse
Affiliation(s)
- Katrin Röllen
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Joachim Granzin
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Mehdi D Davari
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Thomas Gensch
- IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Vera V Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kirill Kovalev
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France; Institute of Crystallography, RWTH Aachen University, Aachen, Germany
| | - Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin Borshchevskiy
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Stefanie Hemmer
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany; IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany; DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Valentin Gordeliy
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany; IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Renu Batra-Safferling
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany; IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
| |
Collapse
|
11
|
Remeeva A, Nazarenko VV, Kovalev K, Goncharov IM, Yudenko A, Astashkin R, Gordeliy V, Gushchin I. Insights into the mechanisms of light-oxygen-voltage domain color tuning from a set of high-resolution X-ray structures. Proteins 2021; 89:1005-1016. [PMID: 33774867 DOI: 10.1002/prot.26078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 01/01/2023]
Abstract
Light-oxygen-voltage (LOV) domains are widespread photosensory modules that can be used in fluorescence microscopy, optogenetics and controlled production of reactive oxygen species. All of the currently known LOV domains have absorption maxima in the range of ~440 to ~450 nm, and it is not clear whether they can be shifted significantly using mutations. Here, we have generated a panel of LOV domain variants by mutating the key chromophore-proximal glutamine aminoacid of a thermostable flavin based fluorescent protein CagFbFP (Gln148) to asparagine, aspartate, glutamate, histidine, lysine and arginine. Absorption spectra of all of the mutants are blue-shifted, with the maximal shift of 8 nm observed for the Q148H variant. While CagFbFP and its Q148N/D/E variants are not sensitive to pH, Q148H/K/R reveal a moderate red shift induced byacidic pH. To gain further insight, we determined high resolution crystal structures of all of the mutants studied at the resolutions from 1.07 Å for Q148D to 1.63 Å for Q148R. Whereas in some of the variants, the aminoacid 148 remains in the vicinity of the flavin, in Q148K, Q148R and partially Q148D, the C-terminus of the protein unlatches and the side chain of the residue 148 is reoriented away from the chromophore. Our results explain the absence of color shifts from replacing Gln148 with charged aminoacids and pave the way for rational design of color-shifted flavin based fluorescent proteins.
Collapse
Affiliation(s)
- Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vera V Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kirill Kovalev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
| | - Ivan M Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Roman Astashkin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
12
|
Cardoso
Ramos F, Cupellini L, Mennucci B. Computational Investigation of Structural and Spectroscopic Properties of LOV-Based Proteins with Improved Fluorescence. J Phys Chem B 2021; 125:1768-1777. [PMID: 33566620 PMCID: PMC7917436 DOI: 10.1021/acs.jpcb.0c10834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/27/2021] [Indexed: 01/22/2023]
Abstract
Flavin-based fluorescent proteins are a class of fluorescent reporters derived from light, oxygen, and voltage (LOV) sensing proteins. Through mutagenesis, natural LOV proteins have been engineered to obtain improved fluorescence properties. In this study, we combined extended classical Molecular Dynamics simulations and multiscale Quantum Mechanics/Molecular Mechanics methods to clarify the relationship between structural and dynamic changes induced by specific mutations and the spectroscopic response. To reach this goal we compared two LOV variants, one obtained by the single mutation needed to photochemically inactivate the natural system, and the other (iLOV) obtained through additional mutations and characterized by a significantly improved fluorescence. Our simulations confirmed the "flipping and crowding" effect induced in iLOV by the additional mutations and revealed its mechanism of action. We also showed that these mutations, and the resulting differences in the composition and flexibility of the binding pockets, are not reflected in significant shifts of the excitation and emission energies, in agreement with the similarity of the spectra measured for the two systems. However, a small but consistent reduction was found in the Stokes shift of iLOV, suggesting a reduction of the intermolecular reorganization experienced by the chromophore after excitation, which could slow down its internal conversion to the ground state and improve the fluorescence.
Collapse
Affiliation(s)
- Felipe Cardoso
Ramos
- Dipartimento di Chimica e
Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa, I-56124, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e
Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa, I-56124, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e
Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa, I-56124, Italy
| |
Collapse
|
13
|
Verchot J, Herath V, Urrutia CD, Gayral M, Lyle K, Shires MK, Ong K, Byrne D. Development of a Reverse Genetic System for Studying Rose Rosette Virus in Whole Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1209-1221. [PMID: 32815767 DOI: 10.1094/mpmi-04-20-0094-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rose rosette virus (RRV) is a negative-sense RNA virus with a seven-segmented genome that is enclosed by a double membrane. We constructed an unconventional minireplicon system encoding the antigenomic (ag)RNA1 (encoding the viral RNA-dependent RNA polymerase [RdRp]), agRNA3 (encoding the nucleocapsid protein [N]), and a modified agRNA5 containing the coding sequence for the iLOV protein in place of the P5 open reading frame (R5-iLOV). iLOV expression from the R5-iLOV template was amplified by activities of the RdRp and N proteins in Nicotiana benthamiana leaves. A mutation was introduced into the RdRp catalytic domain and iLOV expression was eliminated, indicating RNA1-encoded polymerase activity drives iLOV expression from the R5-iLOV template. Fluorescence from the replicon was highest at 3 days postinoculation (dpi) and declined at 7 and 13 dpi. Addition of the tomato bushy stunt virus (TBSV) P19 silencing-suppressor protein prolonged expression until 7 dpi. A full-length infectious clone system was constructed of seven binary plasmids encoding each of the seven genome segments. Agro-delivery of constructs encoding RRV RNAs 1 through 4 or RNAs 1 through 7 to N. benthamiana plants produced systemic infection. Finally, agro-delivery of the full-length RRV infectious clone including all segments produced systemic infection within 60 dpi. This advance opens new opportunities for studying RRV infection biology.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- Texas A&M Agrilife Center in Dallas, 17360 Coit Rd, Dallas, TX, U.S.A
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, U.S.A
| | - Venura Herath
- Texas A&M Agrilife Center in Dallas, 17360 Coit Rd, Dallas, TX, U.S.A
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, U.S.A
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, 20400, Sri Lanka
| | - Cesar D Urrutia
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, U.S.A
| | - Mathieu Gayral
- Texas A&M Agrilife Center in Dallas, 17360 Coit Rd, Dallas, TX, U.S.A
| | - Kelsey Lyle
- Department of Biological Sciences, The University of Texas at Dallas, Dallas, TX, U.S.A
| | - Madalyn K Shires
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, U.S.A
| | - Kevin Ong
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, U.S.A
| | - David Byrne
- Department of Horticulture Sciences, Texas A&M University, College Station, TX, U.S.A
| |
Collapse
|
14
|
Ran X, Zhang Q, Zhang Y, Chen J, Wei Z, He Y, Guo L. Probing the Electron Transfer between iLOV Protein and Ag Nanoparticles. Molecules 2020; 25:molecules25112544. [PMID: 32486057 PMCID: PMC7321358 DOI: 10.3390/molecules25112544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 01/10/2023] Open
Abstract
Nanomaterials have been widely used in biomedical sciences; however, the mechanism of interaction between nanoparticles and biomolecules is still not fully understood. In the present study, we report the interaction mechanism between differently sized Ag nanoparticles and the improved light-oxygen-voltage (iLOV) protein. The steady-state and time-resolved fluorescence results demonstrated that the fluorescence intensity and lifetime of the iLOV protein decreased upon its adsorption onto Ag nanoparticles, and this decrease was dependent upon nanoparticle size. Further, we showed that the decrease of fluorescence intensity and lifetime arose from electron transfer between iLOV and Ag nanoparticles. Moreover, through point mutation and controlled experimentation, we demonstrated for the first time that electron transfer between iLOV and Ag nanoparticles is mediated by the tryptophan residue in the iLOV protein. These results are of great importance in revealing the function of iLOV protein as it applies to biomolecular sensors, the field of nano-photonics, and the interaction mechanism between the protein and nanoparticles.
Collapse
Affiliation(s)
- Xia Ran
- Institute of Micro/Nano Photonic Materials and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, China; (X.R.); (Q.Z.); (J.C.); (Z.W.)
- Key Laboratory of Plant Stress Biology, Henan University, Kaifeng 475001, China;
| | - Qianqian Zhang
- Institute of Micro/Nano Photonic Materials and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, China; (X.R.); (Q.Z.); (J.C.); (Z.W.)
| | - Yu Zhang
- Key Laboratory of Plant Stress Biology, Henan University, Kaifeng 475001, China;
| | - Jin Chen
- Institute of Micro/Nano Photonic Materials and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, China; (X.R.); (Q.Z.); (J.C.); (Z.W.)
| | - Zhongran Wei
- Institute of Micro/Nano Photonic Materials and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, China; (X.R.); (Q.Z.); (J.C.); (Z.W.)
| | - Yulu He
- Institute of Micro/Nano Photonic Materials and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, China; (X.R.); (Q.Z.); (J.C.); (Z.W.)
- Key Laboratory of Plant Stress Biology, Henan University, Kaifeng 475001, China;
- Correspondence: (Y.H.); (L.G.)
| | - Lijun Guo
- Institute of Micro/Nano Photonic Materials and Application, School of Physics and Electronics, Henan University, Kaifeng 475004, China; (X.R.); (Q.Z.); (J.C.); (Z.W.)
- Key Laboratory of Plant Stress Biology, Henan University, Kaifeng 475001, China;
- Correspondence: (Y.H.); (L.G.)
| |
Collapse
|
15
|
Effects of Proline Substitutions on the Thermostable LOV Domain from Chloroflexus aggregans. CRYSTALS 2020. [DOI: 10.3390/cryst10040256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Light-oxygen-voltage (LOV) domains are ubiquitous photosensory modules found in proteins from bacteria, archaea and eukaryotes. Engineered versions of LOV domains have found widespread use in fluorescence microscopy and optogenetics, with improved versions being continuously developed. Many of the engineering efforts focused on the thermal stabilization of LOV domains. Recently, we described a naturally thermostable LOV domain from Chloroflexus aggregans. Here we show that the discovered protein can be further stabilized using proline substitution. We tested the effects of three mutations, and found that the melting temperature of the A95P mutant is raised by approximately 2 °C, whereas mutations A56P and A58P are neutral. To further evaluate the effects of mutations, we crystallized the variants A56P and A95P, while the variant A58P did not crystallize. The obtained crystal structures do not reveal any alterations in the proteins other than the introduced mutations. Molecular dynamics simulations showed that mutation A58P alters the structure of the respective loop (Aβ-Bβ), but does not change the general structure of the protein. We conclude that proline substitution is a viable strategy for the stabilization of the Chloroflexus aggregans LOV domain. Since the sequences and structures of the LOV domains are overall well-conserved, the effects of the reported mutations may be transferable to other proteins belonging to this family.
Collapse
|
16
|
Ozbakir HF, Anderson NT, Fan KC, Mukherjee A. Beyond the Green Fluorescent Protein: Biomolecular Reporters for Anaerobic and Deep-Tissue Imaging. Bioconjug Chem 2020; 31:293-302. [PMID: 31794658 PMCID: PMC7033020 DOI: 10.1021/acs.bioconjchem.9b00688] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescence imaging represents cornerstone technology for studying biological function at the cellular and molecular levels. The technology's centerpiece is a prolific collection of genetic reporters based on the green fluorescent protein (GFP) and related analogs. More than two decades of protein engineering have endowed the GFP repertoire with an incredible assortment of fluorescent proteins, allowing scientists immense latitude in choosing reporters tailored to various cellular and environmental contexts. Nevertheless, GFP and derivative reporters have specific limitations that hinder their unrestricted use for molecular imaging. These challenges have inspired the development of new reporter proteins and imaging mechanisms. Here, we review how these developments are expanding the frontiers of reporter gene techniques to enable nondestructive studies of cell function in anaerobic environments and deep inside intact animals-two important biological contexts that are fundamentally incompatible with the use of GFP-based reporters.
Collapse
Affiliation(s)
- Harun F. Ozbakir
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Nolan T. Anderson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kang-Ching Fan
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Arnab Mukherjee
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry, University of California, Santa Barbara, California 93106, United States
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
17
|
Westberg M, Etzerodt M, Ogilby PR. Rational design of genetically encoded singlet oxygen photosensitizing proteins. Curr Opin Struct Biol 2019; 57:56-62. [DOI: 10.1016/j.sbi.2019.01.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 01/29/2023]
|
18
|
Su D, Kabir MP, Orozco-Gonzalez Y, Gozem S, Gadda G. Fluorescence Properties of Flavin Semiquinone Radicals in Nitronate Monooxygenase. Chembiochem 2019; 20:1646-1652. [PMID: 30748074 DOI: 10.1002/cbic.201900016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Indexed: 11/09/2022]
Abstract
Fluorescent cofactors like flavins can be exploited to probe their local environment with spatial and temporal resolution. Although the fluorescence properties of the oxidized and two-electron-reduced states of flavins have been studied extensively, this is not the case for the one-electron-reduced state. Both the neutral and anionic semiquinones have proven particularly challenging to examine, as they are unstable in solution and are transient, short-lived species in many catalytic cycles. Here, we report that the nitronate monooxygenase (NMO) from Pseudomonas aeruginosa PAO1 is capable of stabilizing both semiquinone forms anaerobically for hours, thus enabling us to study their spectroscopy in a constant protein environment. We found that in the active site of NMO, the anionic semiquinone exhibits no fluorescence, whereas the neutral semiquinone radical shows a relatively strong fluorescence, with a behavior that violates the Kasha-Vavilov rule. These fluorescence properties are discussed in the context of time-dependent density functional theory calculations, which reveal low-lying dark states in both systems.
Collapse
Affiliation(s)
- Dan Su
- Department of Chemistry, Georgia State University, 50 Decatur St. SE, Atlanta, GA, 30302, USA
| | - Mohammad Pabel Kabir
- Department of Chemistry, Georgia State University, 50 Decatur St. SE, Atlanta, GA, 30302, USA
| | - Yoelvis Orozco-Gonzalez
- Department of Chemistry, Georgia State University, 50 Decatur St. SE, Atlanta, GA, 30302, USA
| | - Samer Gozem
- Department of Chemistry, Georgia State University, 50 Decatur St. SE, Atlanta, GA, 30302, USA
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, 50 Decatur St. SE, Atlanta, GA, 30302, USA.,Department of Biology, Georgia State University, 100 Piedmond Ave., Atlanta, GA, 30303, USA.,Center for Diagnostics and Therapeutics, Georgia State University, P.O. Box 5090, Atlanta, GA, 30303, USA.,Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, 30302, USA
| |
Collapse
|
19
|
Nemukhin AV, Grigorenko BL, Khrenova MG, Krylov AI. Computational Challenges in Modeling of Representative Bioimaging Proteins: GFP-Like Proteins, Flavoproteins, and Phytochromes. J Phys Chem B 2019; 123:6133-6149. [DOI: 10.1021/acs.jpcb.9b00591] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Alexander V. Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Bella L. Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Maria G. Khrenova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Federal Research Center of Biotechnology, Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russian
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| |
Collapse
|
20
|
Orozco-Gonzalez Y, Kabir MP, Gozem S. Electrostatic Spectral Tuning Maps for Biological Chromophores. J Phys Chem B 2019; 123:4813-4824. [DOI: 10.1021/acs.jpcb.9b00489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Mohammad Pabel Kabir
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
21
|
Kabir MP, Orozco-Gonzalez Y, Gozem S. Electronic spectra of flavin in different redox and protonation states: a computational perspective on the effect of the electrostatic environment. Phys Chem Chem Phys 2019; 21:16526-16537. [DOI: 10.1039/c9cp02230a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study discusses how UV/vis absorption spectra of flavin in different redox and protonation states are shifted by the nearby electrostatic microenvironment.
Collapse
Affiliation(s)
| | | | - Samer Gozem
- Department of Chemistry
- Georgia State University
- Atlanta
- USA
| |
Collapse
|
22
|
Nazarenko VV, Remeeva A, Yudenko A, Kovalev K, Dubenko A, Goncharov IM, Kuzmichev P, Rogachev AV, Buslaev P, Borshchevskiy V, Mishin A, Dhoke GV, Schwaneberg U, Davari MD, Jaeger KE, Krauss U, Gordeliy V, Gushchin I. A thermostable flavin-based fluorescent protein from Chloroflexus aggregans: a framework for ultra-high resolution structural studies. Photochem Photobiol Sci 2019; 18:1793-1805. [DOI: 10.1039/c9pp00067d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new thermostable fluorescent protein is shown to be a promising model for ultra-high resolution structural studies of LOV domains and for application as a fluorescent reporter.
Collapse
|
23
|
Meteleshko YI, Nemukhin AV, Khrenova MG. Novel flavin-based fluorescent proteins with red-shifted emission bands: a computational study. Photochem Photobiol Sci 2018; 18:177-189. [PMID: 30403258 DOI: 10.1039/c8pp00361k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The iLOV protein is a promising member of the class of flavin mononucleotide (FMN) based fluorescent proteins (FbFPs). It is becoming a popular tool for bioanalytical applications and bioimaging as a competitor of the well-known green fluorescent protein and its analogues. The main limitation of FbFPs is that all the members have close values of their absorption and emission band maxima. Therefore the upcoming challenge is to introduce novel variants of FbFPs to extend their color palette. We report the results of computational studies of iLOV variants, introducing point mutations and chromophore analogues. We found that point mutations of the apoprotein and substitution of FMN with either 8-amino-FMN or 8-methylamino-FMN lead to the red shift of emission bands up to 100 nm. Substitution with 1-deaza-FMN and the point mutations of the apoprotein result in a set of novel fluorescent proteins with emission bands in the "transparent" window where light readily penetrates through mammalian tissues. Newly suggested FbFPs can be used for multicolor imaging and also as components of FRET pairs.
Collapse
Affiliation(s)
- Yulia I Meteleshko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation.
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation. and Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow, 119334, Russian Federation
| | - Maria G Khrenova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation. and Federal Research Center of Biotechnology, Bach Institute of Biochemistry, Russian Academy of Sciences, Leninskiy Prospect 33, 119071 Moscow, Russian Federation
| |
Collapse
|
24
|
Charubin K, Bennett RK, Fast AG, Papoutsakis ET. Engineering Clostridium organisms as microbial cell-factories: challenges & opportunities. Metab Eng 2018; 50:173-191. [DOI: 10.1016/j.ymben.2018.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 11/25/2022]
|
25
|
An optogenetic toolbox of LOV-based photosensitizers for light-driven killing of bacteria. Sci Rep 2018; 8:15021. [PMID: 30301917 PMCID: PMC6177443 DOI: 10.1038/s41598-018-33291-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 09/26/2018] [Indexed: 01/04/2023] Open
Abstract
Flavin-binding fluorescent proteins (FPs) are genetically encoded in vivo reporters, which are derived from microbial and plant LOV photoreceptors. In this study, we comparatively analyzed ROS formation and light-driven antimicrobial efficacy of eleven LOV-based FPs. In particular, we determined singlet oxygen (1O2) quantum yields and superoxide photosensitization activities via spectroscopic assays and performed cell toxicity experiments in E. coli. Besides miniSOG and SOPP, which have been engineered to generate 1O2, all of the other tested flavoproteins were able to produce singlet oxygen and/or hydrogen peroxide but exhibited remarkable differences in ROS selectivity and yield. Accordingly, most LOV-FPs are potent photosensitizers, which can be used for light-controlled killing of bacteria. Furthermore, the two variants Pp2FbFP and DsFbFP M49I, exhibiting preferential photosensitization of singlet oxygen or singlet oxygen and superoxide, respectively, were shown to be new tools for studying specific ROS-induced cell signaling processes. The tested LOV-FPs thus further expand the toolbox of optogenetic sensitizers usable for a broad spectrum of microbiological and biomedical applications.
Collapse
|
26
|
Di H, Morantz EK, Sadhwani H, Madden JC, Brinton MA. Insertion position as well as the inserted TRS and gene sequences differentially affect the retention of foreign gene expression by simian hemorrhagic fever virus (SHFV). Virology 2018; 525:150-160. [PMID: 30286427 DOI: 10.1016/j.virol.2018.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022]
Abstract
Recombinant SHFV infectious cDNA clones expressing a foreign gene from an additional sg mRNA were constructed. Two 3' genomic region sites, between ORF4' and ORF2b and between ORF4 and ORF5, were utilized for insertion of the myxoma M013 gene with a C-terminal V5 tag followed by one of the three inserted transcription regulatory sequences (TRS), TRS2', TRS4' or TRS7. M013 insertion at the ORF4'/ORF2b site but not the ORF4/ORF5 site generated progeny virus but only the recombinant virus with an inserted TRS2' retained the entire M013 gene through passage four. Insertion of an auto-fluorescent protein gene, iLOV, with an inserted TRS2' at the ORF4'/ORF2b site, generated viable progeny virus. iLOV expression was maintained through passage eight. Although regulation of SHFV subgenomic RNA synthesis is complex, the ORF4'/ORF2b site, which is located between the two sets of minor structural proteins, is able to tolerate foreign gene insertion.
Collapse
Affiliation(s)
- Han Di
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Esther K Morantz
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Heena Sadhwani
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Joseph C Madden
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Margo A Brinton
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
27
|
Abstract
Sensory photoreceptors underpin light-dependent adaptations of organismal physiology, development, and behavior in nature. Adapted for optogenetics, sensory photoreceptors become genetically encoded actuators and reporters to enable the noninvasive, spatiotemporally accurate and reversible control by light of cellular processes. Rooted in a mechanistic understanding of natural photoreceptors, artificial photoreceptors with customized light-gated function have been engineered that greatly expand the scope of optogenetics beyond the original application of light-controlled ion flow. As we survey presently, UV/blue-light-sensitive photoreceptors have particularly allowed optogenetics to transcend its initial neuroscience applications by unlocking numerous additional cellular processes and parameters for optogenetic intervention, including gene expression, DNA recombination, subcellular localization, cytoskeleton dynamics, intracellular protein stability, signal transduction cascades, apoptosis, and enzyme activity. The engineering of novel photoreceptors benefits from powerful and reusable design strategies, most importantly light-dependent protein association and (un)folding reactions. Additionally, modified versions of these same sensory photoreceptors serve as fluorescent proteins and generators of singlet oxygen, thereby further enriching the optogenetic toolkit. The available and upcoming UV/blue-light-sensitive actuators and reporters enable the detailed and quantitative interrogation of cellular signal networks and processes in increasingly more precise and illuminating manners.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences , University of Parma , Parco Area delle Scienze 7/A-43124 Parma , Italy
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center , New York , New York 10031 , United States.,Department of Chemistry and Biochemistry, City College of New York , New York , New York 10031 , United States.,Ph.D. Programs in Biochemistry, Chemistry, and Biology , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Andreas Möglich
- Lehrstuhl für Biochemie , Universität Bayreuth , 95447 Bayreuth , Germany.,Research Center for Bio-Macromolecules , Universität Bayreuth , 95447 Bayreuth , Germany.,Bayreuth Center for Biochemistry & Molecular Biology , Universität Bayreuth , 95447 Bayreuth , Germany
| |
Collapse
|
28
|
Gyulev IS, Willson BJ, Hennessy RC, Krabben P, Jenkinson ER, Thomas GH. Part by Part: Synthetic Biology Parts Used in Solventogenic Clostridia. ACS Synth Biol 2018; 7:311-327. [PMID: 29186949 DOI: 10.1021/acssynbio.7b00327] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solventogenic Clostridia are of interest to the chemical industry because of their natural ability to produce chemicals such as butanol, acetone and ethanol from diverse feedstocks. Their use as whole cell factories presents multiple metabolic engineering targets that could lead to improved sustainability and profitability of Clostridium industrial processes. However, engineering efforts have been held back by the scarcity of genetic and synthetic biology tools. Over the past decade, genetic tools to enable transformation and chromosomal modifications have been developed, but the lack of a broad palette of synthetic biology parts remains one of the last obstacles to the rapid engineered improvement of these species for bioproduction. We have systematically reviewed existing parts that have been used in the modification of solventogenic Clostridia, revealing a narrow range of empirically chosen and nonengineered parts that are in current use. The analysis uncovers elements, such as promoters, transcriptional terminators and ribosome binding sites where increased fundamental knowledge is needed for their reliable use in different applications. Together, the review provides the most comprehensive list of parts used and also presents areas where an improved toolbox is needed for full exploitation of these industrially important bacteria.
Collapse
Affiliation(s)
- Ivan S. Gyulev
- Department
of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Benjamin J. Willson
- Department
of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Rosanna C. Hennessy
- Department
of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, 1871, Denmark
| | - Preben Krabben
- Green Biologics Limited, Milton Park, Abingdon, Oxfordshire OX14 4RU, United Kingdom
| | | | - Gavin H. Thomas
- Department
of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| |
Collapse
|
29
|
Homans RJ, Khan RU, Andrews MB, Kjeldsen AE, Natrajan LS, Marsden S, McKenzie EA, Christie JM, Jones AR. Two photon spectroscopy and microscopy of the fluorescent flavoprotein, iLOV. Phys Chem Chem Phys 2018; 20:16949-16955. [DOI: 10.1039/c8cp01699b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Homans et al. show that engineered LOV-domains are amenable to two photon activation both in vitro and in human cells.
Collapse
Affiliation(s)
- Rachael J. Homans
- School of Chemistry and Photon Science Institute
- The University of Manchester
- Manchester
- UK
- Manchester Institute of Biotechnology
| | - Raja U. Khan
- School of Chemistry and Photon Science Institute
- The University of Manchester
- Manchester
- UK
- Manchester Institute of Biotechnology
| | - Michael B. Andrews
- School of Chemistry and Photon Science Institute
- The University of Manchester
- Manchester
- UK
| | - Annemette E. Kjeldsen
- Institute of Molecular, Cell and Systems Biology
- College of Medical, Veterinary and Life Sciences
- University of Glasgow
- Glasgow
- UK
| | - Louise S. Natrajan
- School of Chemistry and Photon Science Institute
- The University of Manchester
- Manchester
- UK
| | - Steven Marsden
- School of Biological Sciences
- The University of Manchester
- Manchester
- UK
| | - Edward A. McKenzie
- Manchester Institute of Biotechnology
- The University of Manchester
- Manchester
- UK
| | - John M. Christie
- Institute of Molecular, Cell and Systems Biology
- College of Medical, Veterinary and Life Sciences
- University of Glasgow
- Glasgow
- UK
| | - Alex R. Jones
- School of Chemistry and Photon Science Institute
- The University of Manchester
- Manchester
- UK
- Manchester Institute of Biotechnology
| |
Collapse
|
30
|
Khrenova MG, Meteleshko YI, Nemukhin AV. Mutants of the Flavoprotein iLOV as Prospective Red-Shifted Fluorescent Markers. J Phys Chem B 2017; 121:10018-10025. [DOI: 10.1021/acs.jpcb.7b07533] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria G. Khrenova
- Department
of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yulia I. Meteleshko
- Department
of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander V. Nemukhin
- Department
of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Emanuel
Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
31
|
Kopka B, Magerl K, Savitsky A, Davari MD, Röllen K, Bocola M, Dick B, Schwaneberg U, Jaeger KE, Krauss U. Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine. Sci Rep 2017; 7:13346. [PMID: 29042655 PMCID: PMC5645311 DOI: 10.1038/s41598-017-13420-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022] Open
Abstract
Blue-light absorption by the flavin chromophore in light, oxygen, voltage (LOV) photoreceptors triggers photochemical reactions that lead to the formation of a flavin-cysteine adduct. While it has long been assumed that adduct formation is essential for signaling, it was recently shown that LOV photoreceptor variants devoid of the photoactive cysteine can elicit a functional response and that flavin photoreduction to the neutral semiquinone radical is sufficient for signal transduction. Currently, the mechanistic basis of the underlying electron- (eT) and proton-transfer (pT) reactions is not well understood. We here reengineered pT into the naturally not photoreducible iLOV protein, a fluorescent reporter protein derived from the Arabidopsis thaliana phototropin-2 LOV2 domain. A single amino-acid substitution (Q489D) enabled efficient photoreduction, suggesting that an eT pathway is naturally present in the protein. By using a combination of site-directed mutagenesis, steady-state UV/Vis, transient absorption and electron paramagnetic resonance spectroscopy, we investigate the underlying eT and pT reactions. Our study provides strong evidence that several Tyr and Trp residues, highly conserved in all LOV proteins, constitute the eT pathway for flavin photoreduction, suggesting that the propensity for photoreduction is evolutionary imprinted in all LOV domains, while efficient pT is needed to stabilize the neutral semiquinone radical.
Collapse
Affiliation(s)
- Benita Kopka
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Kathrin Magerl
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Anton Savitsky
- Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Katrin Röllen
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Marco Bocola
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Bernhard Dick
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.,DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany.,IBG-1: Biotechnologie, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany.
| |
Collapse
|
32
|
Chang XP, Gao YJ, Fang WH, Cui G, Thiel W. Quantum Mechanics/Molecular Mechanics Study on the Photoreactions of Dark- and Light-Adapted States of a Blue-Light YtvA LOV Photoreceptor. Angew Chem Int Ed Engl 2017. [PMID: 28632317 DOI: 10.1002/anie.201703487] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The dark- and light-adapted states of YtvA LOV domains exhibit distinct excited-state behavior. We have employed high-level QM(MS-CASPT2)/MM calculations to study the photochemical reactions of the dark- and light-adapted states. The photoreaction from the dark-adapted state starts with an S1 →T1 intersystem crossing followed by a triplet-state hydrogen transfer from the thiol to the flavin moiety that produces a diradical intermediate, and a subsequent internal conversion that triggers a barrierless C-S bond formation in the S0 state. The energy profiles for these transformations are different for the four conformers of the dark-adapted state considered. The photochemistry of the light-adapted state does not involve the triplet state: photoexcitation to the S1 state triggers C-S bond cleavage followed by recombination in the S0 state; both these processes are essentially barrierless and thus ultrafast. The present work offers new mechanistic insights into the photoresponse of flavin-containing blue-light photoreceptors.
Collapse
Affiliation(s)
- Xue-Ping Chang
- College of Chemistry, Beijing Normal University, Xin-Jie-Kou Outer St. 19, 100875, Beijing, China
| | - Yuan-Jun Gao
- College of Chemistry, Beijing Normal University, Xin-Jie-Kou Outer St. 19, 100875, Beijing, China
| | - Wei-Hai Fang
- College of Chemistry, Beijing Normal University, Xin-Jie-Kou Outer St. 19, 100875, Beijing, China
| | - Ganglong Cui
- College of Chemistry, Beijing Normal University, Xin-Jie-Kou Outer St. 19, 100875, Beijing, China
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
33
|
Chang XP, Gao YJ, Fang WH, Cui G, Thiel W. Quantum Mechanics/Molecular Mechanics Study on the Photoreactions of Dark- and Light-Adapted States of a Blue-Light YtvA LOV Photoreceptor. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xue-Ping Chang
- College of Chemistry; Beijing Normal University; Xin-Jie-Kou Outer St. 19 100875 Beijing China
| | - Yuan-Jun Gao
- College of Chemistry; Beijing Normal University; Xin-Jie-Kou Outer St. 19 100875 Beijing China
| | - Wei-Hai Fang
- College of Chemistry; Beijing Normal University; Xin-Jie-Kou Outer St. 19 100875 Beijing China
| | - Ganglong Cui
- College of Chemistry; Beijing Normal University; Xin-Jie-Kou Outer St. 19 100875 Beijing China
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
34
|
Westberg M, Bregnhøj M, Etzerodt M, Ogilby PR. Temperature Sensitive Singlet Oxygen Photosensitization by LOV-Derived Fluorescent Flavoproteins. J Phys Chem B 2017; 121:2561-2574. [PMID: 28257211 DOI: 10.1021/acs.jpcb.7b00561] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Optogenetic sensitizers that selectively produce a given reactive oxygen species (ROS) constitute a promising tool for studying cell signaling processes with high levels of spatiotemporal control. However, to harness the full potential of this tool for live cell studies, the photophysics of currently available systems need to be explored further and optimized. Of particular interest in this regard, are the flavoproteins miniSOG and SOPP, both of which (1) contain the chromophore flavin mononucleotide, FMN, in a LOV-derived protein enclosure, and (2) photosensitize the production of singlet oxygen, O2(a1Δg). Here we present an extensive experimental study of the singlet and triplet state photophysics of FMN in SOPP and miniSOG over a physiologically relevant temperature range. Although changes in temperature only affect the singlet excited state photophysics slightly, the processes that influence the deactivation of the triplet excited state are more sensitive to temperature. Most notably, for both proteins, the rate constant for quenching of 3FMN by ground state oxygen, O2(X3Σg-), increases ∼10-fold upon increasing the temperature from 10 to 43 °C, while the oxygen-independent channels of triplet state deactivation are less affected. As a consequence, this increase in temperature results in higher yields of O2(a1Δg) formation for both SOPP and miniSOG. We also show that the quantum yields of O2(a1Δg) production by both miniSOG and SOPP are mainly limited by the fraction of FMN triplet states quenched by O2(X3Σg-). The results presented herein provide a much-needed quantitative framework that will facilitate the future development of optogenetic ROS sensitizers.
Collapse
Affiliation(s)
- Michael Westberg
- Department of Chemistry, Aarhus University , DK-8000 Aarhus, Denmark
| | - Mikkel Bregnhøj
- Department of Chemistry, Aarhus University , DK-8000 Aarhus, Denmark
| | - Michael Etzerodt
- Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University , DK-8000 Aarhus, Denmark
| |
Collapse
|
35
|
Abstract
Genetically encoded fluorescent sensors are essential tools in modern biological research, and recent advances in fluorescent proteins (FPs) have expanded the scope of sensor design and implementation. In this review we compare different sensor platforms, including Förster resonance energy transfer (FRET) sensors, fluorescence-modulated single FP-based sensors, translocation sensors, complementation sensors, and dimerization-based sensors. We discuss elements of sensor design and engineering for each platform, including the incorporation of new types of FPs and sensor screening techniques. Finally, we summarize the wide range of sensors in the literature, exploring creative new sensor architectures suitable for different applications.
Collapse
Affiliation(s)
- Lynn Sanford
- University of Colorado Boulder, Boulder, CO, United States
| | - Amy Palmer
- University of Colorado Boulder, Boulder, CO, United States.
| |
Collapse
|
36
|
Losi A, Gärtner W. Solving Blue Light Riddles: New Lessons from Flavin-binding LOV Photoreceptors. Photochem Photobiol 2017; 93:141-158. [PMID: 27861974 DOI: 10.1111/php.12674] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/22/2016] [Indexed: 12/15/2022]
Abstract
Detection of blue light (BL) via flavin-binding photoreceptors (Fl-Blues) has evolved throughout all three domains of life. Although the main BL players, that is light, oxygen and voltage (LOV), blue light sensing using flavins (BLUF) and Cry (cryptochrome) proteins, have been characterized in great detail with respect to structure and function, still several unresolved issues at different levels of complexity remain and novel unexpected findings were reported. Here, we review the most prevailing riddles of LOV-based photoreceptors, for example: the relevance of water and/or small metabolites for the dynamics of the photocycle; molecular details of light-to-signal transduction events; the interplay of BL sensing by LOV domains with other environmental stimuli, such as BL plus oxygen-mediating photodamage and its impact on microbial lifestyles; the importance of the cell or chromophore redox state in determining the fate of BL-driven reactions; the evolutionary pathways of LOV-based BL sensing and associated functions through the diverse phyla. We will discuss major novelties emerged during the last few years on these intriguing aspects of LOV proteins by presenting paradigmatic examples from prokaryotic photosensors that exhibit the largest complexity and richness in associated functions.
Collapse
Affiliation(s)
- Aba Losi
- Department of Physics and Earth Sciences, University of Parma, Parma, Italy
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim, Germany
| |
Collapse
|