1
|
Kaisu L, Songlin Y, Wu S, Ying Z, Wang L, Potapov A, Yu X, Sun Y, Sun N, Zhu M. Portable and Recyclable Luminescent Lanthanide Coordination Polymer Film Sensors for Adenosine Triphosphate in Urine. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5129-5137. [PMID: 38227932 DOI: 10.1021/acsami.3c16504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Adenosine triphosphate (ATP) is a small molecule that is released to the urine from bladder urothelial cells and the bladder mucosal band of the human body. In certain cases, ATP can serve as a biomarker in bladder disease. For the practical applicability of luminescent sensors for ATP in urine, it is significant to find a new strategy for making the detection progress simple and available for in-field urine analysis. Here, a novel luminescent lanthanide coordination polymer (Tb-BPA) was designed and synthesized for quick and sensitive detection of ATP through luminescence quenching with a quenching constant of 4.90 × 103 M-1 and a detection limit of 0.55 × 10-6 M. Besides, Tb-BPA has excellent anti-interference ability and can detect ATP in simulated urine with a small relative standard deviation (<4%). Moreover, the luminescent polyacrylonitrile nanofiber films modified by Tb-BPA were prepared by electrospinning and were used for ATP visual detection. Notably, this film is easy to recover and reuse, and maintains good detection performance after at least 7 cycles.
Collapse
Affiliation(s)
- Li Kaisu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Yang Songlin
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Shuangyan Wu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Zhang Ying
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Lei Wang
- Center of Physical Chemistry Test, Shenyang University of Chemical Technology, Shenyang, Liaoning, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Andrei Potapov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Xiaolin Yu
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Yaguang Sun
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Na Sun
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - MingChang Zhu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| |
Collapse
|
2
|
Ratajczak K, Stobiecka M. DNA Aptamer Beacon Probe (ABP) for Monitoring of Adenosine Triphosphate Level in SW480 Cancer Cells Treated with Glycolysis Inhibitor 2-Deoxyglucose. Int J Mol Sci 2023; 24:ijms24119295. [PMID: 37298245 DOI: 10.3390/ijms24119295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Early cancer screening enables timely detection of carcinogenesis, and aids in prompt clinical intervention. Herein, we report on the development of a simple, sensitive, and rapid fluorometric assay based on the aptamer probe (aptamer beacon probe, ABP) for monitoring the energy-demand biomarker adenosine triphosphate (ATP), an essential energy source that is released into the tumor microenvironment. Its level plays a significant role in risk assessment of malignancies. The operation of the ABP for ATP was examined using solutions of ATP and other nucleotides (UTP, GTP, CTP), followed by monitoring of ATP production in SW480 cancer cells. Then, the effect of a glycolysis inhibitor, 2-deoxyglucose (2-DG), on SW480 cells was investigated. The stability of predominant ABP conformations in the temperature range of 23-91 °C and the effects of temperature on ABP interactions with ATP, UTP, GTP, and CTP were evaluated based on quenching efficiencies (QE) and Stern-Volmer constants (KSV). The optimized temperature for best selectivity of ABP toward ATP was 40 °C (KSV = 1093 M-1, QE = 42%). We have found that the inhibition of glycolysis in SW480 cancer cells by 2-deoxyglucose resulted in lowering of ATP production by 31.7%. Therefore, monitoring and modulation of ATP concentration may aid in future cancer treatment.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Physics and Biophysics, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02776 Warsaw, Poland
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02776 Warsaw, Poland
| |
Collapse
|
3
|
Meng L, Xie L, Hirose Y, Nishiuchi T, Yoshida N. Reduced graphene oxide increases cells with enlarged outer membrane of Citrifermentans bremense and exopolysaccharides secretion. Biosens Bioelectron 2022; 218:114754. [DOI: 10.1016/j.bios.2022.114754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022]
|
4
|
Qi S, He X, Zhang S, Xu P, Su M, Dong B, Song B. Turn-off near-infrared fluorescent probe for free bilirubin detection constructed by enhanced excimer emission. Anal Chim Acta 2022; 1238:340657. [DOI: 10.1016/j.aca.2022.340657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
|
5
|
Birniwa AH, Mahmud HNME, Abdullahi SS, Habibu S, Jagaba AH, Ibrahim MNM, Ahmad A, Alshammari MB, Parveen T, Umar K. Adsorption Behavior of Methylene Blue Cationic Dye in Aqueous Solution Using Polypyrrole-Polyethylenimine Nano-Adsorbent. Polymers (Basel) 2022; 14:polym14163362. [PMID: 36015619 PMCID: PMC9412383 DOI: 10.3390/polym14163362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/07/2022] Open
Abstract
In this work, a polypyrrole-polyethyleneimine (PPy-PEI) nano-adsorbent was successfully synthesized for the removal of methylene blue (MB) from an aqueous solution. Synthetic dyes are among the most prevalent environmental contaminants. A new conducting polymer-based adsorbent called (PPy-PEI) was successfully produced using ammonium persulfate as an oxidant. The PEI hyper-branched polymer with terminal amino groups was added to the PPy adsorbent to provide more effective chelating sites for dyes. An efficient dye removal from an aqueous solution was demonstrated using a batch equilibrium technique that included a polyethyleneimine nano-adsorbent (PPy-PEI). The best adsorption parameters were measured at a 0.35 g dosage of adsorbent at a pH of 6.2 and a contact period of 40 min at room temperature. The produced PPy-PEI nano-adsorbent has an average particle size of 25–60 nm and a BET surface area of 17 m2/g. The results revealed that PPy-PEI nano-composite was synthesized, and adsorption was accomplished in the minimum amount of time. The maximum monolayer power, qmax, for MB was calculated using the isothermal adsorption data, which matched the Langmuir isotherm model, and the kinetic adsorption data, which more closely fitted the Langmuir pseudo-second-order kinetic model. The Langmuir model was used to calculate the maximum monolayer capacity, or qmax, for MB, which was found to be 183.3 mg g−1. The as-prepared PPy-PEI nano-adsorbent totally removes the cationic dyes from the aqueous solution.
Collapse
Affiliation(s)
- Abdullahi Haruna Birniwa
- Department of Chemistry, Sule Lamido University, Kafin-Hausa P.M.B 048, Nigeria
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Habibun Nabi Muhammad Ekramul Mahmud
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (H.N.M.E.M.); (K.U.); Tel.: +(604)-6533567 (K.U.); Fax: +(604)-6574854 (K.U.)
| | - Shehu Sa’ad Abdullahi
- Department of Polymer Technology, Hussaini Adamu Federal Polytechnic Kazaure, Kazaure P.M.B 5004, Nigeria
| | - Shehu Habibu
- Department of Chemistry, Faculty of Science, Federal University Dutse, Dutse P.M.B 7156, Nigeria
| | - Ahmad Hussaini Jagaba
- Department of Civil and Environmental Engineering, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia
| | - Mohamad Nasir Mohamad Ibrahim
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Akil Ahmad
- Chemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed B. Alshammari
- Chemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Tabassum Parveen
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Khalid Umar
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia
- Correspondence: (H.N.M.E.M.); (K.U.); Tel.: +(604)-6533567 (K.U.); Fax: +(604)-6574854 (K.U.)
| |
Collapse
|
6
|
Jabeen F, Sajid MS, Fatima B, Saeed A, Ashiq MN, Najam-Ul-Haq M. Graphene oxide-metal oxide nanocomposites for on-target enrichment and analysis of phosphorylated biomolecules. J Sep Sci 2021; 44:3137-3145. [PMID: 34165915 DOI: 10.1002/jssc.202001276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/21/2023]
Abstract
The surface of matrix-assisted laser desorption/ionization mass spectrometry target is modified for improved signal strength and detection of analytes. The developed method includes on-target enrichment and detection of phosphopeptides/phospholipids using graphene oxide-lanthanide metal oxides (samarium, gadolinium, dysprosium, and erbium) nanocomposites. Enriched phosphopeptides are detected using material enhanced laser desorption/ionization mass spectrometry and phospholipids by laser desorption/ionization-mass spectrometry. Nanocomposites are prepared using graphene oxide with respective metal salts at high pH. They are characterized for nano-morphology, chemistry, porosity, composition, crystallinity, and thermal stability. Phosphopeptides enrichment protocol is developed and optimized for tryptic β-casein digest and that of phospholipids by phosphatidylcholine standard. Statistical analyses of phosphopeptides and phospholipids from milk show overlapping results for gadolinium, dysprosium, and erbium oxide nanocomposites. GO-Gd2 O3 has better enrichment efficiency and application as LDI material. Selectivity for GO-Dy2 O3 is 1:2500, for GO-Sm2 O3 is 1:3500, and 1:4000 for GO-Gd2 O3 . GO-Er2 O3 has a sensitivity of 25 fmol, whereas the highest sensitivity is down to 0.5 fmol for GO-Gd2 O3 . On-target enrichment is batch to batch reproducible with a standard deviation of <1, reduced time of enrichment to 10 min, and ease of operation compared to solid-phase batch extraction. The developed method enriches serum phosphopeptides characteristic of cancer-related phosphoproteins.
Collapse
Affiliation(s)
- Fahmida Jabeen
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan.,Department of Chemistry, The Women University, Multan, Pakistan
| | - Muhammad Salman Sajid
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Adeela Saeed
- Department of Chemistry, The Women University, Multan, Pakistan
| | - Muhammad Naeem Ashiq
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Najam-Ul-Haq
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
7
|
Bikiaris ND, Ainali NM, Christodoulou E, Kostoglou M, Kehagias T, Papasouli E, Koukaras EN, Nanaki SG. Dissolution Enhancement and Controlled Release of Paclitaxel Drug via a Hybrid Nanocarrier Based on mPEG-PCL Amphiphilic Copolymer and Fe-BTC Porous Metal-Organic Framework. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2490. [PMID: 33322372 PMCID: PMC7763675 DOI: 10.3390/nano10122490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023]
Abstract
In the present work, the porous metal-organic framework (MOF) Basolite®F300 (Fe-BTC) was tested as a potential drug-releasing depot to enhance the solubility of the anticancer drug paclitaxel (PTX) and to prepare controlled release formulations after its encapsulation in amphiphilic methoxy poly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) nanoparticles. Investigation revealed that drug adsorption in Fe-BTC reached approximately 40%, a relatively high level, and also led to an overall drug amorphization as confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The dissolution rate of PTX-loaded MOF was substantially enhanced achieving a complete (100%) release within four days, while the neat drug only reached a 13% maximum rate (3-4 days). This PTX-Fe-BTC nanocomposite was further encapsulated into a mPEG-PCL matrix, a typical aliphatic amphiphilic copolyester synthesized in our lab, whose biocompatibility was validated by in vitro cytotoxicity tests toward human umbilical vein endothelial cells (HUVEC). Encapsulation was performed according to the solid-in-oil-in-water emulsion/solvent evaporation technique, resulting in nanoparticles of about 143 nm, slightly larger of those prepared without the pre-adsorption of PTX on Fe-BTC (138 nm, respectively). Transmission electron microscopy (TEM) imaging revealed that spherical nanoparticles with embedded PTX-loaded Fe-BTC nanoparticles were indeed fabricated, with sizes ranging from 80 to 150 nm. Regions of the composite Fe-BTC-PTX system in the infrared (IR) spectrum are identified as signatures of the drug-MOF interaction. The dissolution profiles of all nanoparticles showed an initial burst release, attributed to the drug amount located at the nanoparticles surface or close to it, followed by a steadily and controlled release. This is corroborated by computational analysis that reveals that PTX attaches effectively to Fe-BTC building blocks, but its relatively large size limits diffusion through crystalline regions of Fe-BTC. The dissolution behaviour can be described through a bimodal diffusivity model. The nanoparticles studied could serve as potential chemotherapeutic candidates for PTX delivery.
Collapse
Affiliation(s)
- Nikolaos D. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (N.D.B.); (N.M.A.); (E.C.)
| | - Nina Maria Ainali
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (N.D.B.); (N.M.A.); (E.C.)
| | - Evi Christodoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (N.D.B.); (N.M.A.); (E.C.)
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece;
| | - Thomas Kehagias
- Laboratory of Electron Microscopy, Department of Physics, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece;
| | - Emilia Papasouli
- Laboratory of Quantum and Computational Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (E.P.); (E.N.K.)
| | - Emmanuel N. Koukaras
- Laboratory of Quantum and Computational Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (E.P.); (E.N.K.)
| | - Stavroula G. Nanaki
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (N.D.B.); (N.M.A.); (E.C.)
| |
Collapse
|
8
|
Hoseini-Ghahfarokhi M, Mirkiani S, Mozaffari N, Abdolahi Sadatlu MA, Ghasemi A, Abbaspour S, Akbarian M, Farjadian F, Karimi M. Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat? Int J Nanomedicine 2020; 15:9469-9496. [PMID: 33281443 PMCID: PMC7710865 DOI: 10.2147/ijn.s265876] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/12/2020] [Indexed: 01/19/2023] Open
Abstract
Graphene, a wonder material, has made far-reaching developments in many different fields such as materials science, electronics, condensed physics, quantum physics, energy systems, etc. Since its discovery in 2004, extensive studies have been done for understanding its physical and chemical properties. Owing to its unique characteristics, it has rapidly became a potential candidate for nano-bio researchers to explore its usage in biomedical applications. In the last decade, remarkable efforts have been devoted to investigating the biomedical utilization of graphene and graphene-based materials, especially in smart drug and gene delivery as well as cancer therapy. Inspired by a great number of successful graphene-based materials integrations into the biomedical area, here we summarize the most recent developments made about graphene applications in biomedicine. In this paper, we review the up-to-date advances of graphene-based materials in drug delivery applications, specifically targeted drug/ gene delivery, delivery of antitumor drugs, controlled and stimuli-responsive drug release, photodynamic therapy applications and optical imaging and theranostics, as well as investigating the future trends and succeeding challenges in this topic to provide an outlook for future researches.
Collapse
Affiliation(s)
- Mojtaba Hoseini-Ghahfarokhi
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Mirkiani
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Naeimeh Mozaffari
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra2601, Australia
| | | | - Amir Ghasemi
- Department of Engineering, Durham University, Durham DH1 3LE, United Kingdom
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Abbaspour
- Department of Engineering, Durham University, Durham DH1 3LE, United Kingdom
| | - Mohsen Akbarian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Karimi
- Iran Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Nazerdeylami S, Ghasemi JB, Amiri A, Mohammadi Ziarani G, Badiei A. A highly sensitive fluorescence measurement of amphetamine using 8-hydroxyquinoline-β-cyclodextrin grafted on graphene oxide. DIAMOND AND RELATED MATERIALS 2020; 109:108032. [DOI: 10.1016/j.diamond.2020.108032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
10
|
Mirsalari M, Elhami S. Colorimetric detection of insulin in human serum using GO/AuNPs/TX-100 nanocomposite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118617. [PMID: 32593845 DOI: 10.1016/j.saa.2020.118617] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
In this study, graphene oxide/gold nanoparticles/Triton X-100 nanocomposites (GO/AuNPs/TX-100) were synthesized using the sonochemical method and their ability in ultrasound-assisted colorimetric detection of insulin was investigated. The synthesized GO/AuNPs/TX-100 nanocomposites were characterized by UV-visible absorption spectroscopy and TEM analysis. The interaction between the nanocomposites and insulin was observed by both naked eye and optical absorption spectroscopy. The GO/AuNPs/TX-100 nanocomposites displayed apparent color changes (red to blue) and absorption spectra changes (decreasing of the band around 528 nm and appearance of a new red-shifted band at 640 nm) in presence of insulin. The interaction mechanism of the nanocomposites and insulin was discussed. It is based on the special structure of insulin, that insulin can be easily self-assemble into the GO/AuNP/TX-100 nanocomposites and can also play the role of a bridge between two different GO/AuNPs/TX-100 nanocomposites by peptide chains. The effective parameters for insulin detection were optimized. The colorimetric method was used for quantification of insulin in the range of 2-300 ng mL-1 with a detection limit of 0.1 ng mL-1. Moreover, the relative standard deviation of the method was 3.1 and 2.7% (n = 10) at concentrations of 50 and 200 ng mL-1, respectively on the same day and 4.8% at a concentration (200.0 ng mL-1) on five consecutive days. The present method was utilized for insulin assay in human blood serums with satisfactory results.
Collapse
Affiliation(s)
- Marzieh Mirsalari
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Shahla Elhami
- Department of Chemistry, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
| |
Collapse
|
11
|
Park S, Choi KS, Kim S, Gwon Y, Kim J. Graphene Oxide-Assisted Promotion of Plant Growth and Stability. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E758. [PMID: 32326526 PMCID: PMC7221628 DOI: 10.3390/nano10040758] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
The control and promotion of plant and crop growth are important challenges globally. In this study, we have developed a nanomaterial-assisted bionic strategy for accelerating plant growth. Although nanomaterials have been shown to be toxic to plants, we demonstrate herein that graphene oxide can be used as a regulator tool for enhancing plant growth and stability. Graphene oxide was added to the growth medium of Arabidopsis thaliana L. as well as injected into the stem of the watermelon plant. We showed that with an appropriate amount provided, graphene oxide had a positive effect on plant growth in terms of increasing the length of roots, the area of leaves, the number of leaves, and the formation of flower buds. In addition, graphene oxide affected the watermelon ripeness, increasing the perimeter and sugar content of the fruit. We believe that graphene oxide may be used as a strategy for enabling the acceleration of both plant growth and the fruit ripening process.
Collapse
Affiliation(s)
- Sunho Park
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea; (S.P.); (S.K.); (Y.G.)
| | - Kyoung Soon Choi
- National Research Facilities & Equipment center (NFEC), Korea Basic Science Institute (KBSI), 169-148, Gwahak-ro, Yuseong-gu, Daejeon 34133, Korea;
| | - Sujin Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea; (S.P.); (S.K.); (Y.G.)
| | - Yonghyun Gwon
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea; (S.P.); (S.K.); (Y.G.)
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea; (S.P.); (S.K.); (Y.G.)
| |
Collapse
|
12
|
Ratajczak K, Stobiecka M. High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: A concise review. Carbohydr Polym 2020; 229:115463. [DOI: 10.1016/j.carbpol.2019.115463] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022]
|
13
|
Cai N, Larese-Casanova P. Facile Synthesis and Reuse of Magnetic Black Carbon Magnetite (BC-Mag) for Fast Carbamazepine Removal from Water. NANOMATERIALS 2020; 10:nano10020213. [PMID: 31991921 PMCID: PMC7074862 DOI: 10.3390/nano10020213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 11/24/2022]
Abstract
Magnetic carbonaceous nanomaterials are needed in water treatment applications because they can offer both carbon surfaces for sorption of organic pollutants and ease of material magnetic retrieval for regeneration and reuse. In this study, we employed a facile one-step method to synthesize a black carbon-magnetite composite (BC-Mag) by high-temperature annealing of black carbon and hematite. The nanocomposite was easily dispersed and stable in water owing to the presence of negatively charged oxygen surface functional groups. Sorption kinetics with dissolved carbamazepine showed a rapid initial uptake with equilibrium achieved within only minutes. The sorption extent can be described with the Freundlich model, and surface area normalized sorption affinity was an order of magnitude greater than conventional granular activated carbon. The sorption extent of neutral carbamazepine remained constant between pH 2–10 while surface zeta potential decreased. BC-Mag can be reused for the sorption of carbamazepine up to six times without significant loss of the sorption extent.
Collapse
Affiliation(s)
- Nan Cai
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Engineering and Technology Research Center of Online Monitoring for Water Environmental Pollution, Guangdong Institute of Analysis, Guangzhou 510070, China;
| | - Philip Larese-Casanova
- Department of Civil & Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
- Correspondence: or ; Tel.: +1-617-373-2899
| |
Collapse
|
14
|
Investigation of the Effects of Polymer Dispersants on Dispersion of GO Nanosheets in Cement Composites and Relative Microstructures/Performances. NANOMATERIALS 2018; 8:nano8120964. [PMID: 30469503 PMCID: PMC6316744 DOI: 10.3390/nano8120964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
This study focused on the uniform distribution of graphene oxide (GO) nanosheets in cement composites and their effect on microstructure and performance. For this, three polymer dispersants with different level of polar groups (weak, mild, and strong) poly(acrylamide-methacrylic acid) (PAM), poly(acrylonitrile-hydroxyethyl acrylate) (PAH), and poly(allylamine-acrylamide) (PAA) were used to form intercalation composites with GO nanosheets. The results indicated that GO nanosheets can exist as individual 1⁻2, 2⁻5, and 3⁻8 layers in GO/PAA, GO/PAH, and GO/PAM intercalation composites, respectively. The few-layered (1⁻2 layers) GO can be uniformly distributed in cement composites and promote the formation of regular-shaped crystals and a compact microstructure. The compressive strengths of the blank, control, GO/PAM, GO/PAH, and GO/PAA cement composites were 55.72, 78.31, 89.75, 116.82, and 128.32 MPa, respectively. Their increase ratios relative to the blank sample were 40.54%, 61.07%, 109.66%, and 130.29%, respectively. Their corresponding flexural strengths were 7.53, 10.85, 12.35, 15.97, and 17.68 MPa, respectively, which correspond to improvements of 44.09%, 64.01%, 112.09%, and 134.79%.
Collapse
|
15
|
Halim A, Luo Q, Ju Y, Song G. A Mini Review Focused on the Recent Applications of Graphene Oxide in Stem Cell Growth and Differentiation. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E736. [PMID: 30231556 PMCID: PMC6163376 DOI: 10.3390/nano8090736] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022]
Abstract
Stem cells are undifferentiated cells that can give rise to any types of cells in our body. Hence, they have been utilized for various applications, such as drug testing and disease modeling. However, for the successful of those applications, the survival and differentiation of stem cells into specialized lineages should be well controlled. Growth factors and chemical agents are the most common signals to promote the proliferation and differentiation of stem cells. However, those approaches holds several drawbacks such as the negative side effects, degradation or denaturation, and expensive. To address such limitations, nanomaterials have been recently used as a better approach for controlling stem cells behaviors. Graphene oxide is the derivative of graphene, the first two-dimensional (2D) materials in the world. Recently, due to its extraordinary properties and great biological effects on stem cells, many scientists around the world have utilized graphene oxide to enhance the differentiation potential of stem cells. In this mini review, we highlight the key advances about the effects of graphene oxide on controlling stem cell growth and various types of stem cell differentiation. We also discuss the possible molecular mechanisms of graphene oxide in controlling stem cell growth and differentiation.
Collapse
Affiliation(s)
- Alexander Halim
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Qing Luo
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Yang Ju
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | - Guanbin Song
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
16
|
Zhang Y, Chen X, Roozbahani GM, Guan X. Graphene oxide-based biosensing platform for rapid and sensitive detection of HIV-1 protease. Anal Bioanal Chem 2018; 410:6177-6185. [PMID: 29968105 PMCID: PMC6159923 DOI: 10.1007/s00216-018-1224-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 05/28/2018] [Accepted: 06/22/2018] [Indexed: 12/26/2022]
Abstract
HIV-1 protease is essential for the life cycle of the human immunodeficiency virus (HIV), and is one of the most important clinical targets for antiretroviral therapies. In this work, we developed a graphene oxide (GO)-based fluorescence biosensing platform for the rapid, sensitive, and accurate detection of HIV-1 protease, in which fluorescent-labeled HIV-1 protease substrate peptide molecules were covalently linked to GO. In the absence of HIV-1 protease, fluorescein was effectively quenched by GO. In contrast, in the presence of HIV-1 protease, it would cleave the substrate peptide into short fragments, thus producing fluorescence. Based on this sensing strategy, HIV-1 protease could be detected at as low as 1.18 ng/mL. More importantly, the sensor could successfully detect HIV-1 protease in human serum. Such GO-based fluorescent sensors may find useful applications in many fields, including diagnosis of protease-related diseases, as well as sensitive and high-throughput screening of drug candidates. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Youwen Zhang
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL, 60616, USA
| | - Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL, 60616, USA
| | - Golbarg M Roozbahani
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL, 60616, USA
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL, 60616, USA.
| |
Collapse
|
17
|
Lv Y, Xing B, Zheng M, Yi G, Huang G, Zhang C, Yuan R, Chen Z, Cao Y. Hydrothermal Synthesis of Ultra-Light Coal-Based Graphene Oxide Aerogel for Efficient Removal of Dyes from Aqueous Solutions. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E670. [PMID: 30158446 PMCID: PMC6164370 DOI: 10.3390/nano8090670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
A novel carboxymethyl cellulose (CMC)-supported graphene oxide aerogel (CGOA) was fabricated from a cost-effective and abundant bituminous coal by a mild hydrothermal process and freeze-drying treatment. Such an aerogel has cross-linked graphene oxide layers supported by CMC, and therefore, displays high mechanical strength while having ultra-low density (8.257 mg·cm-3). The CGOA has a 3D interconnected porous structure, beneficial graphene framework defects and abundant oxygen-containing functional groups, which offer favorable diffusion channels and effective adsorption sites for the transport and adsorption of dye molecules. The adsorption performance of rhodamine B by an optimized CGOA shows a maximum monolayer adsorption capacity of 312.50 mg·g-1, as determined by Langmuir isotherm parameters. This CGOA exhibited a better adsorption efficiency (99.99%) in alkaline solution, and satisfactory stability (90.60%) after three cycles. In addition, adsorption experiments on various dyes have revealed that CGOA have better adsorption capacities for cationic dyes than anionic dyes.
Collapse
Affiliation(s)
- You Lv
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Baolin Xing
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
- Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou 450001, China.
| | - Mingkun Zheng
- School of Science, Hubei University of Technology, Wuhan 430068, China.
| | - Guiyun Yi
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Guangxu Huang
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Chuanxiang Zhang
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Ruifu Yuan
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Zhengfei Chen
- Graduate School of Energy Science, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yijun Cao
- Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
18
|
Dong B, Liu L, Hu C. ATP-Driven Temporal Control over Structure Switching of Polymeric Micelles. Biomacromolecules 2018; 19:3659-3668. [PMID: 30068081 DOI: 10.1021/acs.biomac.8b00769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An adenosine triphosphate (ATP)-fueled micellar system in the out-of-equilibrium state was constructed based on 4,5-diamino-1,3,5-triazine (DAT)-containing block copolymer. The block copolymer self-assembled into spherical micelles in equilibrium steady state at pH higher than its p Ka. The pendant DAT residues in protonated form acted as ATP catchers via hydrogen bonding and electrostatic interactions. Activated by ATP fuel, the polymeric micelles spontaneously disrupted into small aggregates of ATP/polymer hybrid complexes. The consumption of ATP energy via the enzymatic hydrolysis led to dissociation of the complexes and reversible formation of polymeric micelles. A transient self-assembly cycle, in which the assembly underwent autonomous division-fusion motion, was created using ATP fuel and enzyme; the switching of assembly structure was sustained by continuous supply of ATP fuel. This DAT-containing block copolymer have good biocompatibility, and drug-loaded micelles display ATP-responsive release behavior. It is expected that this ATP-fueled supramolecular assembly system will provide a functional platform for biomimic chemistry and therapeutic applications.
Collapse
Affiliation(s)
- Bingyang Dong
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , People's Republic of China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , People's Republic of China
| | - Cong Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , People's Republic of China
| |
Collapse
|
19
|
Optical Biosensing System for the Detection of Survivin mRNA in Colorectal Cancer Cells Using a Graphene Oxide Carrier-Bound Oligonucleotide Molecular Beacon. NANOMATERIALS 2018; 8:nano8070510. [PMID: 29987217 PMCID: PMC6071027 DOI: 10.3390/nano8070510] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/30/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022]
Abstract
The anti-apoptotic protein survivin is one of the most promising cancer biomarkers owing to its high expression in human cancers and rare occurrence in normal adult tissues. In this work, we have investigated the role of supramolecular interactions between a graphene oxide (GO) nanosheet nanocarrier and a survivin molecular beacon (SurMB), functionalized by attaching fluorophore Joe and quencher Dabcyl (SurMB-Joe). Molecular dynamics simulations revealed hydrogen bonding of Joe moiety and Dabcyl to GO carriers that considerably increase the SurMB-GO bonding strength. This was confirmed in experimental work by the reduced fluorescence background in the OFF state, thereby increasing the useful analytical signal range for mRNA detection. A new mechanism of hairpin–hairpin interaction of GO@SurMB with target oligonucleotides has been proposed. A low limit of detection, LOD = 16 nM (S/N = 3), has been achieved for complementary tDNA using GO@SurMB-Joe nanocarriers. We have demonstrated an efficient internalization of SurMB-Joe-loaded GO nanocarriers in malignant SW480 cells. The proposed tunability of the bonding strength in the attached motifs for MBs immobilized on nanocarriers, via structural modifications, should be useful in gene delivery systems to enhance the efficacy of gene retention, cell transfection and genomic material survivability in the cellular environment.
Collapse
|
20
|
Ratajczak K, Krazinski BE, Kowalczyk AE, Dworakowska B, Jakiela S, Stobiecka M. Hairpin-Hairpin Molecular Beacon Interactions for Detection of Survivin mRNA in Malignant SW480 Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17028-17039. [PMID: 29687994 DOI: 10.1021/acsami.8b02342] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cancer biomarkers offer unique prospects for the development of cancer diagnostics and therapy. One of such biomarkers, protein survivin (Sur), exhibits strong antiapoptotic and proliferation-enhancing properties and is heavily expressed in multiple cancers. Thus, it can be utilized to provide new modalities for modulating the cell-growth rate, essential for effective cancer treatment. Herein, we have focused on the development of a new survivin-based cancer detection platform for colorectal cancer cells SW480 using a turn-on fluorescence oligonucleotide molecular beacon (MB) probe, encoded to recognize Sur messenger RNA (mRNA). Contrary to the expectations, we have found that both the complementary target oligonucleotide strands as well as the single- and double-mismatch targets, instead of exhibiting the anticipated simple random conformations, preferentially formed secondary structure motifs by folding into small-loop hairpin structures. Such a conformation may interfere with, or even undermine, the biorecognition process. To gain better understanding of the interactions involved, we have replaced the classical Tyagi-Kramer model of interactions between a straight target oligonucleotide strand and a hairpin MB with a new model to account for the hairpin-hairpin interactions as the biorecognition principle. A detailed mechanism of these interactions has been proposed. Furthermore, in experimental work, we have demonstrated an efficient transfection of malignant SW480 cells with SurMB probes containing a fluorophore Joe (SurMB-Joe) using liposomal nanocarriers. The green emission from SurMB-Joe in transfected cancer cells, due to the hybridization of the SurMB-Joe loop with Sur mRNA hairpin target, corroborates Sur overexpression. On the other hand, healthy human-colon epithelial cells CCD 841 CoN show only negligible expression of survivin mRNA. These experiments provide the proof-of-concept for distinguishing between the cancer and normal cells by the proposed hairpin-hairpin interaction method. The single nucleotide polymorphism sensitivity and a low detection limit of 26 nM (S/N = 3σ) for complementary targets have been achieved.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Biophysics , Warsaw University of Life Sciences (SGGW) , 159 Nowoursynowska Street , 02776 Warsaw , Poland
| | - Bartlomiej E Krazinski
- Department of Human Histology and Embryology , University of Warmia and Mazury , 30 Warszawska Street , 10082 Olsztyn , Poland
| | - Anna E Kowalczyk
- Department of Human Histology and Embryology , University of Warmia and Mazury , 30 Warszawska Street , 10082 Olsztyn , Poland
| | - Beata Dworakowska
- Department of Biophysics , Warsaw University of Life Sciences (SGGW) , 159 Nowoursynowska Street , 02776 Warsaw , Poland
| | - Slawomir Jakiela
- Department of Biophysics , Warsaw University of Life Sciences (SGGW) , 159 Nowoursynowska Street , 02776 Warsaw , Poland
| | - Magdalena Stobiecka
- Department of Biophysics , Warsaw University of Life Sciences (SGGW) , 159 Nowoursynowska Street , 02776 Warsaw , Poland
| |
Collapse
|
21
|
Rafi M, Samiey B, Cheng CH. Study of Adsorption Mechanism of Congo Red on Graphene Oxide/PAMAM Nanocomposite. MATERIALS 2018; 11:ma11040496. [PMID: 29587463 PMCID: PMC5951342 DOI: 10.3390/ma11040496] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 11/29/2022]
Abstract
Graphene oxide/poly(amidoamine) (GO/PAMAM) nanocomposite adsorbed high quantities of congo red (CR) anionic dye in 0.1 M NaCl solution, with the maximum adsorption capacity of 198 mg·g−1. The kinetics and thermodynamics of adsorption were investigated to elucidate the effects of pH, temperature, shaking rate, ionic strength, and contact time. Kinetic data were analyzed by the KASRA model and the KASRA, ISO, and pore-diffusion equations. Adsorption adsorption isotherms were studied by the ARIAN model and the Henry, Langmuir, and Temkin equations. It was shown that adsorption sites of GO/PAMAM at experimental conditions were phenolic hydroxyl groups of GO sheets and terminal amine groups of PAMAM dendrimer. Analysis of kinetic data indicated that amine sites were located on the surface, and that hydroxyl sites were placed in the pores of adsorbent. CR molecules interacted with the adsorption sites via hydrogen bonds. The molecules were adsorbed firstly on the amine sites, and then on the internal hydroxyl sites. Adsorption kinetic parameters indicated that the interaction of CR to the –NH3+ sites was the rate-controlling step of adsorption of CR on this site and adsorption activation energies calculated for different parts of this step. On the other hand, kinetic parameters showed that the intraparticle diffusion was the rate-controlling step during the interaction of CR molecules to –OH sites and activation energy of this step was not calculable. Finally, the used GO/PAMAM was completely regenerated by using ethylenediamine.
Collapse
Affiliation(s)
- Mohammad Rafi
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad 68137-17133, Lorestan, Iran.
| | - Babak Samiey
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad 68137-17133, Lorestan, Iran.
| | - Chil-Hung Cheng
- Department of Chemical Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
22
|
Jira J, Rezek B, Kriha V, Artemenko A, Matolínová I, Skakalova V, Stenclova P, Kromka A. Inhibition of E. coli Growth by Nanodiamond and Graphene Oxide Enhanced by Luria-Bertani Medium. NANOMATERIALS 2018; 8:nano8030140. [PMID: 29494507 PMCID: PMC5869631 DOI: 10.3390/nano8030140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/16/2018] [Accepted: 02/24/2018] [Indexed: 11/16/2022]
Abstract
Nanodiamonds (NDs) and graphene oxide (GO) are modern carbon-based nanomaterials with promising features for the inhibition of microorganism growth ability. Here we compare the effects of nanodiamond and graphene oxide in both annealed (oxidized) and reduced (hydrogenated) forms in two types of cultivation media—Luria-Bertani (LB) and Mueller-Hinton (MH) broths. The comparison shows that the number of colony forming unit (CFU) of Escherichia coli is significantly lowered (45%) by all the nanomaterials in LB medium for at least 24 h against control. On the contrary, a significant long-term inhibition of E. coli growth (by 45%) in the MH medium is provided only by hydrogenated NDs terminated with C-HX groups. The use of salty agars did not enhance the inhibition effects of nanomaterials used, i.e. disruption of bacterial membrane or differences in ionic concentrations do not play any role in bactericidal effects of nanomaterials used. The specific role of the ND and GO on the enhancement of the oxidative stress of bacteria or possible wrapping bacteria by GO nanosheets, therefore isolating them from both the environment and nutrition was suggested. Analyses by infrared spectroscopy, photoelectron spectroscopy, scanning electron microscopy and dynamic light scattering corroborate these conclusions.
Collapse
Affiliation(s)
- Jaroslav Jira
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Prague 6, Czech Republic.
- Faculty of Electrical Engineering, Czech Technical University, Technická 2, 166 27 Prague 6, Czech Republic.
| | - Bohuslav Rezek
- Faculty of Electrical Engineering, Czech Technical University, Technická 2, 166 27 Prague 6, Czech Republic.
| | - Vitezslav Kriha
- Faculty of Electrical Engineering, Czech Technical University, Technická 2, 166 27 Prague 6, Czech Republic.
| | - Anna Artemenko
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Prague 6, Czech Republic.
| | - Iva Matolínová
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 181 00 Prague 8, Czech Republic.
| | - Viera Skakalova
- Danubia NanoTech, s.r.o., Ilkovicova 3, 841 04 Bratislava, Slovakia.
| | - Pavla Stenclova
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Prague 6, Czech Republic.
| | - Alexander Kromka
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 00 Prague 6, Czech Republic.
| |
Collapse
|
23
|
Mateos R, Vera S, Valiente M, Díez-Pascual AM, San Andrés MP. Comparison of Anionic, Cationic and Nonionic Surfactants as Dispersing Agents for Graphene Based on the Fluorescence of Riboflavin. NANOMATERIALS 2017; 7:nano7110403. [PMID: 29165390 PMCID: PMC5707620 DOI: 10.3390/nano7110403] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023]
Abstract
Fluorescence quenching is a valuable tool to gain insight about dynamic changes of fluorophores in complex systems. Graphene (G), a single-layered 2D nanomaterial with unique properties, was dispersed in surfactant aqueous solutions of different nature: non-ionic polyoxyethylene-23-lauryl ether (Brij L23), anionic sodium dodecylsulphate (SDS), and cationic hexadecyltrimethylammonium bromide (CTAB) and dodecyltrimethylammonium bromide (DTAB). The influence of the surfactant type, chain length and concentration, G total concentration and G/surfactant weight ratio on the fluorescence intensity of vitamin B2 (riboflavin) was investigated. The quality of the different G dispersions was assessed by scanning and transmission electron microscopies (SEM and TEM). A quenching phenomenon of the fluorescence of riboflavin was found for G dispersions in all the surfactants, which generally becomes stronger with increasing G/surfactant weight ratio. For dispersions in the ionic surfactants, the quenching is more pronounced as the surfactant concentration raises, whilst the non-ionic one remains merely unchanged for the different G/Brij L23 weight ratios. More importantly, results indicate that DTAB solutions are the optimum media for dispersing G sheets, leading to an up to 16-fold drop in the fluorescence intensity. Understanding the mechanism in fluorescence quenching of G dispersions in surfactants could be useful for several optical applications.
Collapse
Affiliation(s)
- Rocío Mateos
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, Alcalá University, Alcalá de Henares, 28871 Madrid, Spain.
| | - Soledad Vera
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, Alcalá University, Alcalá de Henares, 28871 Madrid, Spain.
| | - Mercedes Valiente
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, Alcalá University, Alcalá de Henares, 28871 Madrid, Spain.
- Institute of Chemistry Research "Andrés M. del Río" (IQAR), University of Alcalá, Ctra, Madrid-Barcelona, Km. 33.6, Alcalá de Henares, 28871 Madrid, Spain.
| | - Ana María Díez-Pascual
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, Alcalá University, Alcalá de Henares, 28871 Madrid, Spain.
- Institute of Chemistry Research "Andrés M. del Río" (IQAR), University of Alcalá, Ctra, Madrid-Barcelona, Km. 33.6, Alcalá de Henares, 28871 Madrid, Spain.
| | - María Paz San Andrés
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, Alcalá University, Alcalá de Henares, 28871 Madrid, Spain.
| |
Collapse
|