1
|
Yang CY, Zhang Q, Li T, Chen XH, Li XL, Luo HQ, Li NB. Binary ruthenium dioxide and nickel oxide ultrafine particles loaded on carbon nanotubes for high-stability oxygen evolution reaction at high current densities. J Colloid Interface Sci 2025; 677:323-330. [PMID: 39151225 DOI: 10.1016/j.jcis.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
RuO2 is an efficient electrocatalyst for the oxygen evolution reaction (OER). However, during the OER process, RuO2 is prone to oxidation into Rux+ (x > 4), leading to its dissolution in the electrolyte and resulting in poor stability of RuO2. Here, we report a bicomponent electrocatalyst, NiO and RuO2 co-loaded on carbon nanotubes (RuO2/NiO/CNT). The results demonstrate that the introduction of NiO suppresses the over-oxidation of RuO2 during the OER process, not only inheriting the excellent catalytic performance of RuO2, but also significantly enhancing the stability of the catalyst for OER at high current densities. In contrast to RuO2/CNT, RuO2/NiO/CNT shows no significant change in activity after 150 h of OER at a current density of 100 mA cm-2. Density functional theory (DFT) calculations indicate that NiO transfers a large number of electrons to RuO2, thereby reducing the oxidation state of Ru. In conclusion, this study provides a detailed analysis of the phenomenon where low-valent metal oxides have the ability to enhance the stability of RuO2 catalysts.
Collapse
Affiliation(s)
- Chen Yu Yang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ting Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiao Hui Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiao Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Yin T, Yang M, Tian M, Jiang W, Liu G. Modulating *OOH Adsorption on RuO 2 for Efficient and Durable Acidic Water Oxidation Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404092. [PMID: 39036856 DOI: 10.1002/smll.202404092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Acidic water electrolysis is of considerable interest due to its higher current density operation and energy conversion efficiency, but its real industrial application is highly limited by the shortage of efficient, stable, and cost-effective acidic oxygen evolution reaction (OER) electrocatalysts. Here, an electrocatalyst consisting of Ni-implanted RuO2 supported is reported on α-MnO2 (MnO2/RuO2-Ni) that shows high activity and remarkable durability in acidic OER. Precisely, the MnO2/RuO2-Ni catalyst shows an overpotential of 198 mV at a current density of 10 mA cm-2 and can operate continuously and stably for 400 h (j = 10 mA cm-2) without any obvious attenuation of activity, making it one of the best-performing acid-stable OER catalysts. Experimental results, in conjunction with density functional theory calculations, demonstrate that the interface electron transfer effect from RuO2 to MnO2, further enhanced by Ni incorporation, effectively modulates the adsorption of OOH* and significantly reduces the overpotential, thereby enhancing catalytic activity and durability.
Collapse
Affiliation(s)
- Tingting Yin
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Mengying Yang
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Meng Tian
- Interdisciplinary Center for Fundamental and Frontier Sciences, Nanjing University of Science and Technology, Jiangyin, Jiangsu, 214443, China
| | - Wei Jiang
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Guigao Liu
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| |
Collapse
|
3
|
Li J, Wu G, Huang Z, Han X, Wu B, Liu P, Hu H, Yu G, Hong X. Vertically Stacked Amorphous Ir/Ru/Ir Oxide Nanosheets for Boosted Acidic Water Splitting. JACS AU 2024; 4:1243-1249. [PMID: 38559737 PMCID: PMC10976594 DOI: 10.1021/jacsau.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Integrating multiple functional components into vertically stacked heterostructures offers a prospective approach to manipulating the physicochemical properties of materials. The synthesis of vertically stacked heterogeneous noble metal oxides remains a challenge. Herein, we report a surface segregation approach to create vertically stacked amorphous Ir/Ru/Ir oxide nanosheets (NSs). Cross-sectional high-angle annular darkfield scanning transmission electron microscopy images demonstrate a three-layer heterostructure in the amorphous Ir/Ru/Ir oxide NSs, with IrOx layers located on the upper and lower surfaces, and a layer of RuOx sandwiched between the two IrOx layers. The vertically stacked heterostructure is a result of the diffusion of Ir atoms from the amorphous IrRuOx solid solution to the surface. The obtained A-Ir/Ru/Ir oxide NSs display an ultralow overpotential of 191 mV at 10 mA cm-2 toward acid oxygen evolution reaction and demonstrate excellent performance in a proton exchange membrane water electrolyzer, which requires only 1.63 V to achieve 1 A cm-2 at 60 °C, with virtually no activity decay observed after a 1300 h test.
Collapse
Affiliation(s)
- Junmin Li
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Geng Wu
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zixiang Huang
- National
Synchrotron Radiation Laboratory, University
of Science and Technology of China, Hefei, Anhui 230029, China
| | - Xiao Han
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bei Wu
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Peigen Liu
- National
Synchrotron Radiation Laboratory, University
of Science and Technology of China, Hefei, Anhui 230029, China
| | - Haohui Hu
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ge Yu
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xun Hong
- School
of Chemistry and Materials Science, University
of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Zhang W, Luo J, Tang H, Wang S, Li W, Zhang J, Zhou Y. Co-doped RuO 2 nanoparticles with enhanced catalytic activity and stability for the oxygen evolution reaction. Dalton Trans 2024; 53:1031-1039. [PMID: 38088793 DOI: 10.1039/d3dt03047d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Efficient and durable electrocatalysts for the oxygen evolution reaction (OER) play an important role in the use of hydrogen energy. Rutile RuO2, despite being considered as an advanced electrocatalyst for the OER, performs poorly in stability due to its easy oxidative dissolution at very positive (oxidizing) potentials. Herein, we report a type of Co-doped RuO2 nanoparticle for boosting OER catalytic activity and stability in alkaline solutions. The replacement of Ru by Co atoms with a lower ionic valence and smaller electronegativity can promote the generation of O vacancies and increase the electron density around Ru, thus enhancing the adsorption of oxygen species and inhibiting the peroxidative dissolution of RuO2 during the OER process. It was found that Ru0.95Co0.05Oy exhibited excellent OER performance with overpotentials as low as 217 mV at 10 mA cm-2 and 290 mV at 100 mA cm-2 in 1 M KOH, as well as outstanding stability in continuous testing for 50 h at a current density of 100 mA cm-2, and nearly no significant degradation after the accelerated durability test of 2000 cycles.
Collapse
Affiliation(s)
- Wei Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Jiabing Luo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Han Tang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Shutao Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenle Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Yan Zhou
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
5
|
Raman AS, Selloni A. Acid-Base Chemistry of a Model IrO 2 Catalytic Interface. J Phys Chem Lett 2023; 14:7787-7794. [PMID: 37616464 DOI: 10.1021/acs.jpclett.3c02001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Iridium oxide (IrO2) is one of the most efficient catalytic materials for the oxygen evolution reaction (OER), yet the atomic scale structure of its aqueous interface is largely unknown. Herein, the hydration structure, proton transfer mechanisms, and acid-base properties of the rutile IrO2(110)-water interface are investigated using ab initio based deep neural-network potentials and enhanced sampling simulations. The proton affinities of the different surface sites are characterized by calculating their acid dissociation constants, which yield a point of zero charge in agreement with experiments. A large fraction (≈80%) of adsorbed water dissociation is observed, together with a short lifetime (≈0.5 ns) of the resulting terminal hydroxy groups, due to rapid proton exchanges between adsorbed H2O and adjacent OH species. This rapid surface proton transfer supports the suggestion that the rate-determining step in the OER may not involve proton transfer across the double layer into solution, as indicated by recent experiments.
Collapse
Affiliation(s)
- Abhinav S Raman
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Annabella Selloni
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Zhu W, Song X, Liao F, Huang H, Shao Q, Feng K, Zhou Y, Ma M, Wu J, Yang H, Yang H, Wang M, Shi J, Zhong J, Cheng T, Shao M, Liu Y, Kang Z. Stable and oxidative charged Ru enhance the acidic oxygen evolution reaction activity in two-dimensional ruthenium-iridium oxide. Nat Commun 2023; 14:5365. [PMID: 37666815 PMCID: PMC10477217 DOI: 10.1038/s41467-023-41036-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023] Open
Abstract
The oxygen evolution reactions in acid play an important role in multiple energy storage devices. The practical promising Ru-Ir based catalysts need both the stable high oxidation state of the Ru centers and the high stability of these Ru species. Here, we report stable and oxidative charged Ru in two-dimensional ruthenium-iridium oxide enhances the activity. The Ru0.5Ir0.5O2 catalyst shows high activity in acid with a low overpotential of 151 mV at 10 mA cm-2, a high turnover frequency of 6.84 s-1 at 1.44 V versus reversible hydrogen electrode and good stability (618.3 h operation). Ru0.5Ir0.5O2 catalysts can form more Ru active sites with high oxidation states at lower applied voltages after Ir incorporation, which is confirmed by the pulse voltage induced current method. Also, The X-ray absorption spectroscopy data shows that the Ru-O-Ir local structure in two-dimensional Ru0.5Ir0.5O2 solid solution improved the stability of these Ru centers.
Collapse
Affiliation(s)
- Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Xiangcong Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Kun Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Yunjie Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Mengjie Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Haiwei Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Meng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Jie Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Jun Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macao, China.
| |
Collapse
|
7
|
Browne MP, Domínguez C, Kaplan C, Lyons MEG, Fonda E, Colavita PE. Probing Changes in the Local Structure of Active Bimetallic Mn/Ru Oxides during Oxygen Evolution. ACS APPLIED ENERGY MATERIALS 2023; 6:8607-8615. [PMID: 37654435 PMCID: PMC10466265 DOI: 10.1021/acsaem.3c01585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023]
Abstract
Identifying the active site of catalysts for the oxygen evolution reaction (OER) is critical for the design of electrode materials that will outperform the current, expensive state-of-the-art catalyst, RuO2. Previous work shows that mixed Mn/Ru oxides show comparable performances in the OER, while reducing reliance on this expensive and scarce Pt-group metal. Herein, X-ray photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) are performed on mixed Mn/Ru oxide materials for the OER to understand structural and chemical changes at both metal sites during oxygen evolution. The results show that the Mn-content affects both the oxidation state and local coordination environment of Ru sites. Operando XAS experiments suggest that the presence of MnOx might be essential to achieve high activity likely by facilitating changes in the O-coordination sphere of Ru centers.
Collapse
Affiliation(s)
- Michelle P. Browne
- School
of Chemistry, CRANN and AMBER Research Centres,
Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
- Helmholtz
Young Investigator Group Electrocatalysis: Synthesis to Devices, Helmholtz-Zentrum
Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Carlota Domínguez
- School
of Chemistry, CRANN and AMBER Research Centres,
Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
| | - Can Kaplan
- Helmholtz
Young Investigator Group Electrocatalysis: Synthesis to Devices, Helmholtz-Zentrum
Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Michael E. G. Lyons
- School
of Chemistry, CRANN and AMBER Research Centres,
Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
| | - Emiliano Fonda
- SAMBA
Beamline, SOLEIL Synchrotron, L′Orme des Merisiers, Saint-Aubin, BP48, 91192 Gif-sur-Yvette, France
| | - Paula E. Colavita
- School
of Chemistry, CRANN and AMBER Research Centres,
Trinity College Dublin, College Green, Dublin D02 PN40, Ireland
| |
Collapse
|
8
|
Wang C, Yang F, Feng L. Recent advances in iridium-based catalysts with different dimensions for the acidic oxygen evolution reaction. NANOSCALE HORIZONS 2023; 8:1174-1193. [PMID: 37434582 DOI: 10.1039/d3nh00156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Proton exchange membrane (PEM) water electrolysis is considered a promising technology for green hydrogen production, and iridium (Ir)-based catalysts are the best materials for anodic oxygen evolution reactions (OER) owing to their high stability and anti-corrosion ability in a strong acid electrolyte. The properties of Ir-based nanocatalysts can be tuned by rational dimension engineering, which has received intensive attention recently for catalysis ability boosting. To achieve a comprehensive understanding of the structural and catalysis performance, herein, an overview of the recent progress was provided for Ir-based catalysts with different dimensions for the acidic OER. The promotional effect was first presented in terms of the nano-size effect, synergistic effect, and electronic effect based on the dimensional effect, then the latest progress of Ir-based catalysts classified into zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) catalysts was introduced in detail; and the practical application of some typical examples in the real PEM water electrolyzers (PEMWE) was also presented. Finally, the problems and challenges faced by current dimensionally engineered Ir-based catalysts in acidic electrolytes were discussed. It is concluded that the increased surface area and catalytic active sites can be realized by dimensional engineering strategies, while the controllable synthesis of different dimensional structured catalysts is still a great challenge, and the correlation between structure and performance, especially for the structural evolution during the electrochemical operation process, should be probed in depth. Hopefully, this effort could help understand the progress of dimensional engineering of Ir-based catalysts in OER catalysis and contribute to the design and preparation of novel efficient Ir-based catalysts.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| |
Collapse
|
9
|
Rong C, Dastafkan K, Wang Y, Zhao C. Breaking the Activity and Stability Bottlenecks of Electrocatalysts for Oxygen Evolution Reactions in Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211884. [PMID: 37549889 DOI: 10.1002/adma.202211884] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/28/2023] [Indexed: 08/09/2023]
Abstract
Oxygen evolution reaction (OER) is a cornerstone reaction for a variety of electrochemical energy conversion and storage systems such as water splitting, CO2 /N2 reduction, reversible fuel cells, and metal-air batteries. However, OER catalysis in acids suffers from extra sluggish kinetics due to the additional step of water dissociation along with its multiple electron transfer processes. Furthermore, OER catalysts often suffer from poor stability in harsh acidic electrolytes due to the severe dissolution/corrosion processes. The development of active and stable OER catalysts in acids is highly demanded. Here, the recent advances in OER electrocatalysis in acids are reviewed and the key strategies are summarized to overcome the bottlenecks of activity and stability for both noble-metal-based and noble metal-free catalysts, including i) morphology engineering, ii) composition engineering, and iii) defect engineering. Recent achievements in operando characterization and theoretical calculations are summarized which provide an unprecedented understanding of the OER mechanisms regarding active site identification, surface reconstruction, and degradation/dissolution pathways. Finally, views are offered on the current challenges and opportunities to break the activity-stability relationships for acidic OER in mechanism understanding, catalyst design, as well as standardized stability and activity evaluation for industrial applications such as proton exchange membrane water electrolyzers and beyond.
Collapse
Affiliation(s)
- Chengli Rong
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yuan Wang
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
10
|
Lin Y, Dong Y, Wang X, Chen L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210565. [PMID: 36521026 DOI: 10.1002/adma.202210565] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Indexed: 06/02/2023]
Abstract
The well-established proton exchange membrane (PEM)-based water electrolysis, which operates under acidic conditions, possesses many advantages compared to alkaline water electrolysis, such as compact design, higher voltage efficiency, and higher gas purity. However, PEM-based water electrolysis is hampered by the low efficiency, instability, and high cost of anodic electrocatalysts for the oxygen evolution reaction (OER). In this review, the recently reported acidic OER electrocatalysts are comprehensively summarized, classified, and discussed. The related fundamental studies on OER mechanisms and the relationship between activity and stability are particularly highlighted in order to provide an atomistic-level understanding for OER catalysis. A stability test protocol is suggested to evaluate the intrinsic activity degradation. Some current challenges and unresolved questions, such as the usage of carbon-based materials and the differences between the electrocatalyst performances in acidic electrolytes and PEM-based electrolyzers are also discussed. Finally, suggestions for the most promising electrocatalysts and a perspective for future research are outlined. This review presents a fresh impetus and guideline to the rational design and synthesis of high-performance acidic OER electrocatalysts for PEM-based water electrolysis.
Collapse
Affiliation(s)
- Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Yan Dong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Xuezhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| |
Collapse
|
11
|
Clapp M, Zalitis C, Ryan M. Perspectives on Current and Future Iridium Demand and Iridium Oxide Catalysts for PEM Water Electrolysis. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
12
|
Gao T, Yu S, Chen Y, Li X, Tang X, Wu S, He B, Lan H, Li S, Yue Q, Xiao D. Regulating the thickness of the carbon coating layer in iron/carbon heterostructures to enhance the catalytic performance for oxygen evolution reaction. J Colloid Interface Sci 2023; 642:120-128. [PMID: 37001451 DOI: 10.1016/j.jcis.2023.03.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
The exploration of high-performance electrocatalysts for the oxygen evolution reaction (OER) is crucial and urgent for the fast development of green and renewable hydrogen energy. Herein, an ultra-fast and energy-efficient preparation strategy (microwave-assisted rapid in-situ pyrolysis of organometallic compounds induced by carbon nanotube (CNT)) is developed to obtain iron/carbon (Fe/C) heterogeneous materials (Fe/Fe3C particles wrapped by carbon coating layer). The thickness of the carbon coating layer can be adjusted by changing the content and form of carbon in the metal sources during the fast preparation process. Fe/Fe3C-A@CNT using iron acetylacetonate as metal sources possesses unique Fe/C heterogeneous, small Fe/Fe3C particles encapsulated by the thin carbon coating layer (1.77 nm), and obtains the optimal electron penetration effect. The electron penetration effect derives from the redistribution of charge between the surface carbon coating layer and inner Fe/Fe3C nanoparticles efficiently improving both catalytic activity and stability. Therefore, Fe/Fe3C-A@CNT shows efficient OER catalytic activity, just needing a low overpotential of 292 mV to reach a current density of 10 mA cm-2, and long-lasting stability. More importantly, the unique control strategy for carbon thickness in this work provides more opportunity and perspective to prepare robust metal/carbon-based catalytic materials at the nanoscale.
Collapse
|
13
|
Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution. Nat Commun 2023; 14:354. [PMID: 36681684 PMCID: PMC9867741 DOI: 10.1038/s41467-023-35913-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Heteroatom-doping is a practical means to boost RuO2 for acidic oxygen evolution reaction (OER). However, a major drawback is conventional dopants have static electron redistribution. Here, we report that Re dopants in Re0.06Ru0.94O2 undergo a dynamic electron accepting-donating that adaptively boosts activity and stability, which is different from conventional dopants with static dopant electron redistribution. We show Re dopants during OER, (1) accept electrons at the on-site potential to activate Ru site, and (2) donate electrons back at large overpotential and prevent Ru dissolution. We confirm via in situ characterizations and first-principle computation that the dynamic electron-interaction between Re and Ru facilitates the adsorbate evolution mechanism and lowers adsorption energies for oxygen intermediates to boost activity and stability of Re0.06Ru0.94O2. We demonstrate a high mass activity of 500 A gcata.-1 (7811 A gRe-Ru-1) and a high stability number of S-number = 4.0 × 106 noxygen nRu-1 to outperform most electrocatalysts. We conclude that dynamic dopants can be used to boost activity and stability of active sites and therefore guide the design of adaptive electrocatalysts for clean energy conversions.
Collapse
|
14
|
Du K, Zhang L, Shan J, Guo J, Mao J, Yang CC, Wang CH, Hu Z, Ling T. Interface engineering breaks both stability and activity limits of RuO 2 for sustainable water oxidation. Nat Commun 2022; 13:5448. [PMID: 36114207 PMCID: PMC9481627 DOI: 10.1038/s41467-022-33150-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Designing catalytic materials with enhanced stability and activity is crucial for sustainable electrochemical energy technologies. RuO2 is the most active material for oxygen evolution reaction (OER) in electrolysers aiming at producing 'green' hydrogen, however it encounters critical electrochemical oxidation and dissolution issues during reaction. It remains a grand challenge to achieve stable and active RuO2 electrocatalyst as the current strategies usually enhance one of the two properties at the expense of the other. Here, we report breaking the stability and activity limits of RuO2 in neutral and alkaline environments by constructing a RuO2/CoOx interface. We demonstrate that RuO2 can be greatly stabilized on the CoOx substrate to exceed the Pourbaix stability limit of bulk RuO2. This is realized by the preferential oxidation of CoOx during OER and the electron gain of RuO2 through the interface. Besides, a highly active Ru/Co dual-atom site can be generated around the RuO2/CoOx interface to synergistically adsorb the oxygen intermediates, leading to a favourable reaction path. The as-designed RuO2/CoOx catalyst provides an avenue to achieve stable and active materials for sustainable electrochemical energy technologies.
Collapse
Affiliation(s)
- Kun Du
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lifu Zhang
- School of Physics, Nankai University, Tianjin, 300071, China
| | - Jieqiong Shan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jiaxin Guo
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jing Mao
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Chueh-Cheng Yang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC.
| | - Zhenpeng Hu
- School of Physics, Nankai University, Tianjin, 300071, China.
| | - Tao Ling
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
15
|
Sustainable oxygen evolution electrocatalysis in aqueous 1 M H 2SO 4 with earth abundant nanostructured Co 3O 4. Nat Commun 2022; 13:4341. [PMID: 35896541 PMCID: PMC9329283 DOI: 10.1038/s41467-022-32024-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/13/2022] [Indexed: 11/08/2022] Open
Abstract
Earth-abundant electrocatalysts for the oxygen evolution reaction (OER) able to work in acidic working conditions are elusive. While many first-row transition metal oxides are competitive in alkaline media, most of them just dissolve or become inactive at high proton concentrations where hydrogen evolution is preferred. Only noble-metal catalysts, such as IrO2, are fast and stable enough in acidic media. Herein, we report the excellent activity and long-term stability of Co3O4-based anodes in 1 M H2SO4 (pH 0.1) when processed in a partially hydrophobic carbon-based protecting matrix. These Co3O4@C composites reliably drive O2 evolution a 10 mA cm-2 current density for >40 h without appearance of performance fatigue, successfully passing benchmarking protocols without incorporating noble metals. Our strategy opens an alternative venue towards fast, energy efficient acid-media water oxidation electrodes.
Collapse
|
16
|
Svane KL, Rossmeisl J. Theoretical Optimization of Compositions of High-Entropy Oxides for the Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202201146. [PMID: 35225378 PMCID: PMC9314724 DOI: 10.1002/anie.202201146] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 11/30/2022]
Abstract
High-entropy oxides are oxides consisting of five or more metals incorporated in a single lattice, and the large composition space suggests that properties of interest can be readily optimised. For applications within catalysis, the different local atomic environments result in a distribution of binding energies for the catalytic intermediates. Using the oxygen evolution reaction on the rutile (110) surface as example, here we outline a strategy for the theoretical optimization of the composition. Density functional theory calculations performed for a limited number of sites are used to fit a model that predicts the reaction energies for all possible local atomic environments. Two reaction pathways are considered; the conventional pathway on the coordinatively unsaturated sites and an alternative pathway involving transfer of protons to a bridging oxygen. An explicit model of the surface is constructed to describe the interdependency of the two pathways and identify the composition that maximizes catalytic activity.
Collapse
Affiliation(s)
- Katrine L. Svane
- Center for High Entropy Alloy CatalysisDepartment of ChemistryCopenhagen UniversityUniversitetsparken 52100København KDenmark
| | - Jan Rossmeisl
- Center for High Entropy Alloy CatalysisDepartment of ChemistryCopenhagen UniversityUniversitetsparken 52100København KDenmark
| |
Collapse
|
17
|
Deng R, Guo M, Wang C, Zhang Q. Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting: From catalytic mechanism and synthesis method to optimization design. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Svane KL, Rossmeisl J. Theoretical Optimization of Compositions of High‐Entropy Oxides for the Oxygen Evolution Reaction**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katrine L. Svane
- Center for High Entropy Alloy Catalysis Department of Chemistry Copenhagen University Universitetsparken 5 2100 København K Denmark
| | - Jan Rossmeisl
- Center for High Entropy Alloy Catalysis Department of Chemistry Copenhagen University Universitetsparken 5 2100 København K Denmark
| |
Collapse
|
19
|
Boosting the Electrocatalytic Activity of Nickel-Iron Layered Double Hydroxide for the Oxygen Evolution Reaction byTerephthalic Acid. Catalysts 2022. [DOI: 10.3390/catal12030258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The development of a new type of oxygen evolution reaction (OER) catalyst to reduce the energy loss in the process of water electrolysis is of great significance to the realization of the industrialization of hydrogen energy storage. Herein, we report the catalysts of NiFe double-layer hydroxide (NiFe-LDH) mixed with different equivalent terephthalic acid (TPA), synthesized by the hydrothermal method. The catalyst synthesized with the use of the precursor solution containing one equivalent of TPA shows the best performance with the current density of 2 mA cm−2 at an overpotential of 270 mV, the Tafel slope of 40 mV dec−1, and excellent stable electrocatalytic performance for OER. These catalysts were characterized in a variety of methods. X-ray diffraction (XRD), Fourier Transform Infrared Spectrometer (FTIR), and Raman spectrum proved the presence of TPA in the catalysts. The lamellar structure and the uniform distribution of Ni and Fe in the catalysts were observed by a scanning electron microscope (SEM) and a transmission electron microscope (TEM). In X-ray photoelectron spectroscopy (XPS) of NiFe-LDH with and without TPA, the changes in the peak positions of Ni and Fe spectra indicate strong electronic interactions between TPA and Ni and Fe atoms. These results suggest that a certain amount of TPA can boost catalytic activity.
Collapse
|
20
|
Joo J, Park Y, Kim J, Kwon T, Jun M, Ahn D, Baik H, Jang JH, Kim JY, Lee K. Mn-Dopant Differentiating the Ru and Ir Oxidation States in Catalytic Oxides Toward Durable Oxygen Evolution Reaction in Acidic Electrolyte. SMALL METHODS 2022; 6:e2101236. [PMID: 35041273 DOI: 10.1002/smtd.202101236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 06/14/2023]
Abstract
Designing an efficient and durable electrocatalyst for the sluggish oxygen evolution reaction (OER) at the anode remains the foremost challenge in developing proton exchange membrane (PEM) electrolyzers. Here, a highly active and durable cactus-like nanoparticle with an exposed heterointerface between the IrO2 and the low oxidation state Ru by introducing a trace amount of Mn dopant is reported. The heterostructure fabrication relies on initial mixing of the Ru and Ir phases before electrochemical oxidation to produce a conjoined Ru/IrO2 heterointerface. Benefitting from electron transfer at the heterointerface, the low oxidation state Ru species shows excellent initial activity, which is maintained even after 180 h of continuous OER test. In a half-cell test, the Mn-doped RuIr nanocactus (Mn-RuIr NCT) achieves a mass activity of 1.85 A mgIr+Ru -1 at 1.48 VRHE , which is 139-fold higher than that of commercial IrO2 . Moreover, the superior electrocatalytic performance of Mn-RuIr NCT in the PEM electrolysis system ensures its viability in practical uses. The results of the excellent catalytic performance for acidic OER indicate that the heterostructuring robust rutile IrO2 and the highly active Ru species with a low oxidation state on the catalyst surface drive a synergistic effect.
Collapse
Affiliation(s)
- Jinwhan Joo
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - YeJi Park
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jun Kim
- Center for Hydrogen & Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Taehyun Kwon
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Minki Jun
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Docheon Ahn
- Beamline Department, Pohang Accelerator Laboratory, Pohang, 37673, Republic of Korea
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI), Seoul, 02841, Republic of Korea
| | - Jong Hyun Jang
- Center for Hydrogen & Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jin Young Kim
- Center for Hydrogen & Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
21
|
Yang Y, Ji Y, Li G, Li Y, Jia B, Yan J, Ma T, Liu S(F. IrO
x
@In
2
O
3
Heterojunction from Individually Crystallized Oxides for Weak‐Light‐Promoted Electrocatalytic Water Oxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yumei Yang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 People's Republic of China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 People's Republic of China
| | - Guangyu Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 People's Republic of China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 People's Republic of China
| | - Baohua Jia
- Centre for Translational Atomaterials Swinburne University of Technology Hawthorn VIC 3122 Australia
| | - Junqing Yan
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 People's Republic of China
| | - Tianyi Ma
- Centre for Translational Atomaterials Swinburne University of Technology Hawthorn VIC 3122 Australia
| | - Shengzhong (Frank) Liu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 People's Republic of China
| |
Collapse
|
22
|
Yang Y, Ji Y, Li G, Li Y, Jia B, Yan J, Ma T, Liu SF. IrO x @In 2 O 3 Heterojunction from Individually Crystallized Oxides for Weak-Light-Promoted Electrocatalytic Water Oxidation. Angew Chem Int Ed Engl 2021; 60:26790-26797. [PMID: 34591342 DOI: 10.1002/anie.202112042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Indexed: 12/24/2022]
Abstract
Multi-field coupling, especially photo-assisted electrocatalysis, has recently been studied to further improve the oxygen evolution reaction (OER). In this study, an n-type cubic In2 O3 semiconductor is employed for the first time to load IrOx species (Ir-In2 O3 mass ratio: 17.6 %). Consequently, the IrOx @In2 O3 heterojunction, which exhibits outstanding OER performance promoted by weak-light irradiation, is formed. Notably, IrOx (approximately 1.7 nm in size) and In2 O3 are observed to crystallize independently during heterogeneous nucleation with no Ir atoms doped in the In2 O3 lattice. This avoids Ir loss and ensures the full exposure of all Ir-based sites. The IrOx @In2 O3 heterojunction exhibits enhanced electrocatalytic water oxidation with overpotential values of 190 and 231 mV at current densities of 10 and 50 mA cm-2 , surpassing all IrOx -based catalyst results reported to date. Nano-sized IrOx on the surface, irradiated by the weak-light beam of LED-365 (1.8 mW cm-2 ), can be fully activated as an OER site. Moreover, the overpotential is further reduced to 176 and 210 mV to deliver the corresponding current. This work is anticipated to aid in the design of more efficient multi-field coupling OER systems.
Collapse
Affiliation(s)
- Yumei Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Guangyu Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Junqing Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| |
Collapse
|
23
|
Li L, Wang P, Shao Q, Huang X. Recent Progress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004243. [PMID: 33749035 DOI: 10.1002/adma.202004243] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/16/2020] [Indexed: 05/27/2023]
Abstract
Proton exchange membrane (PEM) water electrolyzers hold great significance for renewable energy storage and conversion. The acidic oxygen evolution reaction (OER) is one of the main roadblocks that hinder the practical application of PEM water electrolyzers. Highly active, cost-effective, and durable electrocatalysts are indispensable for lowering the high kinetic barrier of OER to achieve boosted reaction kinetics. To date, a wide spectrum of advanced electrocatalysts has been designed and synthesized for enhanced acidic OER performance, though Ir and Ru based nanostructures still represent the state-of-the-art catalysts. In this Progress Report, recent research progress in advanced electrocatalysts for improved acidic OER performance is summarized. First, fundamental understanding about acidic OER including reaction mechanisms and atomic understanding to acidic OER for rational design of efficient electrocatalysts are discussed. Thereafter, an overview of the progress in the design and synthesis of advanced acidic OER electrocatalysts is provided in terms of catalyst category, i.e., metallic nanostructures (Ir and Ru based), precious metal oxides, nonprecious metal oxides, and carbon based nanomaterials. Finally, perspectives to the future development of acidic OER are provided from the aspects of reaction mechanism investigation and more efficient electrocatalyst design.
Collapse
Affiliation(s)
- Leigang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Pengtang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| |
Collapse
|
24
|
Divanis S, Frandsen AM, Kutlusoy T, Rossmeisl J. Lifting the discrepancy between experimental results and the theoretical predictions for the catalytic activity of RuO 2(110) towards oxygen evolution reaction. Phys Chem Chem Phys 2021; 23:19141-19145. [PMID: 34473158 DOI: 10.1039/d1cp02999a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing new efficient catalyst materials for the oxygen evolution reaction (OER) is essential for widespread proton exchange membrane water electrolyzer use. Both RuO2(110) and IrO2(110) have been shown to be highly active OER catalysts, however DFT predictions have been unable to explain the high activity of RuO2. We propose that this discrepancy is due to RuO2 utilizing a different reaction pathway, as compared to the conventional IrO2 pathway. This hypothesis is supported by comparisons between experimental data, DFT data and the proposed reaction model.
Collapse
Affiliation(s)
- Spyridon Divanis
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Denmark.
| | - Adrian Malthe Frandsen
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Denmark.
| | - Tugce Kutlusoy
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Denmark.
| | - Jan Rossmeisl
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Denmark.
| |
Collapse
|
25
|
Escalera-López D, Czioska S, Geppert J, Boubnov A, Röse P, Saraçi E, Krewer U, Grunwaldt JD, Cherevko S. Phase- and Surface Composition-Dependent Electrochemical Stability of Ir-Ru Nanoparticles during Oxygen Evolution Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01682] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Escalera-López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen, Germany Egerlandstr. 3, 91058 Erlangen, Germany
| | - Steffen Czioska
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Janis Geppert
- Institute of Applied Materials-Electrochemical Technologies (IAM-ET), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Alexey Boubnov
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Philipp Röse
- Institute of Applied Materials-Electrochemical Technologies (IAM-ET), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Erisa Saraçi
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ulrike Krewer
- Institute of Applied Materials-Electrochemical Technologies (IAM-ET), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen, Germany Egerlandstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
26
|
Over H. Fundamental Studies of Planar Single-Crystalline Oxide Model Electrodes (RuO2, IrO2) for Acidic Water Splitting. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01973] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Herbert Over
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany
| |
Collapse
|
27
|
Wang C, Jin L, Shang H, Xu H, Shiraishi Y, Du Y. Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.051] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
An L, Wei C, Lu M, Liu H, Chen Y, Scherer GG, Fisher AC, Xi P, Xu ZJ, Yan CH. Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006328. [PMID: 33768614 DOI: 10.1002/adma.202006328] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Indexed: 05/28/2023]
Abstract
The proton exchange membrane (PEM) water electrolysis is one of the most promising hydrogen production techniques. The oxygen evolution reaction (OER) occurring at the anode dominates the overall efficiency. Developing active and robust electrocatalysts for OER in acid is a longstanding challenge for PEM water electrolyzers. Most catalysts show unsatisfied stability under strong acidic and oxidative conditions. Such a stability challenge also leads to difficulties for a better understanding of mechanisms. This review aims to provide the current progress on understanding of OER mechanisms in acid, analyze the promising strategies to enhance both activity and stability, and summarize the state-of-the-art catalysts for OER in acid. First, the prevailing OER mechanisms are reviewed to establish the physicochemical structure-activity relationships for guiding the design of highly efficient OER electrocatalysts in acid with stable performance. The reported approaches to improve the activity, from macroview to microview, are then discussed. To analyze the problem of instability, the key factors affecting catalyst stability are summarized and the surface reconstruction is discussed. Various noble-metal-based OER catalysts and the current progress of non-noble-metal-based catalysts are reviewed. Finally, the challenges and perspectives for the development of active and robust OER catalysts in acid are discussed.
Collapse
Affiliation(s)
- Li An
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chao Wei
- School of Materials Science and Engineering Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Min Lu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hanwen Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yubo Chen
- School of Materials Science and Engineering Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Energy Research Institute@NTU, ERI@N, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, 639798, Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore
| | - Günther G Scherer
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, 758307, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 758307, Vietnam
| | - Adrian C Fisher
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore
- Department of Chemical Engineering, University of Cambridge, Cambridge, CB2 3RA, UK
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhichuan J Xu
- School of Materials Science and Engineering Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Energy Research Institute@NTU, ERI@N, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, 639798, Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering Peking University, Beijing, 100871, China
| |
Collapse
|
29
|
Wen Y, Chen P, Wang L, Li S, Wang Z, Abed J, Mao X, Min Y, Dinh CT, Luna PD, Huang R, Zhang L, Wang L, Wang L, Nielsen RJ, Li H, Zhuang T, Ke C, Voznyy O, Hu Y, Li Y, Goddard WA, Zhang B, Peng H, Sargent EH. Stabilizing Highly Active Ru Sites by Suppressing Lattice Oxygen Participation in Acidic Water Oxidation. J Am Chem Soc 2021; 143:6482-6490. [PMID: 33891414 DOI: 10.1021/jacs.1c00384] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In hydrogen production, the anodic oxygen evolution reaction (OER) limits the energy conversion efficiency and also impacts stability in proton-exchange membrane water electrolyzers. Widely used Ir-based catalysts suffer from insufficient activity, while more active Ru-based catalysts tend to dissolve under OER conditions. This has been associated with the participation of lattice oxygen (lattice oxygen oxidation mechanism (LOM)), which may lead to the collapse of the crystal structure and accelerate the leaching of active Ru species, leading to low operating stability. Here we develop Sr-Ru-Ir ternary oxide electrocatalysts that achieve high OER activity and stability in acidic electrolyte. The catalysts achieve an overpotential of 190 mV at 10 mA cm-2 and the overpotential remains below 225 mV following 1,500 h of operation. X-ray absorption spectroscopy and 18O isotope-labeled online mass spectroscopy studies reveal that the participation of lattice oxygen during OER was suppressed by interactions in the Ru-O-Ir local structure, offering a picture of how stability was improved. The electronic structure of active Ru sites was modulated by Sr and Ir, optimizing the binding energetics of OER oxo-intermediates.
Collapse
Affiliation(s)
- Yunzhou Wen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Peining Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China.,Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.,Materials and Process Simulation Center (MSC) and Joint Center for Artificial Photosynthesis (JCAP), California Institute of Technology, Pasadena, California 91125, United States
| | - Shangyu Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Ziyun Wang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Jehad Abed
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada.,Department of Materials Science & Engineering, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada
| | - Xinnan Mao
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yimeng Min
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Cao Thang Dinh
- Department of Chemical Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Phil De Luna
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Rui Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Longsheng Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Lie Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Liping Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Robert J Nielsen
- Materials and Process Simulation Center (MSC) and Joint Center for Artificial Photosynthesis (JCAP), California Institute of Technology, Pasadena, California 91125, United States
| | - Huihui Li
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Taotao Zhuang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Changchun Ke
- Institute of Fuel Cell, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Oleksandr Voznyy
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Yongfeng Hu
- Canadian Light Source Inc., Saskatoon, SK S7N 2 V3 Saskatchewan, Canada
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - William A Goddard
- Materials and Process Simulation Center (MSC) and Joint Center for Artificial Photosynthesis (JCAP), California Institute of Technology, Pasadena, California 91125, United States
| | - Bo Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
30
|
Spöri C, Falling LJ, Kroschel M, Brand C, Bonakdarpour A, Kühl S, Berger D, Gliech M, Jones TE, Wilkinson DP, Strasser P. Molecular Analysis of the Unusual Stability of an IrNbO x Catalyst for the Electrochemical Water Oxidation to Molecular Oxygen (OER). ACS APPLIED MATERIALS & INTERFACES 2021; 13:3748-3761. [PMID: 33442973 DOI: 10.1021/acsami.0c12609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Adoption of proton exchange membrane (PEM) water electrolysis technology on a global level will demand a significant reduction of today's iridium loadings in the anode catalyst layers of PEM electrolyzers. However, new catalyst and electrode designs with reduced Ir content have been suffering from limited stability caused by (electro)chemical degradation. This has remained a serious impediment to a wider commercialization of larger-scale PEM electrolysis technology. In this combined DFT computational and experimental study, we investigate a novel family of iridium-niobium mixed metal oxide thin-film catalysts for the oxygen evolution reaction (OER), some of which exhibit greatly enhanced stability, such as minimized voltage degradation and reduced Ir dissolution with respect to the industry benchmark IrOx catalyst. More specifically, we report an unusually durable IrNbOx electrocatalyst with improved catalytic performance compared to an IrOx benchmark catalyst prepared in-house and a commercial benchmark catalyst (Umicore Elyst Ir75 0480) at significantly reduced Ir catalyst cost. Catalyst stability was assessed by conventional and newly developed accelerated degradation tests, and the mechanistic origins were analyzed and are discussed. To achieve this, the IrNbOx mixed metal oxide catalyst and its water splitting kinetics were investigated by a host of techniques such as synchrotron-based NEXAFS analysis and XPS, electrochemistry, and ab initio DFT calculations as well as STEM-EDX cross-sectional analysis. These analyses highlight a number of important structural differences to other recently reported bimetallic OER catalysts in the literature. On the methodological side, we introduce, validate, and utilize a new, nondestructive XRF-based catalyst stability monitoring technique that will benefit future catalyst development. Furthermore, the present study identifies new specific catalysts and experimental strategies for stepwise reducing the Ir demand of PEM water electrolyzers on their long way toward adoption at a larger scale.
Collapse
Affiliation(s)
- Camillo Spöri
- Department of Chemistry, The Electrochemical Catalysis, Energy and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Lorenz J Falling
- Fritz-Haber-Institut der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Matthias Kroschel
- Department of Chemistry, The Electrochemical Catalysis, Energy and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Cornelius Brand
- Department of Chemistry, The Electrochemical Catalysis, Energy and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Arman Bonakdarpour
- Department of Chemical and Biological Engineering and the Clean Energy Research Center, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Stefanie Kühl
- Department of Chemistry, The Electrochemical Catalysis, Energy and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
- Fritz-Haber-Institut der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Dirk Berger
- Zentraleinrichtung Elektronenmikroskopie (ZELMI), Technische Universität Berlin, 10623 Berlin, Germany
| | - Manuel Gliech
- Department of Chemistry, The Electrochemical Catalysis, Energy and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Travis E Jones
- Fritz-Haber-Institut der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - David P Wilkinson
- Department of Chemical and Biological Engineering and the Clean Energy Research Center, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Peter Strasser
- Department of Chemistry, The Electrochemical Catalysis, Energy and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
31
|
Badreldin A, Abusrafa AE, Abdel‐Wahab A. Oxygen-Deficient Cobalt-Based Oxides for Electrocatalytic Water Splitting. CHEMSUSCHEM 2021; 14:10-32. [PMID: 33053253 PMCID: PMC7839495 DOI: 10.1002/cssc.202002002] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/01/2020] [Indexed: 05/14/2023]
Abstract
An apparent increased interest has been recently devoted towards the previously untrodden path for anionic point defect engineering of electrocatalytic surfaces. The role of vacancy engineering in improving photo- and electrocatalytic activities of transition metal oxides (TMOs) has been widely reported. In particular, oxygen vacancy modulation on electrocatalysts of cobalt-based TMOs has seen a fresh spike of research work due to the substantial improvements they have shown towards oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Oxygen vacancy engineering is an effective scheme to quintessentially tune the electronic structure and charge transport, generate secondary active surface phases, and modify the surface adsorption/desorption behavior of reaction intermediates during water splitting. Based on contemporary efforts for inducing oxygen vacancies in a variety of cobalt oxide types, this work addresses facile and environmentally benign synthesis strategies, characterization techniques, and detailed insight into the intrinsic mechanistic modulation of electrocatalysts. It is our foresight that appropriate utilization of the principles discussed herein will aid researchers in rationally designing novel materials that can outperform noble metal-based electrocatalysts. Ultimately, future electrocatalysis implementation for selective seawater splitting is believed to depend on regulating the surface chemistry of active and stable TMOs.
Collapse
Affiliation(s)
- Ahmed Badreldin
- Chemical Engineering ProgramTexas A&M University at QatarP.O. Box23874DohaQatar
| | - Aya E. Abusrafa
- Chemical Engineering ProgramTexas A&M University at QatarP.O. Box23874DohaQatar
| | - Ahmed Abdel‐Wahab
- Chemical Engineering ProgramTexas A&M University at QatarP.O. Box23874DohaQatar
| |
Collapse
|
32
|
Pittkowski RK, Abbott DF, Nebel R, Divanis S, Fabbri E, Castelli IE, Schmidt TJ, Rossmeisl J, Krtil P. Synergistic effects in oxygen evolution activity of mixed iridium-ruthenium pyrochlores. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Raman AS, Patel R, Vojvodic A. Surface stability of perovskite oxides under OER operating conditions: a first principles approach. Faraday Discuss 2021; 229:75-88. [DOI: 10.1039/c9fd00146h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding the surface stability of perovskite oxides under OER operating conditions is crucial for the atomistic design of electrocatalysts for electrochemical water-splitting.
Collapse
Affiliation(s)
- Abhinav S. Raman
- Department of Chemical and Biomolecular Engineering
- University of Pennsylvania
- Philadelphia
- USA
| | - Roshan Patel
- Department of Chemical and Biomolecular Engineering
- University of Pennsylvania
- Philadelphia
- USA
| | - Aleksandra Vojvodic
- Department of Chemical and Biomolecular Engineering
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
34
|
Malik B, Vijaya Sankar K, Konar R, Tsur Y, Nessim GD. Determining the Electrochemical Oxygen Evolution Reaction Kinetics of Fe
3
S
4
@Ni
3
S
2
Using Distribution Function of Relaxation Times. ChemElectroChem 2020. [DOI: 10.1002/celc.202001410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bibhudatta Malik
- Department of Chemistry and Institute of Nanotechnology Bar-Ilan University Ramat Gan 52900 Israel
| | - Kalimuthu Vijaya Sankar
- The Nancy and Stephen Grand Technion Energy Program Technion-Israel Institute of Technology Haifa 3200003 Israel
- Department of Chemical Engineering Technion-Israel Institute of Technology Haifa 3200003 Israel
| | - Rajashree Konar
- Department of Chemistry and Institute of Nanotechnology Bar-Ilan University Ramat Gan 52900 Israel
| | - Yoed Tsur
- The Nancy and Stephen Grand Technion Energy Program Technion-Israel Institute of Technology Haifa 3200003 Israel
- Department of Chemical Engineering Technion-Israel Institute of Technology Haifa 3200003 Israel
| | - Gilbert Daniel Nessim
- Department of Chemistry and Institute of Nanotechnology Bar-Ilan University Ramat Gan 52900 Israel
| |
Collapse
|
35
|
Bak J, Heo Y, Yun TG, Chung SY. Atomic-Level Manipulations in Oxides and Alloys for Electrocatalysis of Oxygen Evolution and Reduction. ACS NANO 2020; 14:14323-14354. [PMID: 33151068 DOI: 10.1021/acsnano.0c06411] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As chemical reactions and charge-transfer simultaneously occur on the catalyst surface during electrocatalysis, numerous studies have been carried out to attain an in-depth understanding on the correlation among the surface structure and composition, the electrical transport, and the overall catalytic activity. Compared with other catalysis reactions, a relatively larger activation barrier for oxygen evolution/reduction reactions (OER/ORR), where multiple electron transfers are involved, is noted. Many works over the past decade thus have been focused on the atomic-scale control of the surface structure and the precise identification of surface composition change in catalyst materials to achieve better conversion efficiency. In particular, recent advances in various analytical tools have enabled noteworthy findings of unexpected catalytic features at atomic resolution, providing significant insights toward reducing the activation barriers and subsequently improving the catalytic performance. In addition to summarizing important surface issues, including lattice defects, related to the OER and ORR in this Review, we present the current status and discuss future perspectives of oxide- and alloy-based catalysts in terms of atomic-scale observation and manipulation.
Collapse
Affiliation(s)
- Jumi Bak
- Department of Materials Science and Engineering and KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Yoon Heo
- Department of Materials Science and Engineering and KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Tae Gyu Yun
- Department of Materials Science and Engineering and KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sung-Yoon Chung
- Department of Materials Science and Engineering and KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
36
|
Badreldin A, Abusrafa AE, Abdel-Wahab A. Oxygen-deficient perovskites for oxygen evolution reaction in alkaline media: a review. EMERGENT MATERIALS 2020; 3:567-590. [PMID: 0 DOI: 10.1007/s42247-020-00123-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 05/26/2023]
Abstract
AbstractOxygen vacancies in complex metal oxides and specifically in perovskites are demonstrated to significantly enhance their electrocatalytic activities due to facilitating a degree of control in the material’s intrinsic properties. The reported enhancement in intrinsic OER activity of oxygen-deficient perovskites surfaces has inspired their fabrication via a myriad of schemes. Oxygen vacancies in perovskites are amongst the most favorable anionic or Schottky defects to be induced due to their low formation energies. This review discusses recent efforts for inducing oxygen vacancies in a multitude of perovskites, including facile and environmentally benign synthesis strategies, characterization techniques, and detailed insight into the intrinsic mechanistic modulation of perovskite electrocatalysts. Experimental, analytical, and computational techniques dedicated to the understanding of the improvement of OER activities upon oxygen vacancy induction are summarized in this work. The identification and utilization of intrinsic activity descriptors for the modulation of configurational structure, improvement in bulk charge transport, and favorable inflection of the electronic structure are also discussed. It is our foresight that the approaches, challenges, and prospects discussed herein will aid researchers in rationally designing highly active and stable perovskites that can outperform noble metal-based OER electrocatalysts.
Collapse
|
37
|
Wu Y, Tariq M, Zaman WQ, Sun W, Zhou Z, Yang J. Bimetallic Doped RuO 2 with Manganese and Iron as Electrocatalysts for Favorable Oxygen Evolution Reaction Performance. ACS OMEGA 2020; 5:7342-7347. [PMID: 32280875 PMCID: PMC7144150 DOI: 10.1021/acsomega.9b04237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/06/2020] [Indexed: 05/23/2023]
Abstract
Synthesizing oxygen evolution reaction (OER) catalysts with enhanced activity by codoping has been proven to be a feasible approach for the efficient use of noble metals via renewing their basic intrinsic properties. In continuation of the research in codoping, we prepare a ruthenium-based bimetallic doped catalyst Mn x Fe y Ru1-x-y O2 with an outstanding OER activity as compared to pure RuO2, one of the state-of-the-art OER catalysts. The synthesized codoped RuO2 with a Mn/Fe molar ratio of 1 reflected a Tafel slope of only 41 mV dec-1, which is appreciably lower than 64 mV dec-1 for pure RuO2. The X-ray photoelectron spectroscopy (XPS) performed reveals that oxygen vacancy and manganese valency are the key factors of the OER activity for codoped catalysts.
Collapse
Affiliation(s)
- Yiyi Wu
- State
Environmental Protection Key Laboratory of Environmental Risk Assessment
and Control on Chemical Processes, School of Resources and Environmental
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Muhammad Tariq
- State
Environmental Protection Key Laboratory of Environmental Risk Assessment
and Control on Chemical Processes, School of Resources and Environmental
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Waqas Qamar Zaman
- Institute
of Environmental Science and Engineering, School of Civil and Environmental
Engineering, National University of Sciences
and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| | - Wei Sun
- State
Environmental Protection Key Laboratory of Environmental Risk Assessment
and Control on Chemical Processes, School of Resources and Environmental
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhenhua Zhou
- State
Environmental Protection Key Laboratory of Environmental Risk Assessment
and Control on Chemical Processes, School of Resources and Environmental
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Ji Yang
- State
Environmental Protection Key Laboratory of Environmental Risk Assessment
and Control on Chemical Processes, School of Resources and Environmental
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
38
|
Arminio‐Ravelo JA, Quinson J, Pedersen MA, Kirkensgaard JJK, Arenz M, Escudero‐Escribano M. Synthesis of Iridium Nanocatalysts for Water Oxidation in Acid: Effect of the Surfactant. ChemCatChem 2020. [DOI: 10.1002/cctc.201902190] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Jonathan Quinson
- Department of ChemistryUniversity of Copenhagen Universitetsparken 5 Copenhagen DK-2100 Denmark
| | - Mads A. Pedersen
- Niels Bohr InstituteUniversity of Copenhagen Universitetsparken 5 Copenhagen DK-2100 Denmark
| | - Jacob J. K. Kirkensgaard
- Niels Bohr InstituteUniversity of Copenhagen Universitetsparken 5 Copenhagen DK-2100 Denmark
- Department of Food ScienceUniversity of Copenhagen Rolighedsvej 26 Frederiksberg 1958 Denmark
| | - Matthias Arenz
- Department of Chemistry and BiochemistryUniversity of Bern Freiestrasse 3 Bern CH-3012 Switzerland
| | | |
Collapse
|
39
|
Incorporating iron in nickel cobalt layered double hydroxide nanosheet arrays as efficient oxygen evolution electrocatalyst. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Back S, Tran K, Ulissi ZW. Toward a Design of Active Oxygen Evolution Catalysts: Insights from Automated Density Functional Theory Calculations and Machine Learning. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02416] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seoin Back
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Kevin Tran
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Zachary W. Ulissi
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
41
|
Yi J, Lee WH, Choi CH, Lee Y, Park KS, Min BK, Hwang YJ, Oh HS. Effect of Pt introduced on Ru-based electrocatalyst for oxygen evolution activity and stability. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
42
|
Spöri C, Briois P, Nong HN, Reier T, Billard A, Kühl S, Teschner D, Strasser P. Experimental Activity Descriptors for Iridium-Based Catalysts for the Electrochemical Oxygen Evolution Reaction (OER). ACS Catal 2019. [DOI: 10.1021/acscatal.9b00648] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Camillo Spöri
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Pascal Briois
- FEMTO-ST (UMR CNRS 6174), Université de Bourgogne Franche-Comté, UTBM, 90010 Belfort, France
| | - Hong Nhan Nong
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Tobias Reier
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Alain Billard
- FEMTO-ST (UMR CNRS 6174), Université de Bourgogne Franche-Comté, UTBM, 90010 Belfort, France
| | - Stefanie Kühl
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Detre Teschner
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Fritz-Haber-Institut der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Peter Strasser
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| |
Collapse
|
43
|
Shan J, Guo C, Zhu Y, Chen S, Song L, Jaroniec M, Zheng Y, Qiao SZ. Charge-Redistribution-Enhanced Nanocrystalline Ru@IrOx Electrocatalysts for Oxygen Evolution in Acidic Media. Chem 2019. [DOI: 10.1016/j.chempr.2018.11.010] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Wang C, Wang R, Peng Y, Chen J, Li J. Iron tungsten mixed composite as a robust oxygen evolution electrocatalyst. Chem Commun (Camb) 2019; 55:10944-10947. [DOI: 10.1039/c9cc05287a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An iron tungsten mixed composite exhibited a high activity and a long-term stability for oxygen evolution reaction electrocatalysis.
Collapse
Affiliation(s)
- Chizhong Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control
- School of Environment
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Rong Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control
- School of Environment
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yue Peng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control
- School of Environment
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Jianjun Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control
- School of Environment
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Junhua Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control
- School of Environment
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
45
|
Park J, Kwon T, Kim J, Jin H, Kim HY, Kim B, Joo SH, Lee K. Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chem Soc Rev 2018; 47:8173-8202. [PMID: 30009297 DOI: 10.1039/c8cs00336j] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
While the realization of clean and sustainable energy conversion systems primarily requires the development of highly efficient catalysts, one of the main issues had been designing the structure of the catalysts to fulfill minimum cost as well as maximum performance. Until now, noble metal-based nanocatalysts had shown outstanding performances toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). However, the scarcity and high cost of them impeded their practical use. Recently, hollow nanostructures including nanocages and nanoframes had emerged as a burgeoning class of promising electrocatalysts. The hollow nanostructures could expose a high proportion of active surfaces while saving the amounts of expensive noble metals. In this review, we introduced recent advances in the synthetic methodologies for generating noble metal-based hollow nanostructures based on thermodynamic and kinetic approaches. We summarized electrocatalytic applications of hollow nanostructures toward the ORR, OER, and HER. We next provided strategies that could endow structural robustness to the flimsy structural nature of hollow structures. Finally, we concluded this review with perspectives to facilitate the development of hollow nanostructure-based catalysts for energy applications.
Collapse
Affiliation(s)
- Jongsik Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|