1
|
Ambrogi V, Nocchetti M, Pietrella D, Quaglia G, Di Michele A, Latterini L. Antimicrobial Oleogel Containing Sustainably Prepared Silver-Based Nanomaterials for Topical Application. J Funct Biomater 2023; 15:4. [PMID: 38276477 PMCID: PMC10817458 DOI: 10.3390/jfb15010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Oleogels containing silica-silver-based nanomaterials were prepared to be used as potential antimicrobial treatment for preventing and curing skin infections. Fumed silica was used as a bifunctional excipient able to offer support to silver-based nanoparticle growth and act as a gelling agent for oleogel formulation. First, silica-silver composites were prepared following a sustainable method by contact of fumed silica and silver nitrate in the presence of ethanol and successive UV irradiation. The composites were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), ATR FT-IR spectroscopy and UV-Vis spectrophotometry. The presence of 8-20 nm spherical nanoparticles, in addition to the silica aggregates and AgNO3 crystals, was detected. The composites showed good antimicrobial activity against the Gram-negative Pseudomonas aeruginosa and the Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis. Thus, they were formulated in an oleogel, obtained using fumed silica as a gelling agent. For comparison, oleogels containing AgNO3 were prepared according to two different formulative techniques. The silica-silver-based oleogels showed good antimicrobial activity and did not show cytotoxic effects for fibroblasts and keratinocytes.
Collapse
Affiliation(s)
- Valeria Ambrogi
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy;
| | - Morena Nocchetti
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy;
| | - Donatella Pietrella
- Nano4Light Lab, Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy;
| | - Giulia Quaglia
- Dipartimento di Medicina e Chirurgia, University of Perugia, Piazzale Lucio Severi 1, 06129 Perugia, Italy; (G.Q.); (L.L.)
| | - Alessandro Di Michele
- Dipartimento di Fisica e Geologia, University of Perugia, Via Pascoli, 06123 Perugia, Italy;
| | - Loredana Latterini
- Dipartimento di Medicina e Chirurgia, University of Perugia, Piazzale Lucio Severi 1, 06129 Perugia, Italy; (G.Q.); (L.L.)
| |
Collapse
|
2
|
Madhu M, Chao CM, Ke CY, Hsieh MM, Tseng WL. Directed self-assembly of Ag+-deposited MoS2 quantum dots for colorimetric, fluorescent and fluorescence-lifetime sensing of alkaline phosphatase. Anal Bioanal Chem 2022; 414:1909-1919. [DOI: 10.1007/s00216-021-03826-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/06/2021] [Accepted: 12/02/2021] [Indexed: 11/28/2022]
|
3
|
Anwar N, Khan A, Shah M, Walsh JJ, Anwar Z. Hybridization of Gold Nanoparticles with Poly(ethylene glycol) Methacrylate and Their Biomedical Applications. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421130033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Zong C, Wang R, Jiang F, Zhang D, Yang H, Wang J, Lu X, Li F, Li P. Metal enhanced chemiluminescence nanosensor for ultrasensitive bioassay based on silver nanoparticles modified functional DNA dendrimer. Anal Chim Acta 2021; 1165:338541. [PMID: 33975696 DOI: 10.1016/j.aca.2021.338541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
A novel metal enhanced chemiluminescence (MEC) nanosensor was developed for ultrasensitive biosensing and imaging, based on functional DNA dendrimer (FDD), proximity-dependent DNAzyme and silver nanoparticles (AgNPs). The FDD containing two split G-quadruplex structures was prepared through an enzyme-free and step-by-step assembly strategy, and then reacted with AgNPs and hemin molecules to form the FDD/hemin/AgNPs facilely. Such a MEC nanosensor consisted of three modules: FDD (scaffold), the generated G-quadruplex/hemin DNAzyme (signal reporter) and AgNPs (chemiluminescence enhancer). The MEC effect was achieved by controlling the length of DNA sequences between AgNPs on the periphery of FDD and DNAzymes inside it. Such nanosensor exhibited 9-fold amplification and another 6.4-fold metal enhancement in chemiluminescence intensity, which can be easily applied into trace detection of multiple protein markers using a disposable protein immunoarray. The FDD/hemin/AgNPs-based multiplex MEC imaging assay showed wide linear ranges over 5 orders of magnitude and detection limits down to 5× 10-5 ng L-1 and 1.8 × 10-4 U mL-1 for cardiac troponin T and carcinoma antigen 125, demonstrating a promising potential in application to protein analysis and clinical diagnosis. Moreover, the MEC nanosensor can be effectively delivered into cells with excellent biocompatibility and outstanding stability, offering a new tool for detection of intracellular targets and suggesting wide applications in bioassay.
Collapse
Affiliation(s)
- Chen Zong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ruike Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Fan Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Duoduo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Junhong Wang
- Jiangsu Province Hospital, Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, PR China
| | - Xu Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
5
|
Argentati C, Morena F, Fontana C, Tortorella I, Emiliani C, Latterini L, Zampini G, Martino S. Functionalized Silica Star-Shaped Nanoparticles and Human Mesenchymal Stem Cells: An In Vitro Model. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:779. [PMID: 33803869 PMCID: PMC8003255 DOI: 10.3390/nano11030779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
The biomedical translational applications of functionalized nanoparticles require comprehensive studies on their effect on human stem cells. Here, we have tested neat star-shaped mesoporous silica nanoparticles (s-MSN) and their chemically functionalized derivates; we examined nanoparticles (NPs) with similar dimensions but different surface chemistry, due to the amino groups grafted on silica nanoparticles (s-MSN-NH2), and gold nanoseeds chemically adsorbed on silica nanoparticles (s-MSN-Au). The different samples were dropped on glass coverslips to obtain a homogeneous deposition differing only for NPs' chemical functionalization and suitable for long-term culture of human Bone Marrow-Mesenchymal stem cells (hBM-MSCs) and Adipose stem cells (hASCs). Our model allowed us to demonstrate that hBM-MSCs and hASCs have comparable growth curves, viability, and canonical Vinculin Focal adhesion spots on functionalized s-MSN-NH2 and s-MSN-Au as on neat s-MSN and control systems, but also to show morphological changes on all NP types compared to the control counterparts. The new shape was stem-cell-specific and was maintained on all types of NPs. Compared to the other NPs, s-MSN-Au exerted a small genotoxic effect on both stem cell types, which, however, did not affect the stem cell behavior, likely due to a peculiar stem cell metabolic restoration response.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.A.); (F.M.); (I.T.); (C.E.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.A.); (F.M.); (I.T.); (C.E.)
| | - Chiara Fontana
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (C.F.); (L.L.)
| | - Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.A.); (F.M.); (I.T.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.A.); (F.M.); (I.T.); (C.E.)
| | - Loredana Latterini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (C.F.); (L.L.)
| | - Giulia Zampini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (C.F.); (L.L.)
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.A.); (F.M.); (I.T.); (C.E.)
| |
Collapse
|
6
|
Gambucci M, Aluigi A, Seri M, Sotgiu G, Zampini G, Donnadio A, Torreggiani A, Zamboni R, Latterini L, Posati T. Effect of Chemically Engineered Au/Ag Nanorods on the Optical and Mechanical Properties of Keratin Based Films. Front Chem 2020; 8:158. [PMID: 32219091 PMCID: PMC7078657 DOI: 10.3389/fchem.2020.00158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/21/2020] [Indexed: 11/25/2022] Open
Abstract
In this work we report the preparation and characterization of free-standing keratin-based films containing Au/Ag nanorods. The effect of nanorods surface chemistry on the optical and mechanical properties of keratin composite films is fully investigated. Colloid nanorods confer to the keratin films interesting color effects due to plasmonic absorptions of the metal nanostructures. The presence of metal NRs induces also substantial change in the protein fluorescence emission. In particular, the relative contribution of the ordered-protein aggregates emission is enhanced by the presence of cysteine and thus strictly related to the surface chemistry of nanorods. The presence of more packed supramolecular structures in the films containing metal nanorods (in particular cysteine modified ones) is confirmed by ATR measurements. In addition, the films containing nanorods show a higher Young's modulus compared to keratin alone and again the effect is more pronounced for cysteine modified nanorods. Collectively, the reported results indicate the optical and mechanical properties of keratin composites films are related to a common property and can be tuned simultaneously, paving the way to the optimization and improvement of their performances and enhancing the exploitation of keratin composites in highly technological optoelectronic applications.
Collapse
Affiliation(s)
- Marta Gambucci
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Annalisa Aluigi
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Bologna, Italy
| | - Mirko Seri
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Bologna, Italy
| | - Giovanna Sotgiu
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Bologna, Italy
| | - Giulia Zampini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Anna Donnadio
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Perugia, Italy
| | - Armida Torreggiani
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Bologna, Italy
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Bologna, Italy
| | - Loredana Latterini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Tamara Posati
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Bologna, Italy
| |
Collapse
|
7
|
Gambucci M, Gentili PL, Sassi P, Latterini L. A multi-spectroscopic approach to investigate the interactions between Gramicidin A and silver nanoparticles. SOFT MATTER 2019; 15:6571-6580. [PMID: 31364666 DOI: 10.1039/c9sm01110b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The comprehension and control of the interactions between nanoparticles and proteins at a molecular level are crucial to improve biomedical applications of nanomaterials and to develop nanosystems able to influence and regulate the conformational changes in proteins. In this work, we explore the interactions between Gramicidin A peptide (GramA) and dodecanethiol-stabilized small silver nanoparticles (D-AgNPs), paying particular attention to the effect on GramA conformation in POPC bilayers. D-AgNPs have been prepared to have dimensions (5 nm) and a hydrophobic nature compatible with the POPC lipid bilayer. Fluorescence, Raman and IR spectroscopies have been used to investigate both peptide conformation and its position inside the phospholipid bilayer. Results are discussed in terms of solvent exposure and conformation of GramA peptide.
Collapse
Affiliation(s)
- Marta Gambucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8- 06123 Perugia, Italy.
| | - Pier Luigi Gentili
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8- 06123 Perugia, Italy.
| | - Paola Sassi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8- 06123 Perugia, Italy.
| | - Loredana Latterini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8- 06123 Perugia, Italy.
| |
Collapse
|