1
|
Gallo T, Adriano L, Heymann M, Wrona A, Walsh N, Öhrwall G, Callefo F, Skruszewicz S, Namboodiri M, Marinho R, Schulz J, Valerio J. Development of a flat jet delivery system for soft X-ray spectroscopy at MAX IV. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1285-1292. [PMID: 39172090 PMCID: PMC11371042 DOI: 10.1107/s1600577524006611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/04/2024] [Indexed: 08/23/2024]
Abstract
One of the most challenging aspects of X-ray research is the delivery of liquid sample flows into the soft X-ray beam. Currently, cylindrical microjets are the most commonly used sample injection systems for soft X-ray liquid spectroscopy. However, they suffer from several drawbacks, such as complicated geometry due to their curved surface. In this study, we propose a novel 3D-printed nozzle design by introducing microscopic flat sheet jets that provide micrometre-thick liquid sheets with high stability, intending to make this technology more widely available to users. Our research is a collaboration between the EuXFEL and MAX IV research facilities. This collaboration aims to develop and refine a 3D-printed flat sheet nozzle design and a versatile jetting platform that is compatible with multiple endstations and measurement techniques. Our flat sheet jet platform improves the stability of the jet and increases its surface area, enabling more precise scanning and differential measurements in X-ray absorption, scattering, and imaging applications. Here, we demonstrate the performance of this new arrangement for a flat sheet jet setup with X-ray photoelectron spectroscopy, photoelectron angular distribution, and soft X-ray absorption spectroscopy experiments performed at the photoemission endstation of the FlexPES beamline at MAX IV Laboratory in Lund, Sweden.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Flavia Callefo
- Brazilian Synchrotron Light Laboratory, LNLSBrazilian Center for Research in Energy and Materials (CPNEM)Brazil
| | | | | | - Ricardo Marinho
- Institute of Physics, Brasilia University (UnB), 70.919-970Brasília, Brazil
- Institute of Physics Federal University of Bahia40.170-115SalvadorBrazil
| | | | | |
Collapse
|
2
|
Yang J, Zhu C, Wang D. A Simple Organo-Electrocatalysis System for the Chlor-Related Industry. Angew Chem Int Ed Engl 2024; 63:e202406883. [PMID: 38783773 DOI: 10.1002/anie.202406883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Consuming a substantial quantum of energy (~165 TW h), the chlor-alkali industry garners considerable scholarly and industrial interest, with the anode reaction involving the oxidation of chloride ions being a paramount determinant of reaction rates. While the dimensionally stable anode (DSA) displays commendable catalytic activity and longevity, they rely on precious metals and exhibit a non-negligible side reaction in sodium hypochlorite (NaClO) production, underscoring the appeal of metal-free alternatives. However, the molecules and systems currently available are characterized by intricate complexity and are not amenable to large-scale production. Herein, we have successfully developed an economical and highly efficient molecular catalyst, demonstrating superior performance compared with the former organic molecules in the chloride ion oxidation process (COP) for the production of both chlorine gas (Cl2) and NaClO. The molecule of 2N only needs 92 mV to reach a current density of 1000 mA cm-2, with a small cost of only 0.002 $ g-1. Furthermore, we propose a novel mechanism underpinned by non-covalent interactions, serving as the foundation for an innovative approach to the design of efficient anodes for the COP.
Collapse
Affiliation(s)
- Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chenxi Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Gallo T, Michailoudi G, Valerio J, Adriano L, Heymann M, Schulz J, Marinho RDR, Callefo F, Walsh N, Öhrwall G. Aqueous Ammonium Nitrate Investigated Using Photoelectron Spectroscopy of Cylindrical and Flat Liquid Jets. J Phys Chem B 2024; 128:6866-6875. [PMID: 38976651 PMCID: PMC11264267 DOI: 10.1021/acs.jpcb.4c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Ammonium nitrate in aqueous solution was investigated with synchrotron radiation based photoelectron spectroscopy using two types of liquid jet nozzles. Electron emission from a cylindrical microjet of aqueous ammonium nitrate solution was measured at two different angles relative to the horizontal polarization of the incident synchrotron radiation, 90° and 54.7° (the "magic angle"), for a range of photon energies (470-530 eV). We obtained β parameter values as a function of photon energy, based on a normalization procedure relying on simulations of background intensity with the SESSA (Simulation of Electron Spectra for Surface Analysis) package. The β values are similar to literature data for O 1s ionization of liquid water, and the β value of N 1s from NH4+ is higher than that for NO3-, by ≈0.1. The measurements also show that the photoelectron signal from NO3- exhibits a photon energy dependent cross section variation not observed in NH4+. Additional measurements using a flat jet nozzle found that the ammonium and nitrate peak area ratio was unaffected by changes in the takeoff angle, indicating a similar distribution of both ammonium and nitrate in the surface region.
Collapse
Affiliation(s)
- Tamires Gallo
- Synchrotron
Radiation Research, Lund University, Box 118, SE-22100 Lund, Sweden
- MAX
IV Laboratory, Lund University, Box 118, SE-22100 Lund, Sweden
| | - Georgia Michailoudi
- Nano
and Molecular Systems Research Unit, University
of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Joana Valerio
- European
XFEL, Holzkoppel 4, Schenefeld 22869, Germany
| | - Luigi Adriano
- European
XFEL, Holzkoppel 4, Schenefeld 22869, Germany
| | - Michael Heymann
- IBBS,
Institut für Biomaterialien und Biomolekulare Systeme, Universität
Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | | | - Ricardo dos Reis
Teixeira Marinho
- Institute
of Physics, Brasilia University (UnB), 70.919-970 Brasiliá, Brazil
- Institute
of Physics, Federal University of Bahia, 40.170-115 Salvador, BA, Brazil
| | - Flavia Callefo
- Brazilian
Synchrotron Light Laboratory, LNLS, Brazilian
Center for Research in Energy and Materials, CNPEM, CP 6192, 13085-970 Campinas, SP, Brazil
| | - Noelle Walsh
- MAX
IV Laboratory, Lund University, Box 118, SE-22100 Lund, Sweden
| | - Gunnar Öhrwall
- MAX
IV Laboratory, Lund University, Box 118, SE-22100 Lund, Sweden
| |
Collapse
|
4
|
Das SK, Winghart MO, Han P, Rana D, Zhang ZY, Eckert S, Fondell M, Schnappinger T, Nibbering ETJ, Odelius M. Electronic Fingerprint of the Protonated Imidazole Dimer Probed by X-ray Absorption Spectroscopy. J Phys Chem Lett 2024; 15:1264-1272. [PMID: 38278137 PMCID: PMC10860131 DOI: 10.1021/acs.jpclett.3c03576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Protons in low-barrier superstrong hydrogen bonds are typically delocalized between two electronegative atoms. Conventional methods to characterize such superstrong hydrogen bonds are vibrational spectroscopy and diffraction techniques. We introduce soft X-ray spectroscopy to uncover the electronic fingerprints for proton sharing in the protonated imidazole dimer, a prototypical building block enabling effective proton transport in biology and high-temperature fuel cells. Using nitrogen core excitations as a sensitive probe for the protonation status, we identify the X-ray signature of a shared proton in the solvated imidazole dimer in a combined experimental and theoretical approach. The degree of proton sharing is examined as a function of structural variations that modify the shape of the low-barrier potential in the superstrong hydrogen bond. We conclude by showing how the sensitivity to the quantum distribution of proton motion in the double-well potential is reflected in the spectral signature of the shared proton.
Collapse
Affiliation(s)
- Sambit K. Das
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91 Stockholm, Sweden
| | - Marc-Oliver Winghart
- Max
Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Peng Han
- Max
Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Debkumar Rana
- Max
Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Zhuang-Yan Zhang
- Max
Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Sebastian Eckert
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Mattis Fondell
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Thomas Schnappinger
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91 Stockholm, Sweden
| | - Erik T. J. Nibbering
- Max
Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Michael Odelius
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Sterling CM, Kamal C, García-Fernández A, Man GJ, Svanström S, Nayak PK, Butorin SM, Rensmo H, Cappel UB, Odelius M. Electronic Structure and Chemical Bonding in Methylammonium Lead Triiodide and Its Precursor Methylammonium Iodide. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:20143-20154. [PMID: 36483685 PMCID: PMC9720748 DOI: 10.1021/acs.jpcc.2c06782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/01/2022] [Indexed: 06/17/2023]
Abstract
A detailed examination of the electronic structures of methylammonium lead triiodide (MAPI) and methylammonium iodide (MAI) is performed with ab initio molecular dynamics (AIMD) simulations based on density functional theory, and the theoretical results are compared to experimental probes. The occupied valence bands of a MAPI single crystal and MAI powder are probed with X-ray photoelectron spectroscopy, and the conduction bands are probed from the perspective of nitrogen K-edge X-ray absorption spectroscopy. Combined, the theoretical simulations and the two experimental techniques allow for a dissection of the electronic structure unveiling the nature of chemical bonding in MAPI and MAI. Here, we show that the difference in band gap between MAPI and MAI is caused chiefly by interactions between iodine and lead but also weaker interactions with the MA+ counterions. Spatial decomposition of the iodine p levels allows for analysis of Pb-I σ bonds and π interactions, which contribute to this effect with the involvement of the Pb 6p levels. Differences in hydrogen bonding between the two materials, seen in the AIMD simulations, are reflected in nitrogen valence orbital composition and in nitrogen K-edge X-ray absorption spectra.
Collapse
Affiliation(s)
- Cody M. Sterling
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91Stockholm, Sweden
| | - Chinnathambi Kamal
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91Stockholm, Sweden
- Theory
and Simulations Laboratory, Theoretical and Computational Physics
Section, Raja Ramanna Centre for Advanced
Technology, Indore452013, India
- Homi
Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai400094, India
| | - Alberto García-Fernández
- Division
of Applied Physical Chemistry, Department of Chemistry, KTH - Royal Institute of Technology, SE-100 44Stockholm, Sweden
| | - Gabriel J. Man
- Condensed
Matter Physics of Energy Materials, Division of X-ray Photon Science,
Department of Physics and Astronomy, Uppsala
University, Box 516, SE-75121Uppsala, Sweden
- GJM
Scientific
Consulting, Fort Lee, New Jersey07024, United States
| | - Sebastian Svanström
- Condensed
Matter Physics of Energy Materials, Division of X-ray Photon Science,
Department of Physics and Astronomy, Uppsala
University, Box 516, SE-75121Uppsala, Sweden
| | - Pabitra K. Nayak
- Tata
Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad500046, India
| | - Sergei M. Butorin
- Condensed
Matter Physics of Energy Materials, Division of X-ray Photon Science,
Department of Physics and Astronomy, Uppsala
University, Box 516, SE-75121Uppsala, Sweden
| | - Håkan Rensmo
- Condensed
Matter Physics of Energy Materials, Division of X-ray Photon Science,
Department of Physics and Astronomy, Uppsala
University, Box 516, SE-75121Uppsala, Sweden
| | - Ute B. Cappel
- Division
of Applied Physical Chemistry, Department of Chemistry, KTH - Royal Institute of Technology, SE-100 44Stockholm, Sweden
| | - Michael Odelius
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91Stockholm, Sweden
| |
Collapse
|
6
|
Jo Y, Kim SM, Jin S, Lee WY, Lee SY, Lee MH. Complementary Adsorption of Binary Levelers for Highly Uniform Cu Micropillars. ACS OMEGA 2022; 7:36880-36887. [PMID: 36278072 PMCID: PMC9583340 DOI: 10.1021/acsomega.2c05646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Highly uniform Cu micropillars were electrodeposited on a Cu seed layer in a micropatterned photoresist in the presence of binary levelers containing pyrrolidine and pyridine functional groups. The adsorption behaviors of binary levelers, i.e., 3-hydroxy-6-(tert-butyl)pyridine and pyridinium tribromide in an electroplating bath were investigated by chronopotentiometry with sequential injection of levelers and linear sweep voltammetry with a rotating disk electrode. From electrochemical analysis, pyridinium tribromide composed of a positively charged pyridine ring was strongly adsorbed on the Cu seed surface, relative to 3-hydroxy-6-(tert-butyl)pyridine. Additional microscopy, surface roughness, and nitrogen concentration analyses revealed that the binary levelers were preferentially adsorbed on the center and the edge region of the Cu seed, resulting in a uniform Cu pillar profile. The possible mechanism of highly uniform Cu pillar deposition was discussed in terms of the adsorption behaviors of the levelers dependent on their molecular structures.
Collapse
Affiliation(s)
- Yugeun Jo
- Heat
& Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Incheon21999, Republic of Korea
- Department
of Materials Engineering, Korea Aerospace
University, Goyang10540, Republic of Korea
| | - Sung-Min Kim
- Heat
& Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Incheon21999, Republic of Korea
| | - SangHoon Jin
- Heat
& Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Incheon21999, Republic of Korea
| | - Woon Young Lee
- Heat
& Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Incheon21999, Republic of Korea
| | - Sang-Yul Lee
- Department
of Materials Engineering, Korea Aerospace
University, Goyang10540, Republic of Korea
| | - Min Hyung Lee
- Heat
& Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Incheon21999, Republic of Korea
| |
Collapse
|
7
|
Eckert S, Winghart M, Kleine C, Banerjee A, Ekimova M, Ludwig J, Harich J, Fondell M, Mitzner R, Pines E, Huse N, Wernet P, Odelius M, Nibbering ETJ. Electronic Structure Changes of an Aromatic Amine Photoacid along the Förster Cycle. Angew Chem Int Ed Engl 2022; 61:e202200709. [PMID: 35325500 PMCID: PMC9322478 DOI: 10.1002/anie.202200709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 11/15/2022]
Abstract
Photoacids show a strong increase in acidity in the first electronic excited state, enabling real-time studies of proton transfer in acid-base reactions, proton transport in energy storage devices and biomolecular sensor protein systems. Several explanations have been proposed for what determines photoacidity, ranging from variations in solvation free energy to changes in electronic structure occurring along the four stages of the Förster cycle. Here we use picosecond nitrogen K-edge spectroscopy to monitor the electronic structure changes of the proton donating group in a protonated aromatic amine photoacid in solution upon photoexcitation and subsequent proton transfer dynamics. Probing core-to-valence transitions locally at the amine functional group and with orbital specificity, we clearly reveal pronounced electronic structure, dipole moment and energetic changes on the conjugate photobase side. This result paves the way for a detailed electronic structural characterization of the photoacidity phenomenon.
Collapse
Affiliation(s)
- Sebastian Eckert
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Marc‐Oliver Winghart
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Carlo Kleine
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Ambar Banerjee
- Department of PhysicsStockholm UniversityAlbaNova University Center106 91StockholmSweden
| | - Maria Ekimova
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Jan Ludwig
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Jessica Harich
- Institute for Nanostructure and Solid State PhysicsCenter for Free-Electron Laser ScienceLuruper Chaussee 14922761HamburgGermany
| | - Mattis Fondell
- Institute for Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Strasse 1512489BerlinGermany
| | - Rolf Mitzner
- Institute for Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Strasse 1512489BerlinGermany
| | - Ehud Pines
- Department of ChemistryBen Gurion University of the NegevP.O.B. 653Beersheva84105Israel
| | - Nils Huse
- Institute for Nanostructure and Solid State PhysicsCenter for Free-Electron Laser ScienceLuruper Chaussee 14922761HamburgGermany
| | - Philippe Wernet
- Department of Physics and AstronomyUppsala UniversityBox 516 Lägerhyddsvägen 1751 20UppsalaSweden
| | - Michael Odelius
- Department of PhysicsStockholm UniversityAlbaNova University Center106 91StockholmSweden
| | - Erik T. J. Nibbering
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| |
Collapse
|
8
|
Eckert S, Winghart MO, Kleine C, Banerjee A, Ekimova M, Ludwig J, Harich J, Fondell M, Mitzner R, Pines E, Huse N, Wernet P, Odelius M, Nibbering ET. Electronic Structure Changes of an Aromatic Amine Photoacid along the Förster Cycle. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sebastian Eckert
- Max Born Institute for Non-Linear Optics and Short Pulse Spectroscopy: Max-Born-Institut fur Nichtlineare Optik und Kurzzeitspektroskopie C1 GERMANY
| | - Marc-Oliver Winghart
- Max Born Institute for Non-Linear Optics and Short Pulse Spectroscopy: Max-Born-Institut fur Nichtlineare Optik und Kurzzeitspektroskopie C1 GERMANY
| | - Carlo Kleine
- Max Born Institute for Non-Linear Optics and Short Pulse Spectroscopy: Max-Born-Institut fur Nichtlineare Optik und Kurzzeitspektroskopie C1 GERMANY
| | - Ambar Banerjee
- Stockholm University: Stockholms Universitet Chemistry SWEDEN
| | - Maria Ekimova
- Max Born Institute for Non-Linear Optics and Short Pulse Spectroscopy: Max-Born-Institut fur Nichtlineare Optik und Kurzzeitspektroskopie C1 GERMANY
| | - Jan Ludwig
- Max Born Institute for Non-Linear Optics and Short Pulse Spectroscopy: Max-Born-Institut fur Nichtlineare Optik und Kurzzeitspektroskopie C1 GERMANY
| | - Jessica Harich
- Center for Free Electron Laser Science Institute for Nanostructure and Solid State Physics GERMANY
| | - Mattis Fondell
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH: Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH Institute for Methods and Instrumentation for Synchrotron Radiation Research GERMANY
| | - Rolf Mitzner
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH: Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH Institute for Methods and Instrumentation for Synchrotron Radiation Research GERMANY
| | - Ehud Pines
- Ben-Gurion University of the Negev Chemistry ISRAEL
| | - Nils Huse
- Center for Free Electron Laser Science Institute for Nanostructure and Solid State Physics GERMANY
| | | | - Michael Odelius
- Stockholm University: Stockholms Universitet Chemistry SWEDEN
| | - Erik T.J. Nibbering
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie C1 Max Born Strasse 2A D-12489 Berlin GERMANY
| |
Collapse
|
9
|
Carter-Fenk K, Head-Gordon M. On the choice of reference orbitals for linear-response calculations of solution-phase K-edge X-ray absorption spectra. Phys Chem Chem Phys 2022; 24:26170-26179. [DOI: 10.1039/d2cp04077h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
X-ray absorption spectra of liquids calculated with linear-response theories like TDDFT and CIS are dramatically improved with core-ion reference orbitals.
Collapse
Affiliation(s)
- Kevin Carter-Fenk
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Kamal C, Hauschild D, Seitz L, Steininger R, Yang W, Heske C, Weinhardt L, Odelius M. Coupling Methylammonium and Formamidinium Cations with Halide Anions: Hybrid Orbitals, Hydrogen Bonding, and the Role of Dynamics. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:25917-25926. [PMID: 34868447 PMCID: PMC8634158 DOI: 10.1021/acs.jpcc.1c08932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The electronic structures of four precursors for organic-inorganic hybrid perovskites, namely, methylammonium chloride and iodide, as well as formamidinium bromide and iodide, are investigated by X-ray emission (XE) spectroscopy at the carbon and nitrogen K-edges. The XE spectra are analyzed based on density functional theory calculations. We simulate the XE spectra at the Kohn-Sham level for ground-state geometries and carry out detailed analyses of the molecular orbitals and the electronic density of states to give a thorough understanding of the spectra. Major parts of the spectra can be described by the model of the corresponding isolated organic cation, whereas high-emission energy peaks in the nitrogen K-edge XE spectra arise from electronic transitions involving hybrids of the molecular and atomic orbitals of the cations and halides, respectively. We find that the interaction of the methylammonium cation is stronger with the chlorine than with the iodine anion. Furthermore, our detailed theoretical analysis highlights the strong influence of ultrafast proton dynamics in the core-excited states, which is an intrinsic effect of the XE process. The inclusion of this effect is necessary for an accurate description of the experimental nitrogen K-edge X-ray emission spectra and gives information on the hydrogen-bonding strengths in the different precursor materials.
Collapse
Affiliation(s)
- Chinnathambi Kamal
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91 Stockholm, Sweden
- Theory
and Simulations Laboratory, HRDS, Raja Ramanna Centre for Advanced
Technology, Indore 452013, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Dirk Hauschild
- Institute
for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
- Department
of Chemistry and Biochemistry, University
of Nevada Las Vegas (UNLV), Las
Vegas, Nevada 89154-4003, United States
| | - Linsey Seitz
- Institute
for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Ralph Steininger
- Institute
for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Wanli Yang
- Advanced
Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Clemens Heske
- Institute
for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
- Department
of Chemistry and Biochemistry, University
of Nevada Las Vegas (UNLV), Las
Vegas, Nevada 89154-4003, United States
| | - Lothar Weinhardt
- Institute
for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
- Department
of Chemistry and Biochemistry, University
of Nevada Las Vegas (UNLV), Las
Vegas, Nevada 89154-4003, United States
| | - Michael Odelius
- Department
of Physics, Stockholm University, AlbaNova
University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
11
|
Loe CM, Liekhus-Schmaltz C, Govind N, Khalil M. Spectral Signatures of Ultrafast Excited-State Intramolecular Proton Transfer from Computational Multi-edge Transient X-ray Absorption Spectroscopy. J Phys Chem Lett 2021; 12:9840-9847. [PMID: 34606267 DOI: 10.1021/acs.jpclett.1c02483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Excited-state intramolecular proton transfer (ESIPT) is a fundamental chemical process with several applications. Ultrafast ESIPT involves coupled electronic and atomic motions and has been primarily studied using femtosecond optical spectroscopy. X-ray spectroscopy is particularly useful because it is element-specific and enables direct, individual probes of the proton-donating and -accepting atoms. Herein, we report a computational study to resolve the ESIPT in 10-hydroxybenzo[h]quinoline (HBQ), an intramolecularly hydrogen bonded compound. We use linear-response time-dependent density functional theory (LR-TDDFT) combined with ab initio molecular dynamics (AIMD) and time-resolved X-ray absorption spectroscopy (XAS) computations to track the ultrafast excited-state dynamics. Our results reveal clear X-ray spectral signatures of coupled electronic and atomic motions during and following ESIPT at the oxygen and nitrogen K-edge, paving the way for future experiments at X-ray free electron lasers.
Collapse
Affiliation(s)
- Caroline M Loe
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Munira Khalil
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
12
|
Huang M, Gong S, Wang C, Yang Y, Jiang P, Wang P, Hu L, Chen Q. Lewis-Basic EDTA as a Highly Active Molecular Electrocatalyst for CO 2 Reduction to CH 4. Angew Chem Int Ed Engl 2021; 60:23002-23009. [PMID: 34427034 DOI: 10.1002/anie.202110594] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Indexed: 11/06/2022]
Abstract
The most active catalysts so far successful in hydrogenation reduction of CO2 are mainly heterogeneous Cu-based catalysts. The complex coordination environments and multiple active sites in heterogeneous catalysts result in low selectivity of target product, while molecular catalysts with well-defined active sites and tailorable structures allow mechanism-based performance optimization. Herein, we firstly report a single ethylenediaminetetraacetic acid (EDTA) molecular-level immobilized on the surface of carbon nanotube as a catalyst for transferring CO2 to CH4 with an excellent performance. This catalyst exhibits a high Faradaic efficiency of 61.6 % toward CH4 , a partial current density of -16.5 mA cm-2 at a potential of -1.3 V versus reversible hydrogen electrode. Density functional theory calculations reveal that the Lewis basic COO- groups in EDTA molecule are the active sites for CO2 reduction reaction (CO2 RR). The energy barrier for the generation of CO from *CO intermediate is as high as 0.52 eV, while the further protonation of *CO to *CHO follows an energetic downhill path (-1.57 eV), resulting in the high selectivity of CH4 . This work makes it possible to control the product selectivity for CO2 RR according to the relationship between the energy barrier of *CO intermediate and molecular structures in the future.
Collapse
Affiliation(s)
- Minxue Huang
- Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shipeng Gong
- Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Changlai Wang
- Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, 230026, China.,Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yang Yang
- Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Peng Jiang
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Pengcheng Wang
- Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Lin Hu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Condition, High Magnetic Field Laboratory of Chinese, Academy of Science, Hefei, 230031, China
| | - Qianwang Chen
- Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, 230026, China.,Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Condition, High Magnetic Field Laboratory of Chinese, Academy of Science, Hefei, 230031, China
| |
Collapse
|
13
|
Weeraratna C, Kostko O, Ahmed M. An investigation of aqueous ammonium nitrate aerosols with soft X-ray spectroscopy. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1983058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chaya Weeraratna
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
14
|
Reinholdt P, Vidal ML, Kongsted J, Iannuzzi M, Coriani S, Odelius M. Nitrogen K-Edge X-ray Absorption Spectra of Ammonium and Ammonia in Water Solution: Assessing the Performance of Polarizable Embedding Coupled Cluster Methods. J Phys Chem Lett 2021; 12:8865-8871. [PMID: 34498464 PMCID: PMC8450933 DOI: 10.1021/acs.jpclett.1c02031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The recent development of liquid jet and liquid leaf sample delivery systems allows for accurate measurements of soft X-ray absorption spectra in transmission mode of solutes in a liquid environment. As this type of measurement becomes increasingly accessible, there is a strong need for reliable theoretical methods for assisting in the interpretation of the experimental data. Coupled cluster methods have been extensively developed over the past decade to simulate X-ray absorption in the gas phase. Their performance for solvated species, on the contrary, remains largely unexplored. Here, we investigate the current state of the art of coupled cluster modeling of nitrogen K-edge X-ray absorption of aqueous ammonia and ammonium based on quantum mechanics/molecular mechanics, where both the level of coupled cluster calculations and polarizable embedding are scrutinized. The results are compared to existing experimental data as well as simulations based on transition potential density functional theory.
Collapse
Affiliation(s)
- Peter Reinholdt
- Institut
for Fysik, Kemi og Farmaci, Syddansk Universitet, DK-5230 Odense, Denmark
| | - Marta L. Vidal
- DTU
Chemistry, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Jacob Kongsted
- Institut
for Fysik, Kemi og Farmaci, Syddansk Universitet, DK-5230 Odense, Denmark
| | - Marcella Iannuzzi
- Physical
Chemistry Institute, University of Zürich, 8057 Zürich, Switzerland
| | - Sonia Coriani
- DTU
Chemistry, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Michael Odelius
- Department
of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
15
|
Huang M, Gong S, Wang C, Yang Y, Jiang P, Wang P, Hu L, Chen Q. Lewis‐Basic EDTA as a Highly Active Molecular Electrocatalyst for CO
2
Reduction to CH
4. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Minxue Huang
- Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering University of Science and Technology of China Hefei 230026 China
| | - Shipeng Gong
- Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering University of Science and Technology of China Hefei 230026 China
| | - Changlai Wang
- Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering University of Science and Technology of China Hefei 230026 China
- Department of Materials Science and Engineering Center of Super-Diamond and Advanced Films City University of Hong Kong Kowloon, Hong Kong China
| | - Yang Yang
- Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering University of Science and Technology of China Hefei 230026 China
| | - Peng Jiang
- Department of Chemistry Tsinghua University Beijing China
| | - Pengcheng Wang
- Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering University of Science and Technology of China Hefei 230026 China
| | - Lin Hu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Condition High Magnetic Field Laboratory of Chinese Academy of Science Hefei 230031 China
| | - Qianwang Chen
- Hefei National Laboratory for Physical Science at Microscale and Department of Materials Science & Engineering University of Science and Technology of China Hefei 230026 China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Condition High Magnetic Field Laboratory of Chinese Academy of Science Hefei 230031 China
| |
Collapse
|
16
|
Wilks RG, Erbing A, Sadoughi G, Starr DE, Handick E, Meyer F, Benkert A, Iannuzzi M, Hauschild D, Yang W, Blum M, Weinhardt L, Heske C, Snaith HJ, Odelius M, Bär M. Dynamic Effects and Hydrogen Bonding in Mixed-Halide Perovskite Solar Cell Absorbers. J Phys Chem Lett 2021; 12:3885-3890. [PMID: 33856793 DOI: 10.1021/acs.jpclett.1c00745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The organic component (methylammonium) of CH3NH3PbI3-xClx-based perovskites shows electronic hybridization with the inorganic framework via H-bonding between N and I sites. Femtosecond dynamics induced by core excitation are shown to strongly influence the measured X-ray emission spectra and the resonant inelastic soft X-ray scattering of the organic components. The N K core excitation leads to a greatly increased N-H bond length that modifies and strengthens the interaction with the inorganic framework compared to that in the ground state. The study indicates that excited-state dynamics must be accounted for in spectroscopic studies of this perovskite solar cell material, and the organic-inorganic hybridization interaction suggests new avenues for probing the electronic structure of this class of materials. It is incidentally shown that beam damage to the methylamine component can be avoided by moving the sample under the soft X-ray beam to minimize exposure and that this procedure is necessary to prevent the creation of experimental artifacts.
Collapse
Affiliation(s)
- Regan G Wilks
- Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), 14109 Berlin, Germany
| | - Axel Erbing
- Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Golnaz Sadoughi
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford OX1 3PJ, U.K
| | - David E Starr
- Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), 14109 Berlin, Germany
| | - Evelyn Handick
- Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), 14109 Berlin, Germany
| | - Frank Meyer
- Experimental Physics 7, University of Würzburg, 97074 Würzburg, Germany
| | - Andreas Benkert
- Experimental Physics 7, University of Würzburg, 97074 Würzburg, Germany
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Marcella Iannuzzi
- Physical Chemistry Institute, University of Zürich, 8057 Zürich, Switzerland
| | - Dirk Hauschild
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Monika Blum
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8176, United States
| | - Lothar Weinhardt
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
| | - Clemens Heske
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
| | - Henry J Snaith
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford OX1 3PJ, U.K
| | - Michael Odelius
- Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Marcus Bär
- Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), 14109 Berlin, Germany
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), 90429 Nürnberg, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| |
Collapse
|
17
|
Sterling CM, Kamal C, Man GJ, Nayak PK, Simonov KA, Svanström S, García-Fernández A, Huthwelker T, Cappel UB, Butorin SM, Rensmo H, Odelius M. Sensitivity of Nitrogen K-Edge X-ray Absorption to Halide Substitution and Thermal Fluctuations in Methylammonium Lead-Halide Perovskites. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:8360-8368. [PMID: 34084262 PMCID: PMC8162417 DOI: 10.1021/acs.jpcc.1c02017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The performance of hybrid perovskite materials in solar cells crucially depends on their electronic properties, and it is important to investigate contributions to the total electronic structure from specific components in the material. In a combined theoretical and experimental study of CH3NH3PbI3-methylammonium lead triiodide (MAPI)-and its bromide cousin CH3NH3PbBr3 (MAPB), we analyze nitrogen K-edge (N 1s-to-2p*) X-ray absorption (XA) spectra measured in MAPI and MAPB single crystals. This permits comparison of spectral features to the local character of unoccupied molecular orbitals on the CH3NH3 + (MA+) counterions and allows us to investigate how thermal fluctuations, hydrogen bonding, and halide-ion substitution influence the XA spectra as a measure of the local electronic structure. In agreement with the experiment, the simulated spectra for MAPI and MAPB show close similarity, except that the MAPB spectral features are blue-shifted by +0.31 eV. The shift is shown to arise from the intrinsic difference in the electronic structure of the two halide atoms rather than from structural differences between the materials. In addition, from the spectral sampling analysis of molecular dynamics simulations, clear correlations between geometric descriptors (N-C, N-H, and H···I/Br distances) and spectral features are identified and used to explain the spectral shapes.
Collapse
Affiliation(s)
- Cody M. Sterling
- Department
of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Chinnathambi Kamal
- Department
of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
- Theory
and Simulations Laboratory, HRDS, Raja Ramanna
Centre for Advanced Technology, 452013 Indore, India
| | - Gabriel J. Man
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Pabitra K. Nayak
- TIFR
Centre for Interdisciplinary Sciences, Tata
Institute of Fundamental Research, 36/P,
Gopanpally Village, Serilingampally Mandal, 500046 Hyderabad, India
| | - Konstantin A. Simonov
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Sebastian Svanström
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Alberto García-Fernández
- Division
of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Thomas Huthwelker
- Swiss Light
Source, Paul Scherrer Institut, WLGA/212, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Ute B. Cappel
- Division
of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Sergei M. Butorin
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Håkan Rensmo
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Michael Odelius
- Department
of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
18
|
Engel RY, Ekimova M, Miedema PS, Kleine C, Ludwig J, Ochmann M, Grimm-Lebsanft B, Ma R, Teubner M, Dziarzhytski S, Brenner G, Czwalinna MK, Rösner B, Kim TK, David C, Herres-Pawlis S, Rübhausen M, Nibbering ETJ, Huse N, Beye M. Shot noise limited soft x-ray absorption spectroscopy in solution at a SASE-FEL using a transmission grating beam splitter. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:014303. [PMID: 33564694 PMCID: PMC7847311 DOI: 10.1063/4.0000049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
X-ray absorption near-edge structure (XANES) spectroscopy provides element specificity and is a powerful experimental method to probe local unoccupied electronic structures. In the soft x-ray regime, it is especially well suited for the study of 3d-metals and light elements such as nitrogen. Recent developments in vacuum-compatible liquid flat jets have facilitated soft x-ray transmission spectroscopy on molecules in solution, providing information on valence charge distributions of heteroatoms and metal centers. Here, we demonstrate XANES spectroscopy of molecules in solution at the nitrogen K-edge, performed at FLASH, the Free-Electron Laser (FEL) in Hamburg. A split-beam referencing scheme optimally characterizes the strong shot-to-shot fluctuations intrinsic to the process of self-amplified spontaneous emission on which most FELs are based. Due to this normalization, a sensitivity of 1% relative transmission change is achieved, limited by fundamental photon shot noise. The effective FEL bandwidth is increased by streaking the electron energy over the FEL pulse train to measure a wider spectral window without changing FEL parameters. We propose modifications to the experimental setup with the potential of improving the instrument sensitivity by two orders of magnitude, thereby exploiting the high peak fluence of FELs to enable unprecedented sensitivity for femtosecond XANES spectroscopy on liquids in the soft x-ray spectral region.
Collapse
Affiliation(s)
- Robin Y. Engel
- Deutsches Elektronen Synchrotron DESY, 22607 Hamburg, Germany
| | - Maria Ekimova
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | | | - Carlo Kleine
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Jan Ludwig
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Miguel Ochmann
- Institut for Nanostructure and Solid-State Physics, CFEL, University of Hamburg, 22761 Hamburg, Germany
| | - Benjamin Grimm-Lebsanft
- Institut for Nanostructure and Solid-State Physics, CFEL, University of Hamburg, 22761 Hamburg, Germany
| | - Rory Ma
- Institut for Nanostructure and Solid-State Physics, CFEL, University of Hamburg, 22761 Hamburg, Germany
| | | | | | - Günter Brenner
- Deutsches Elektronen Synchrotron DESY, 22607 Hamburg, Germany
| | | | | | - Tae Kyu Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, South Korea
| | | | - Sonja Herres-Pawlis
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Michael Rübhausen
- Institut for Nanostructure and Solid-State Physics, CFEL, University of Hamburg, 22761 Hamburg, Germany
| | - Erik T. J. Nibbering
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Nils Huse
- Institut for Nanostructure and Solid-State Physics, CFEL, University of Hamburg, 22761 Hamburg, Germany
| | - Martin Beye
- Deutsches Elektronen Synchrotron DESY, 22607 Hamburg, Germany
| |
Collapse
|
19
|
Nenov A, Segatta F, Bruner A, Mukamel S, Garavelli M. X-ray linear and non-linear spectroscopy of the ESCA molecule. J Chem Phys 2019; 151:114110. [DOI: 10.1063/1.5116699] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Artur Nenov
- Dipartimento di Chimica Industriale “Toso Montanari”, Università degli studi di Bologna, Viale del Risorgimento 4,
40136 Bologna, Italy
| | - Francesco Segatta
- Dipartimento di Chimica Industriale “Toso Montanari”, Università degli studi di Bologna, Viale del Risorgimento 4,
40136 Bologna, Italy
| | - Adam Bruner
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697,
USA
| | - Shaul Mukamel
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697,
USA
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari”, Università degli studi di Bologna, Viale del Risorgimento 4,
40136 Bologna, Italy
| |
Collapse
|
20
|
Norell J, Eckert S, Van Kuiken BE, Föhlisch A, Odelius M. Ab initio simulations of complementary K-edges and solvatization effects for detection of proton transfer in aqueous 2-thiopyridone. J Chem Phys 2019; 151:114117. [PMID: 31542028 DOI: 10.1063/1.5109840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- J. Norell
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - S. Eckert
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | | | - A. Föhlisch
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - M. Odelius
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
21
|
Kleine C, Ekimova M, Goldsztejn G, Raabe S, Strüber C, Ludwig J, Yarlagadda S, Eisebitt S, Vrakking MJJ, Elsaesser T, Nibbering ETJ, Rouzée A. Soft X-ray Absorption Spectroscopy of Aqueous Solutions Using a Table-Top Femtosecond Soft X-ray Source. J Phys Chem Lett 2019; 10:52-58. [PMID: 30547598 DOI: 10.1021/acs.jpclett.8b03420] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We demonstrate the feasibility of soft X-ray absorption spectroscopy in the water window using a table-top laser-based approach with organic molecules and inorganic salts in aqueous solution. A high-order harmonic source delivers femtosecond pulses of short wavelength radiation in the photon energy range from 220 to 450 eV. We report static soft X-ray absorption measurements in transmission on the solvated compounds O=C(NH2)2, CaCl2, and NaNO3 using flatjet technology. We monitor the absorption of the molecular samples between the carbon (∼280 eV) and nitrogen (∼400 eV) K-edges and compare our results with previous measurements performed at the BESSYII facility. We discuss the roles of pulse stability and photon flux in the outcome of our experiments. Our work paves the way toward table-top femtosecond, solution-phase soft X-ray absorption spectroscopy in the water window.
Collapse
Affiliation(s)
- Carlo Kleine
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Maria Ekimova
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Gildas Goldsztejn
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Sebastian Raabe
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Christian Strüber
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Jan Ludwig
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Suresh Yarlagadda
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Stefan Eisebitt
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Marc J J Vrakking
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Thomas Elsaesser
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Erik T J Nibbering
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| | - Arnaud Rouzée
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max-Born-Strasse 2a , 12489 Berlin , Germany
| |
Collapse
|
22
|
Bari S, Inhester L, Schubert K, Mertens K, Schunck JO, Dörner S, Deinert S, Schwob L, Schippers S, Müller A, Klumpp S, Martins M. Inner-shell X-ray absorption spectra of the cationic series NHy+ (y = 0–3). Phys Chem Chem Phys 2019; 21:16505-16514. [DOI: 10.1039/c9cp02864a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Determination of the electronic structure of mass-selected transient molecular ions which can be considered as building blocks of biomolecules.
Collapse
Affiliation(s)
- Sadia Bari
- Deutsches Elektronen-Synchrotron (DESY)
- 22607 Hamburg
- Germany
| | - Ludger Inhester
- Center for Free-Electron Laser Science (CFEL)
- DESY
- 22607 Hamburg
- Germany
- The Hamburg Centre for Ultrafast Imaging (CUI)
| | - Kaja Schubert
- Deutsches Elektronen-Synchrotron (DESY)
- 22607 Hamburg
- Germany
- Department Physik
- Universität Hamburg
| | | | - Jan O. Schunck
- Deutsches Elektronen-Synchrotron (DESY)
- 22607 Hamburg
- Germany
- Department Physik
- Universität Hamburg
| | - Simon Dörner
- Deutsches Elektronen-Synchrotron (DESY)
- 22607 Hamburg
- Germany
| | - Sascha Deinert
- Deutsches Elektronen-Synchrotron (DESY)
- 22607 Hamburg
- Germany
| | - Lucas Schwob
- Deutsches Elektronen-Synchrotron (DESY)
- 22607 Hamburg
- Germany
| | - Stefan Schippers
- Justus-Liebig-Universität Gießen
- I. Physikalisches Institut
- Heinrich-Buff-Ring 16
- 35392 Gießen
- Germany
| | - Alfred Müller
- Justus-Liebig-Universität Gießen
- Institut für Atom- und Molekülphysik
- 35392 Gießen
- Germany
| | - Stephan Klumpp
- Deutsches Elektronen-Synchrotron (DESY)
- 22607 Hamburg
- Germany
| | | |
Collapse
|