1
|
Runge BR, Zadorozhnyi R, Quinn CM, Russell RW, Lu M, Antolínez S, Struppe J, Schwieters CD, Byeon IJL, Hadden-Perilla JA, Gronenborn AM, Polenova T. Integrating 19F Distance Restraints for Accurate Protein Structure Determination by Magic Angle Spinning NMR Spectroscopy. J Am Chem Soc 2024; 146:30483-30494. [PMID: 39440810 DOI: 10.1021/jacs.4c11373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Traditional protein structure determination by magic angle spinning (MAS) solid-state NMR spectroscopy primarily relies on interatomic distances up to 8 Å, extracted from 13C-, 15N-, and 1H-based dipolar-based correlation experiments. Here, we show that 19F fast (60 kHz) MAS NMR spectroscopy can supply additional, longer distances. Using 4F-Trp,U-13C,15N crystalline Oscillatoria agardhii agglutinin (OAA), we demonstrate that judiciously designed 2D and 3D 19F-based dipolar correlation experiments such as (H)CF, (H)CHF, and FF can yield interatomic distances in the 8-16 Å range. Incorporation of fluorine-based restraints into structure calculation improved the precision of Trp side chain conformations as well as regions in the protein around the fluorine containing residues, with notable improvements observed for residues in proximity to the Trp pairs (W10/W17 and W77/W84) in the carbohydrate-binding loops, which lacked sufficient long-range 13C-13C distance restraints. Our work highlights the use of fluorine and 19F fast MAS NMR spectroscopy as a powerful structural biology tool.
Collapse
Affiliation(s)
- Brent R Runge
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Roman Zadorozhnyi
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Caitlin M Quinn
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
| | - Ryan W Russell
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Manman Lu
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Santiago Antolínez
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Charles D Schwieters
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 12A, Bethesda, Maryland 20892, United States
| | - In-Ja L Byeon
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Jodi A Hadden-Perilla
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Tatyana Polenova
- University of Delaware, Department of Chemistry and Biochemistry, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
2
|
Somberg NH, Sučec I, Medeiros-Silva J, Jo H, Beresis R, Syed AM, Doudna JA, Hong M. Oligomeric State and Drug Binding of the SARS-CoV-2 Envelope Protein Are Sensitive to the Ectodomain. J Am Chem Soc 2024; 146:24537-24552. [PMID: 39167680 DOI: 10.1021/jacs.4c07686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The envelope (E) protein of SARS-CoV-2 is the smallest of the three structural membrane proteins of the virus. E mediates budding of the progeny virus in the endoplasmic reticulum Golgi intermediate compartment of the cell. It also conducts ions, and this channel activity is associated with the pathogenicity of SARS-CoV-2. The structural basis for these functions is still poorly understood. Biochemical studies of E in detergent micelles found a variety of oligomeric states, but recent 19F solid-state NMR data indicated that the transmembrane domain (ETM, residues 8-38) forms pentamers in lipid bilayers. Hexamethylene amiloride (HMA), an E inhibitor, binds the pentameric ETM at the lipid-exposed helix-helix interface. Here, we investigate the oligomeric structure and drug interaction of an ectodomain-containing E construct, ENTM (residues 1-41). Unexpectedly, 19F spin diffusion NMR data reveal that ENTM adopts an average oligomeric state of dimers instead of pentamers in lipid bilayers. A new amiloride inhibitor, AV-352, shows stronger inhibitory activity than HMA in virus-like particle assays. Distance measurements between 13C-labeled protein and a trifluoromethyl group of AV-352 indicate that the drug binds ENTM with a higher stoichiometry than ETM. We measured protein-drug contacts using a sensitivity-enhanced two-dimensional 13C-19F distance NMR technique. The results indicate that AV-352 binds the C-terminal half of the TM domain, similar to the binding region of HMA. These data provide evidence for the existence of multiple oligomeric states of E in lipid bilayers, which may carry out distinct functions and may be differentially targeted by antiviral drugs.
Collapse
Affiliation(s)
- Noah H Somberg
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Iva Sučec
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, California 94158, United States
| | - Richard Beresis
- Department of Pharmaceutical Chemistry, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, California 94158, United States
| | - Abdullah M Syed
- Gladstone Institute of Data Science and Biotechnology, San Francisco, California 94158, United States
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California 94720, United States
| | - Jennifer A Doudna
- Gladstone Institute of Data Science and Biotechnology, San Francisco, California 94158, United States
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, California 94158, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Zhang J, Li J, Wang Y, Shi C. NMR methods to detect fluoride binding and transport by membrane proteins. Methods Enzymol 2024; 696:25-42. [PMID: 38658082 DOI: 10.1016/bs.mie.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Solid-state nuclear magnetic resonance (NMR) methods can probe the motions of membrane proteins in liposomes at the atomic level, and propel the understanding of biomolecular processes for which static structures cannot provide a satisfactory description. High-resolution crystallography snapshots have provided a structural basis for fluoride channels. NMR is a powerful tool to build upon these snapshots and depict a dynamic picture of fluoride channels in native-like lipid bilayers. In this contribution, we discuss solid-state and solution NMR experiments to detect fluoride binding and transport by fluoride channels. Ongoing developments in membrane protein sample preparation and ssNMR methodology, particularly in using 1H, 19F and 13C-detection schemes, offer additional opportunities to study structure and functional aspects of fluoride channels.
Collapse
Affiliation(s)
- Jin Zhang
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, P.R. China
| | - Juan Li
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, P.R. China
| | - Yusong Wang
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, P.R. China
| | - Chaowei Shi
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, P.R. China.
| |
Collapse
|
4
|
Medeiros-Silva J, Dregni AJ, Somberg NH, Duan P, Hong M. Atomic structure of the open SARS-CoV-2 E viroporin. SCIENCE ADVANCES 2023; 9:eadi9007. [PMID: 37831764 PMCID: PMC10575589 DOI: 10.1126/sciadv.adi9007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
The envelope (E) protein of the SARS-CoV-2 virus forms cation-conducting channels in the endoplasmic reticulum Golgi intermediate compartment (ERGIC) of infected cells. The calcium channel activity of E is associated with the inflammatory responses of COVID-19. Using solid-state NMR (ssNMR) spectroscopy, we have determined the open-state structure of E's transmembrane domain (ETM) in lipid bilayers. Compared to the closed state, open ETM has an expansive water-filled amino-terminal chamber capped by key glutamate and threonine residues, a loose phenylalanine aromatic belt in the middle, and a constricted polar carboxyl-terminal pore filled with an arginine and a threonine residue. This structure gives insights into how protons and calcium ions are selected by ETM and how they permeate across the hydrophobic gate of this viroporin.
Collapse
Affiliation(s)
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
5
|
Somberg NH, Medeiros-Silva J, Jo H, Wang J, DeGrado WF, Hong M. Hexamethylene amiloride binds the SARS-CoV-2 envelope protein at the protein-lipid interface. Protein Sci 2023; 32:e4755. [PMID: 37632140 PMCID: PMC10503410 DOI: 10.1002/pro.4755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
The SARS-CoV-2 envelope (E) protein forms a five-helix bundle in lipid bilayers whose cation-conducting activity is associated with the inflammatory response and respiratory distress symptoms of COVID-19. E channel activity is inhibited by the drug 5-(N,N-hexamethylene) amiloride (HMA). However, the binding site of HMA in E has not been determined. Here we use solid-state NMR to measure distances between HMA and the E transmembrane domain (ETM) in lipid bilayers. 13 C, 15 N-labeled HMA is combined with fluorinated or 13 C-labeled ETM. Conversely, fluorinated HMA is combined with 13 C, 15 N-labeled ETM. These orthogonal isotopic labeling patterns allow us to conduct dipolar recoupling NMR experiments to determine the HMA binding stoichiometry to ETM as well as HMA-protein distances. We find that HMA binds ETM with a stoichiometry of one drug per pentamer. Unexpectedly, the bound HMA is not centrally located within the channel pore, but lies on the lipid-facing surface in the middle of the TM domain. This result suggests that HMA may inhibit the E channel activity by interfering with the gating function of an aromatic network. These distance data are obtained under much lower drug concentrations than in previous chemical shift perturbation data, which showed the largest perturbation for N-terminal residues. This difference suggests that HMA has higher affinity for the protein-lipid interface than the channel pore. These results give insight into the inhibition mechanism of HMA for SARS-CoV-2 E.
Collapse
Affiliation(s)
- Noah H Somberg
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Toke O. Three Decades of REDOR in Protein Science: A Solid-State NMR Technique for Distance Measurement and Spectral Editing. Int J Mol Sci 2023; 24:13637. [PMID: 37686450 PMCID: PMC10487747 DOI: 10.3390/ijms241713637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Solid-state NMR (ss-NMR) is a powerful tool to investigate noncrystallizable, poorly soluble molecular systems, such as membrane proteins, amyloids, and cell walls, in environments that closely resemble their physical sites of action. Rotational-echo double resonance (REDOR) is an ss-NMR methodology, which by reintroducing heteronuclear dipolar coupling under magic angle spinning conditions provides intramolecular and intermolecular distance restraints at the atomic level. In addition, REDOR can be exploited as a selection tool to filter spectra based on dipolar couplings. Used extensively as a spectroscopic ruler between isolated spins in site-specifically labeled systems and more recently as a building block in multidimensional ss-NMR pulse sequences allowing the simultaneous measurement of multiple distances, REDOR yields atomic-scale information on the structure and interaction of proteins. By extending REDOR to the determination of 1H-X dipolar couplings in recent years, the limit of measurable distances has reached ~15-20 Å, making it an attractive method of choice for the study of complex biomolecular assemblies. Following a methodological introduction including the most recent implementations, examples are discussed to illustrate the versatility of REDOR in the study of biological systems.
Collapse
Affiliation(s)
- Orsolya Toke
- Laboratory for NMR Spectroscopy, Structural Research Centre, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| |
Collapse
|
7
|
Shcherbakov AA, Brousseau M, Henzler-Wildman KA, Hong M. Microsecond Motion of the Bacterial Transporter EmrE in Lipid Bilayers. J Am Chem Soc 2023; 145:10104-10115. [PMID: 37097985 PMCID: PMC10905379 DOI: 10.1021/jacs.3c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The bacterial transporter EmrE is a homo-dimeric membrane protein that effluxes cationic polyaromatic substrates against the concentration gradient by coupling to proton transport. As the archetype of the small multidrug resistance family of transporters, EmrE structure and dynamics provide atomic insights into the mechanism of transport by this family of proteins. We recently determined high-resolution structures of EmrE in complex with a cationic substrate, tetra(4-fluorophenyl)phosphonium (F4-TPP+), using solid-state NMR spectroscopy and an S64V-EmrE mutant. The substrate-bound protein exhibits distinct structures at acidic and basic pH, reflecting changes upon binding or release of a proton from residue E14, respectively. To obtain insight into the protein dynamics that mediate substrate transport, here we measure 15N rotating-frame spin-lattice relaxation (R1ρ) rates of F4-TPP+-bound S64V-EmrE in lipid bilayers under magic-angle spinning (MAS). Using perdeuterated and back-exchanged protein and 1H-detected 15N spin-lock experiments under 55 kHz MAS, we measured 15N R1ρ rates site-specifically. Many residues show spin-lock field-dependent 15N R1ρ relaxation rates. This relaxation dispersion indicates the presence of backbone motions at a rate of about 6000 s-1 at 280 K for the protein at both acidic and basic pH. This motional rate is 3 orders of magnitude faster than the alternating access rate but is within the range estimated for substrate binding. We propose that these microsecond motions may allow EmrE to sample different conformations to facilitate substrate binding and release from the transport pore.
Collapse
Affiliation(s)
- Alexander A. Shcherbakov
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Merissa Brousseau
- Department of Biochemistry, University of Wisconsin at Madison, Madison, WI 53706, United States
| | | | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| |
Collapse
|
8
|
Liu J, Wu XL, Zeng YT, Hu ZH, Lu JX. Solid-state NMR studies of amyloids. Structure 2023; 31:230-243. [PMID: 36750098 DOI: 10.1016/j.str.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/10/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Amyloids have special structural properties and are involved in many aspects of biological function. In particular, amyloids are the cause or hallmarks of a group of notorious and incurable neurodegenerative diseases. The extraordinary high molecular weight and aggregation states of amyloids have posed a challenge for researchers studying them. Solid-state NMR (SSNMR) has been extensively applied to study the structures and dynamics of amyloids for the past 20 or more years and brought us tremendous progress in understanding their structure and related diseases. These studies, at the same time, helped to push SSNMR technical developments in sensitivity and resolution. In this review, some interesting research studies and important technical developments are highlighted to give the reader an overview of the current state of this field.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xia-Lian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu-Teng Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhi-Heng Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun-Xia Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
9
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem Rev 2023; 123:918-988. [PMID: 36542732 PMCID: PMC10319395 DOI: 10.1021/acs.chemrev.2c00197] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo196-8558, Japan
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa230-0045, Japan
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad500 046, India
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan41809-1055, United States
| |
Collapse
|
10
|
Porat-Dahlerbruch G, Struppe J, Quinn CM, Gronenborn AM, Polenova T. 19F fast MAS (60-111 kHz) dipolar and scalar based correlation spectroscopy of organic molecules and pharmaceutical formulations. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101831. [PMID: 36182713 DOI: 10.1016/j.ssnmr.2022.101831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
19F magic angle spinning (MAS) NMR spectroscopy is a powerful tool for characterization of fluorinated solids. The recent development of 19F MAS NMR probes, operating at spinning frequencies of 60-111 kHz, enabled analysis of systems spanning from organic molecules to pharmaceutical formulations to biological assemblies, with unprecedented resolution. Herein, we systematically evaluate the benefits of high MAS frequencies (60-111 kHz) for 1D and 2D 19F-detected experiments in two pharmaceuticals, the antimalarial drug mefloquine and a formulation of the cholesterol-lowering drug atorvastatin calcium. We demonstrate that 1H decoupling is essential and that scalar-based, heteronuclear single quantum coherence (HSQC) and heteronuclear multiple quantum coherence (HMQC) correlation experiments become feasible and efficient at the MAS frequency of 100 kHz. This study opens doors for the applications of high frequency 19F MAS NMR to a wide range of problems in chemistry and biology.
Collapse
Affiliation(s)
- Gal Porat-Dahlerbruch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, 01821, United States
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Angela M Gronenborn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States; Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, 15261, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15261, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States; Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, 15261, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15261, United States.
| |
Collapse
|
11
|
Cell-free synthesis of amyloid fibrils with infectious properties and amenable to sub-milligram magic-angle spinning NMR analysis. Commun Biol 2022; 5:1202. [DOI: 10.1038/s42003-022-04175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractStructural investigations of amyloid fibrils often rely on heterologous bacterial overexpression of the protein of interest. Due to their inherent hydrophobicity and tendency to aggregate as inclusion bodies, many amyloid proteins are challenging to express in bacterial systems. Cell-free protein expression is a promising alternative to classical bacterial expression to produce hydrophobic proteins and introduce NMR-active isotopes that can improve and speed up the NMR analysis. Here we implement the cell-free synthesis of the functional amyloid prion HET-s(218-289). We present an interesting case where HET-s(218-289) directly assembles into infectious fibril in the cell-free expression mixture without the requirement of denaturation procedures and purification. By introducing tailored 13C and 15N isotopes or CF3 and 13CH2F labels at strategic amino-acid positions, we demonstrate that cell-free synthesized amyloid fibrils are readily amenable to high-resolution magic-angle spinning NMR at sub-milligram quantity.
Collapse
|
12
|
Duan P, Dregni AJ, Hong M. Solid-State NMR 19F- 1H- 15N Correlation Experiments for Resonance Assignment and Distance Measurements of Multifluorinated Proteins. J Phys Chem A 2022; 126:7021-7032. [PMID: 36150071 PMCID: PMC10867861 DOI: 10.1021/acs.jpca.2c05154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several solid-state NMR techniques have been introduced recently to measure nanometer distances involving 19F, whose high gyromagnetic ratio makes it a potent nuclear spin for structural investigation. These solid-state NMR techniques either use 19F correlation with 1H or 13C to obtain qualitative interatomic contacts or use the rotational-echo double-resonance (REDOR) pulse sequence to measure quantitative distances. However, no NMR technique is yet available for disambiguating 1H-19F distances in multiply fluorinated proteins and protein-ligand complexes. Here, we introduce a three-dimensional (3D) 19F-15N-1H correlation experiment that resolves the distances of multiple fluorines to their adjacent amide protons. We show that optimal polarization transfer between 1H and 19F spins is achieved using an out-and-back 1H-19F REDOR sequence. We demonstrate this 3D correlation experiment on the model protein GB1 and apply it to the multidrug-resistance transporter, EmrE, complexed to a tetrafluorinated substrate. This technique should be useful for resolving and assigning distance constraints in multiply fluorinated proteins, leading to significant savings of time and precious samples compared to producing several singly fluorinated samples. Moreover, the method enables structural determination of protein-ligand complexes for ligands that contain multiple fluorines.
Collapse
Affiliation(s)
- Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
13
|
Du Y, Su Y. 19F Solid-state NMR characterization of pharmaceutical solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 120:101796. [PMID: 35688018 DOI: 10.1016/j.ssnmr.2022.101796] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Solid-state NMR has been increasingly recognized as a high-resolution and versatile spectroscopic tool to characterize drug substances and products. However, the analysis of pharmaceutical materials is often carried out at natural isotopic abundance and a relatively low drug loading in multi-component systems and therefore suffers from challenges of low sensitivity. The fact that fluorinated therapeutics are well represented in pipeline drugs and commercial products offers an excellent opportunity to utilize fluorine as a molecular probe for pharmaceutical analysis. We aim to review recent advancements of 19F magic angle spinning NMR methods in modern drug research and development. Applications to polymorph screening at the micromolar level, structural elucidation, and investigation of molecular interactions at the Ångström to submicron resolution in drug delivery, stability, and quality will be discussed.
Collapse
Affiliation(s)
- Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, United States; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, IN, 47907, United States; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, United States.
| |
Collapse
|
14
|
Zhang Z, Su Y, Xiao H, Yang J. Selective Nuclear Magnetic Resonance Method for Enhancing Long-Range Heteronuclear Correlations in Solids. J Phys Chem Lett 2022; 13:6376-6382. [PMID: 35796704 DOI: 10.1021/acs.jpclett.2c01527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The long-range heteronuclear correlation remains a significant challenge in solid-state nuclear magnetic resonance (NMR), which is critical in the structural elucidation of biomolecular, material, and pharmaceutical solids. We propose a selective NMR method, heteronuclear selective phase-optimized recoupling (hetSPR), to selectively enhance long-range correlations of interest by utilizing characteristic chemical shifts. Compared to conventional methods, hetSPR can selectively enhance desired heteronuclear correlations (e.g., 1H-13C and 1H-19F) by factors up to 5 and largely suppress the unwanted ones. The method proves useful by enhancing the long-range correlation from an intermolecular 1H-19F distance of 4.8 Å by a factor of 2.4 in a fluorinated pharmaceutical drug, bicalutamide, under fast magic-angle spinning. It does not use selective pulses and is thus user-friendly even for nonexperts. The new method is expected to boost solid-state NMR to elucidate the structures of various solids.
Collapse
Affiliation(s)
- Zhengfeng Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yongchao Su
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, the University of Texas at Austin, Austin, Texas 78712, United States
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hang Xiao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
15
|
Sutherland M, Tran N, Hong M. Clustering of tetrameric influenza M2 peptides in lipid bilayers investigated by 19F solid-state NMR. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183909. [PMID: 35276226 DOI: 10.1016/j.bbamem.2022.183909] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/08/2022] [Accepted: 03/05/2022] [Indexed: 11/19/2022]
Abstract
The influenza M2 protein forms a drug-targeted tetrameric proton channel to mediate virus uncoating, and carries out membrane scission to enable virus release. While the proton channel function of M2 has been extensively studied, the mechanism by which M2 catalyzes membrane scission is still not well understood. Previous fluorescence and electron microscopy studies indicated that M2 tetramers concentrate at the neck of the budding virus in the host plasma membrane. However, molecular evidence for this clustering is scarce. Here, we use 19F solid-state NMR to investigate M2 clustering in phospholipid bilayers. By mixing equimolar amounts of 4F-Phe47 labeled M2 peptide and CF3-Phe47 labeled M2 peptide and measuring F-CF3 cross peaks in 2D 19F19F correlation spectra, we show that M2 tetramers form nanometer-scale clusters in lipid bilayers. This clustering is stronger in cholesterol-containing membranes and phosphatidylethanolamine (PE) membranes than in cholesterol-free phosphatidylcholine and phosphatidylglycerol membranes. The observed correlation peaks indicate that Phe47 sidechains from different tetramers are less than ~2 nm apart. 1H19F correlation peaks between lipid chain protons and fluorinated Phe47 indicate that Phe47 is more deeply inserted into the lipid bilayer in the presence of cholesterol than in its absence, suggesting that Phe47 preferentially interacts with cholesterol. Static 31P NMR spectra indicate that M2 induces negative Gaussian curvature in the PE membrane. These results suggest that M2 tetramers cluster at cholesterol- and PE-rich regions of cell membranes to cause membrane curvature, which in turn can facilitate membrane scission in the last step of virus budding and release.
Collapse
Affiliation(s)
- Madeleine Sutherland
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Nhi Tran
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America.
| |
Collapse
|
16
|
Elathram N, Ackermann BE, Debelouchina GT. DNP-enhanced solid-state NMR spectroscopy of chromatin polymers. JOURNAL OF MAGNETIC RESONANCE OPEN 2022; 10-11:100057. [PMID: 35707629 PMCID: PMC9191766 DOI: 10.1016/j.jmro.2022.100057] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chromatin is a DNA-protein polymer that represents the functional form of the genome. The main building block of chromatin is the nucleosome, a structure that contains 147 base pairs of DNA and two copies each of the histone proteins H2A, H2B, H3 and H4. Previous work has shown that magic angle spinning (MAS) NMR spectroscopy can capture the nucleosome at high resolution although studies have been challenging due to low sensitivity, the presence of dynamic and rigid components, and the complex interaction networks of nucleosomes within the chromatin polymer. Here, we use dynamic nuclear polarization (DNP) to enhance the sensitivity of MAS NMR experiments of nucleosome arrays at 100 K and show that well-resolved 13C-13C MAS NMR correlations can be obtained much more efficiently. We evaluate the effect of temperature on the chemical shifts and linewidths in the spectra and demonstrate that changes are relatively minimal and clustered in regions of histone-DNA or histone-histone contacts. We also compare samples prepared with and without DNA and show that the low temperature 13C-13C correlations exhibit sufficient resolution to detect chemical shift changes and line broadening for residues that form the DNA-histone interface. On the other hand, we show that the measurement of DNP-enhanced 15N-13C histone-histone interactions within the nucleosome core is complicated by the natural 13C abundance network in the sample. Nevertheless, the enhanced sensitivity afforded by DNP can be used to detect long-range correlations between histone residues and DNA. Overall, our experiments demonstrate that DNP-enhanced MAS NMR spectroscopy of chromatin samples yields spectra with high resolution and sensitivity and can be used to capture functionally relevant protein-DNA interactions that have implications for gene regulation and genome organization.
Collapse
Affiliation(s)
| | | | - Galia T. Debelouchina
- Corresponding author: Galia Debelouchina, University of California, San Diego, Natural Sciences Building 4322, 9500 Gilman Dr., La Jolla, CA 92093, 858-534-3038,
| |
Collapse
|
17
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
18
|
High-pH structure of EmrE reveals the mechanism of proton-coupled substrate transport. Nat Commun 2022; 13:991. [PMID: 35181664 PMCID: PMC8857205 DOI: 10.1038/s41467-022-28556-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
The homo-dimeric bacterial membrane protein EmrE effluxes polyaromatic cationic substrates in a proton-coupled manner to cause multidrug resistance. We recently determined the structure of substrate-bound EmrE in phospholipid bilayers by measuring hundreds of protein-ligand HN–F distances for a fluorinated substrate, 4-fluoro-tetraphenylphosphonium (F4-TPP+), using solid-state NMR. This structure was solved at low pH where one of the two proton-binding Glu14 residues is protonated. Here, to understand how substrate transport depends on pH, we determine the structure of the EmrE-TPP complex at high pH, where both Glu14 residues are deprotonated. The high-pH complex exhibits an elongated and hydrated binding pocket in which the substrate is similarly exposed to the two sides of the membrane. In contrast, the low-pH complex asymmetrically exposes the substrate to one side of the membrane. These pH-dependent EmrE conformations provide detailed insights into the alternating-access model, and suggest that the high-pH conformation may facilitate proton binding in the presence of the substrate, thus accelerating the conformational change of EmrE to export the substrate. EmrE transporter effluxes cationic substrates across lipid membranes in a pH-coupled manner. Here, the authors solve the structure of ligand-bound EmrE at high pH by NMR, with insights into the transport mechanism.
Collapse
|
19
|
Duan P, Chen KJ, Wijegunawardena G, Dregni AJ, Wang HK, Wu H, Hong M. Binding Sites of a Positron Emission Tomography Imaging Agent in Alzheimer's β-Amyloid Fibrils Studied Using 19F Solid-State NMR. J Am Chem Soc 2022; 144:1416-1430. [PMID: 35015530 PMCID: PMC8855532 DOI: 10.1021/jacs.1c12056] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amyloid imaging by positron emission tomography (PET) is an important method for diagnosing neurodegenerative disorders such as Alzheimer's disease. Many 11C- and 18F-labeled PET tracers show varying binding capacities, specificities, and affinities for their target proteins. The structural basis of these variations is poorly understood. Here we employ 19F and 13C solid-state NMR to investigate the binding sites of a PET ligand, flutemetamol, to the 40-residue Alzheimer's β-amyloid peptide (Aβ40). Analytical high-performance liquid chromatography and 19F NMR spectra show that flutemetamol binds the current Aβ40 fibril polymorph with a stoichiometry of one ligand per four to five peptides. Half of the ligands are tightly bound while the other half are loosely bound. 13C and 15N chemical shifts indicate that this Aβ40 polymorph has an immobilized N-terminus, a non-β-sheet His14, and a non-β-sheet C-terminus. We measured the proximity of the ligand fluorine to peptide residues using 19F-13C and 19F-1H rotational-echo double-resonance (REDOR) experiments. The spectra show that three segments in the peptide, 12VHH14, 18VFF20, and 39VV40, lie the closest to the ligand. REDOR-constrained docking simulations indicate that these three segments form multiple binding sites, and the ligand orientations and positions at these sites are similar across different Aβ polymorphs. Comparison of the flutemetamol-interacting residues in Aβ40 with the small-molecule binding sites in other amyloid proteins suggest that conjugated aromatic compounds preferentially bind β-sheet surface grooves lined by aromatic, polar, and charged residues. These motifs may explain the specificity of different PET tracers to different amyloid proteins.
Collapse
Affiliation(s)
- Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Kelly J. Chen
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Gayani Wijegunawardena
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount St, Wichita, KS 67260, United States
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Harrison K. Wang
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Haifan Wu
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount St, Wichita, KS 67260, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| |
Collapse
|
20
|
Shcherbakov AA, Medeiros-Silva J, Tran N, Gelenter MD, Hong M. From Angstroms to Nanometers: Measuring Interatomic Distances by Solid-State NMR. Chem Rev 2021; 122:9848-9879. [PMID: 34694769 DOI: 10.1021/acs.chemrev.1c00662] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Internuclear distances represent one of the main structural constraints in molecular structure determination using solid-state NMR spectroscopy, complementing chemical shifts and orientational restraints. Although a large number of magic-angle-spinning (MAS) NMR techniques have been available for distance measurements, traditional 13C and 15N NMR experiments are inherently limited to distances of a few angstroms due to the low gyromagnetic ratios of these nuclei. Recent development of fast MAS triple-resonance 19F and 1H NMR probes has stimulated the design of MAS NMR experiments that measure distances in the 1-2 nm range with high sensitivity. This review describes the principles and applications of these multiplexed multidimensional correlation distance NMR experiments, with an emphasis on 19F- and 1H-based distance experiments. Representative applications of these long-distance NMR methods to biological macromolecules as well as small molecules are reviewed.
Collapse
Affiliation(s)
- Alexander A Shcherbakov
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Nhi Tran
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Martin D Gelenter
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
21
|
El Hariri El Nokab M, Sebakhy KO. Solid State NMR Spectroscopy a Valuable Technique for Structural Insights of Advanced Thin Film Materials: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1494. [PMID: 34200088 PMCID: PMC8228666 DOI: 10.3390/nano11061494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 01/05/2023]
Abstract
Solid-state NMR has proven to be a versatile technique for studying the chemical structure, 3D structure and dynamics of all sorts of chemical compounds. In nanotechnology and particularly in thin films, the study of chemical modification, molecular packing, end chain motion, distance determination and solvent-matrix interactions is essential for controlling the final product properties and applications. Despite its atomic-level research capabilities and recent technical advancements, solid-state NMR is still lacking behind other spectroscopic techniques in the field of thin films due to the underestimation of NMR capabilities, availability, great variety of nuclei and pulse sequences, lack of sensitivity for quadrupole nuclei and time-consuming experiments. This article will comprehensively and critically review the work done by solid-state NMR on different types of thin films and the most advanced NMR strategies, which are beyond conventional, and the hardware design used to overcome the technical issues in thin-film research.
Collapse
Affiliation(s)
- Mustapha El Hariri El Nokab
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Khaled O. Sebakhy
- Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
22
|
Reif B, Ashbrook SE, Emsley L, Hong M. Solid-state NMR spectroscopy. NATURE REVIEWS. METHODS PRIMERS 2021; 1:2. [PMID: 34368784 PMCID: PMC8341432 DOI: 10.1038/s43586-020-00002-1] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2020] [Indexed: 12/18/2022]
Abstract
Solid-state nuclear magnetic resonance (NMR) spectroscopy is an atomic-level method used to determine the chemical structure, three-dimensional structure, and dynamics of solids and semi-solids. This Primer summarizes the basic principles of NMR as applied to the wide range of solid systems. The fundamental nuclear spin interactions and the effects of magnetic fields and radiofrequency pulses on nuclear spins are the same as in liquid-state NMR. However, because of the anisotropy of the interactions in the solid state, the majority of high-resolution solid-state NMR spectra is measured under magic-angle spinning (MAS), which has profound effects on the types of radiofrequency pulse sequences required to extract structural and dynamical information. We describe the most common MAS NMR experiments and data analysis approaches for investigating biological macromolecules, organic materials, and inorganic solids. Continuing development of sensitivity-enhancement approaches, including 1H-detected fast MAS experiments, dynamic nuclear polarization, and experiments tailored to ultrahigh magnetic fields, is described. We highlight recent applications of solid-state NMR to biological and materials chemistry. The Primer ends with a discussion of current limitations of NMR to study solids, and points to future avenues of development to further enhance the capabilities of this sophisticated spectroscopy for new applications.
Collapse
Affiliation(s)
- Bernd Reif
- Technische Universität München, Department Chemie, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Sharon E. Ashbrook
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Lyndon Emsley
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des sciences et ingénierie chimiques, CH-1015 Lausanne, Switzerland
| | - Mei Hong
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
23
|
Structure and dynamics of the drug-bound bacterial transporter EmrE in lipid bilayers. Nat Commun 2021; 12:172. [PMID: 33420032 PMCID: PMC7794478 DOI: 10.1038/s41467-020-20468-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023] Open
Abstract
The dimeric transporter, EmrE, effluxes polyaromatic cationic drugs in a proton-coupled manner to confer multidrug resistance in bacteria. Although the protein is known to adopt an antiparallel asymmetric topology, its high-resolution drug-bound structure is so far unknown, limiting our understanding of the molecular basis of promiscuous transport. Here we report an experimental structure of drug-bound EmrE in phospholipid bilayers, determined using 19F and 1H solid-state NMR and a fluorinated substrate, tetra(4-fluorophenyl) phosphonium (F4-TPP+). The drug-binding site, constrained by 214 protein-substrate distances, is dominated by aromatic residues such as W63 and Y60, but is sufficiently spacious for the tetrahedral drug to reorient at physiological temperature. F4-TPP+ lies closer to the proton-binding residue E14 in subunit A than in subunit B, explaining the asymmetric protonation of the protein. The structure gives insight into the molecular mechanism of multidrug recognition by EmrE and establishes the basis for future design of substrate inhibitors to combat antibiotic resistance.
Collapse
|
24
|
Shcherbakov AA, Roos M, Kwon B, Hong M. Two-dimensional 19F- 13C correlation NMR for 19F resonance assignment of fluorinated proteins. JOURNAL OF BIOMOLECULAR NMR 2020; 74:193-204. [PMID: 32088840 PMCID: PMC7445029 DOI: 10.1007/s10858-020-00306-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/13/2020] [Indexed: 05/09/2023]
Abstract
19F solid-state NMR is an excellent approach for measuring long-range distances for structure determination and for studying molecular motion. For multi-fluorinated proteins, assignment of 19F chemical shifts has been traditionally carried out using mutagenesis. Here we show 2D 19F-13C correlation experiments that allow efficient assignment of the 19F chemical shifts. We have compared several rotational-echo double-resonance-based pulse sequences and 19F-13C cross polarization (CP) for 2D 19F-13C correlation. We found that direct transferred-echo double-resonance (TEDOR) transfer from 19F to 13C and vice versa outperforms out-and-back coherence transfer schemes. 19F detection gives twofold higher sensitivity over 13C detection for the 2D correlation experiment. At MAS frequencies of 25-35 kHz, double-quantum 19F-13C CP has higher coherence transfer efficiencies than zero-quantum CP. The most efficient TEDOR transfer experiment has higher sensitivity than the most efficient double-quantum CP experiment. We demonstrate these 2D 19F-13C correlation experiments on the model compounds t-Boc-4F-phenylalanine and GB1. Application of the 2D 19F-13C TEDOR correlation experiment to the tetrameric influenza BM2 transmembrane peptide shows intermolecular 13C-19F cross peaks that indicate that the BM2 tetramers cluster in the lipid bilayer in an antiparallel fashion. This clustering may be relevant for the virus budding function of this protein.
Collapse
Affiliation(s)
- Alexander A Shcherbakov
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA
| | - Matthias Roos
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA
| | - Byungsu Kwon
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
25
|
Fritz M, Kraus J, Quinn CM, Yap GPA, Struppe J, Sergeyev IV, Gronenborn AM, Polenova T. Measurement of Accurate Interfluorine Distances in Crystalline Organic Solids: A High-Frequency Magic Angle Spinning NMR Approach. J Phys Chem B 2019; 123:10680-10690. [PMID: 31682453 DOI: 10.1021/acs.jpcb.9b08919] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Long-range interatomic distance restraints are critical for the determination of molecular structures by NMR spectroscopy, both in solution and in the solid state. Fluorine is a powerful NMR probe in a wide variety of contexts, owing to its favorable magnetic properties, ease of incorporation into biological molecules, and ubiquitous use in synthetic organic molecules designed for diverse applications. Because of the large gyromagnetic ratio of the 100% naturally abundant 19F isotope, interfluorine distances as long as 20 Å are accessible in magic-angle spinning (MAS) dipolar recoupling experiments. Herein, we present an approach for the determination of accurate interfluorine distances in multispin systems, using the finite pulse radio frequency driven recoupling (fpRFDR) at high MAS frequencies of 40-60 kHz. We use a series of crystalline "molecular ruler" solids, difluorobenzoic acids and 7F-L-tryptophan, for which the intra- and intermolecular interfluorine distances are known. We describe the optimal experimental conditions for accurate distance determinations, including the choice of a phase cycle, the relative advantages of selective inversion one-dimensional versus two-dimensional correlation experiments, and the appropriate numerical simulation protocols. An optimal strategy for the analysis of RFDR exchange curves in organic solids with extended spin interaction networks is presented, which, even in the absence of crystal structures, can be potentially incorporated into NMR structure determination.
Collapse
Affiliation(s)
- Matthew Fritz
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Jodi Kraus
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Jochem Struppe
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Ivan V Sergeyev
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States.,Department of Structural Biology , University of Pittsburgh School of Medicine , 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| |
Collapse
|
26
|
Lee M, Morgan CA, Hong M. Fully hydrophobic HIV gp41 adopts a hemifusion-like conformation in phospholipid bilayers. J Biol Chem 2019; 294:14732-14744. [PMID: 31409642 DOI: 10.1074/jbc.ra119.009542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/04/2019] [Indexed: 11/06/2022] Open
Abstract
The HIV envelope glycoprotein mediates virus entry into target cells by fusing the virus lipid envelope with the cell membrane. This process requires large-scale conformational changes of the fusion protein gp41. Current understanding of the mechanisms with which gp41 induces membrane merger is limited by the fact that the hydrophobic N-terminal fusion peptide (FP) and C-terminal transmembrane domain (TMD) of the protein are challenging to characterize structurally in the lipid bilayer. Here we have expressed a gp41 construct that contains both termini, including the FP, the fusion peptide-proximal region (FPPR), the membrane-proximal external region (MPER), and the TMD. These hydrophobic domains are linked together by a shortened water-soluble ectodomain. We reconstituted this "short NC" gp41 into a virus-mimetic lipid membrane and conducted solid-state NMR experiments to probe the membrane-bound conformation and topology of the protein. 13C chemical shifts indicate that the C-terminal MPER-TMD is predominantly α-helical, whereas the N-terminal FP-FPPR exhibits β-sheet character. Water and lipid 1H polarization transfer to the protein revealed that the TMD is well-inserted into the lipid bilayer, whereas the FPPR and MPER are exposed to the membrane surface. Importantly, correlation signals between the FP-FPPR and the MPER are observed, providing evidence that the ectodomain is sufficiently collapsed to bring the N- and C-terminal hydrophobic domains into close proximity. These results support a hemifusion-like model of the short NC gp41 in which the ectodomain forms a partially folded hairpin that places the FPPR and MPER on the opposing surfaces of two lipid membranes.
Collapse
Affiliation(s)
- Myungwoon Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Chloe A Morgan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|