1
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
2
|
Nishimura K, Yabuki R, Hamachi T, Kimizuka N, Tateishi K, Uesaka T, Yanai N. Dynamic Electron Polarization Lasting More Than 10 μs by Hybridizing Porphyrin and TEMPO with Flexible Linkers. J Phys Chem B 2023; 127:1219-1228. [PMID: 36717096 DOI: 10.1021/acs.jpcb.2c07936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dynamic electron polarization (DEP), induced by quenching of photoexcited species by stable radicals, can hyperpolarize electron spins in solution at room temperature. Recently, development of technologies based on electron spin polarization such as dynamic nuclear polarization (DNP) has been progressing, where it is important to design molecules that achieve long-lasting DEP in addition to high DEP. Hybridization by linking dyes and radicals is a promising approach for efficient DEP, but strong interactions between neighboring dyes and radicals often result in the rapid decay of DEP. In this study, we introduce a flexible linker into the hybrid system of porphyrin and TEMPO to achieve both efficient DEP and long-lasting DEP. The structural flexibility of the linker switches the interaction between the radical and the triplet, which promotes the DEP process by bringing the radical and the triplet into close proximity, while avoiding abrupt relaxation due to strong interactions. As a result, the new hybridized system exhibits a larger DEP than the unlinked system, while at the same time achieving a DEP lasting more than 10 μs.
Collapse
Affiliation(s)
- Koki Nishimura
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka819-0395, Japan
| | - Reiya Yabuki
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka819-0395, Japan
| | - Tomoyuki Hamachi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka819-0395, Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka819-0395, Japan
| | - Kenichiro Tateishi
- Cluster for Pioneering Research, RIKEN, RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama351-0198, Japan
| | - Tomohiro Uesaka
- Cluster for Pioneering Research, RIKEN, RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama351-0198, Japan
| | - Nobuhiro Yanai
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka819-0395, Japan
| |
Collapse
|
3
|
Properties and applications of photoexcited chromophore–radical systems. Nat Rev Chem 2023; 7:75-90. [PMID: 37117913 DOI: 10.1038/s41570-022-00453-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 02/11/2023]
Abstract
Photoexcited organic chromophore-radical systems hold great promise for a range of technological applications in molecular spintronics, including quantum information technology and artificial photosynthesis. However, further development of such systems will depend on the ability to control the magnetic properties of these materials, which requires a profound understanding of the underlying excited-state dynamics. In this Review, we discuss photogenerated triplet-doublet systems and their potential to be used for applications in molecular spintronics. We outline the theoretical description of the spin system in the different coupling regimes and the invoked excited-state mechanisms governing the generation and transfer of spin polarization. The main characterization techniques used to evaluate the optical and magnetic properties of chromophore-radical systems are discussed. We conclude by giving an overview of previously investigated covalently linked triplet-radical systems, and highlight the need for further systematic investigations to improve our understanding of the magnetic interactions in such systems.
Collapse
|
4
|
Kundu K, Dubroca T, Rane V, Mentink-Vigier F. Spinning-Driven Dynamic Nuclear Polarization with Optical Pumping. J Phys Chem A 2022; 126:2600-2608. [PMID: 35417169 PMCID: PMC9121629 DOI: 10.1021/acs.jpca.2c01559] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We propose a new, more efficient, and potentially cost effective, solid-state nuclear spin hyperpolarization method combining the cross-effect mechanism and electron spin optical hyperpolarization in rotating solids. We first demonstrate optical hyperpolarization in the solid state at low temperatures and low field and then investigate its field dependence to obtain the optimal condition for high-field electron spin hyperpolarization. The results are then incorporated into advanced magic-angle spinning dynamic nuclear polarization (MAS-DNP) numerical simulations that show that optically pumped MAS-DNP could yield breakthrough enhancements at very high magnetic fields. Based on these investigations, enhancements greater than the ratio of electron to nucleus magnetic moments (>658 for 1H) are possible without microwave irradiation. This could solve at once the MAS-DNP performance decrease with increasing field and the high cost of MAS-DNP instruments at very high fields.
Collapse
Affiliation(s)
- Krishnendu Kundu
- National High Magnetic Field Laboratory, Florida State University, 1800 E Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Thierry Dubroca
- National High Magnetic Field Laboratory, Florida State University, 1800 E Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Vinayak Rane
- Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E Paul Dirac Drive, Tallahassee, Florida 32310, United States
| |
Collapse
|
5
|
Rane V. Harnessing Electron Spin Hyperpolarization in Chromophore-Radical Spin Probes for Subcellular Resolution in Electron Paramagnetic Resonance Imaging: Concept and Feasibility. J Phys Chem B 2022; 126:2715-2728. [PMID: 35353514 DOI: 10.1021/acs.jpcb.1c10920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Obtaining a subcellular resolution for biological samples doped with stable radicals at room temperature (RT) is a long-sought goal in electron paramagnetic resonance imaging (EPRI). The spatial resolution in current EPRI methods is constrained either because of low electron spin polarization at RT or the experimental limitations associated with the field gradients and the radical linewidth. Inspired by the recent demonstration of a large electron spin hyperpolarization in chromophore-nitroxyl spin probe molecules, the present work proposes a novel optically hyperpolarized EPR imaging (OH-EPRI) method, which combines the optical method of two-photon confocal microscopy for hyperpolarization generation and the rapid scan (RS) EPR method for signal detection. An important aspect of OH-EPRI is that it is not limited by the abovementioned restrictions of conventional EPRI since the large hyperpolarization in the spin probes overcomes the poor thermal spin polarization at RT, and the use of two-photon optical excitation of the chromophore naturally generates the required spatial resolution, without the need for any magnetic field gradient. Simulations based on time-dependent Bloch equations, which took into account both the RS field modulation and the hyperpolarization generation by optical means, were performed to examine the feasibility of OH-EPRI. The simulation results revealed that a spatial resolution of up to 2 fL can be achieved in OH-EPRI at RT under in vitro conditions. Notably, the majority of the requirements for an OH-EPRI experiment can be fulfilled by the currently available technologies, thereby paving the way for its easy implementation. Thus, the proposed method could potentially bridge the sensitivity gap between the optical and magnetic imaging techniques.
Collapse
Affiliation(s)
- Vinayak Rane
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
6
|
Kandrashkin YE, van der Est A. Enhanced Intersystem Crossing due to Resonant Energy Transfer to a Remote Spin. J Phys Chem Lett 2021; 12:7312-7318. [PMID: 34319743 DOI: 10.1021/acs.jpclett.1c02032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A new mechanism for enhanced intersystem crossing in coupled three-spin systems consisting of a chromophore and an attached radical is proposed. It is shown that if the unpaired electron of the radical experiences spin-orbit coupling and different exchange interactions with the two unpaired electron spins of the chromophore, energy transfer from the chromophore to the radical can occur together with singlet-triplet intersystem crossing in the chromophore. The efficiency of this process increases dramatically when the electronic excitation of the radical is resonant with the S1-T1 energy gap of the chromophore. The types of systems in which this resonance could be achieved are discussed, and it is suggested that the mechanism could result in improved sensitization in near-IR emitting lanthanide dyes.
Collapse
Affiliation(s)
- Yuri E Kandrashkin
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan 420029, Russian Federation
| | - Art van der Est
- Department of Chemistry Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
7
|
Excited state dynamics and electron transfer in a phosphorus(V) porphyrin – TEMPO conjugate. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Rane V. Achieving Maximal Enhancement of Electron Spin Polarization in Stable Nitroxyl Radicals at Room Temperature. J Phys Chem B 2021; 125:5620-5629. [PMID: 34014090 DOI: 10.1021/acs.jpcb.1c03111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enhancing the polarization of spin levels at room temperature is one of the active research areas in magnetic resonance. Generation of electron spin hyperpolarization involves a complex interplay of electronic and spin processes. In this work, the optimization of crucial electron spin polarization (ESP) generating parameters and synthesis of a radical-chromophore adduct are described. The ESP of the synthesized adduct is about 550 times the equilibrium polarization at room temperature, which is possibly the maximal value for a chromophore-nitroxyl system. The present work highlights the crucial role of the photophysical quenching process toward the generation of a large ESP. Additionally, a chromophore-diradical adduct is synthesized, and the effects of the additional radical in the ESP generation process are discussed. Enhanced photochemical stability is demonstrated for the diradical adducts, thereby suggesting a potential route toward the generation of photostable radical-chromophore adducts for future studies. The large ESP in these molecules should enable a wide range of applications, such as in DNP, spintronics, and magnetometers.
Collapse
Affiliation(s)
- Vinayak Rane
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
9
|
Dale MW, Cheney DJ, Vallotto C, Wedge CJ. Viscosity effects on optically generated electron and nuclear spin hyperpolarization. Phys Chem Chem Phys 2020; 22:28173-28182. [PMID: 33291127 DOI: 10.1039/d0cp04012f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Spin hyperpolarization can dramatically increase signal intensities in magnetic resonance experiments, providing either improved bulk sensitivity or additional spectroscopic detail through selective enhancements. While typical hyperpolarization approaches have utilized microwave irradiation, one emerging route is the use of optically generated triplet states. We report an investigation into the effects of solution viscosity on radical-triplet pair interactions, propose a new standard for quantification of the hyperpolarization in EPR experiments, and demonstrate a significant increase in the optically generated 1H NMR signal enhancement upon addition of glycerol to aqueous solutions.
Collapse
Affiliation(s)
- Matthew W Dale
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | | | | | | |
Collapse
|
10
|
Avalos CE, Richert S, Socie E, Karthikeyan G, Casano G, Stevanato G, Kubicki DJ, Moser JE, Timmel CR, Lelli M, Rossini AJ, Ouari O, Emsley L. Enhanced Intersystem Crossing and Transient Electron Spin Polarization in a Photoexcited Pentacene–Trityl Radical. J Phys Chem A 2020; 124:6068-6075. [DOI: 10.1021/acs.jpca.0c03498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Claudia E. Avalos
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sabine Richert
- Centre for Advanced Electron Spin Resonance (CAESR), University of Oxford, South Parks Road, OX1 3QR Oxford, United Kingdom
| | - Etienne Socie
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | - Gabriele Stevanato
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Dominik J. Kubicki
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jacques E. Moser
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christiane R. Timmel
- Centre for Advanced Electron Spin Resonance (CAESR), University of Oxford, South Parks Road, OX1 3QR Oxford, United Kingdom
| | - Moreno Lelli
- Center of Magnetic Resonance (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Aaron J. Rossini
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Kundu S, Rane V. Design and Photo-Induced Dynamics of Radical-Chromophore Adducts with One- or Two-Atom Separation: Toward Potential Probes for High Field Optical DNP Experiments. J Phys Chem B 2020; 124:3163-3179. [PMID: 32223248 DOI: 10.1021/acs.jpcb.0c01123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breaking the maximum enhancement barrier of 660 at room temperature in a conventional dynamic nuclear polarization (DNP) experiment has the immense potential of practical applications. Optical DNP experiments with radical-chromophore (RC) adducts, which harnesses hyperpolarized radicals, instead of thermalized radicals, offers a powerful way to achieve this. Typical DNP and NMR experiments, however, are carried out at high magnetic fields of about 5-10 T, whereas the large electron spin hyperpolarization (ESP) demonstrated in the RC adducts so far are at a much low field of 0.3 T. Thus, in order to realize a successful optical DNP experiment, it is imperative to ask whether the RC adducts, which are currently available, can achieve a large ESP even at high fields. The present work poses this question and shows that the current RC adducts would not generate a large ESP at high fields unless the separation between the chromophore and nitroxyl moiety is reduced to less than four bonds. Two serious bottlenecks in this direction are the near impossibility of synthesizing such RC adducts using the common nitroxyl radicals and the absence of any photophysical studies on RC adducts with such short spacer groups. In this regard, the present work exploits the spin trapping methodology to synthesize one- and two-atom separated naphthalene-nitroxyl RC adducts. Good yields and excellent stability of the adducts have been demonstrated. Furthermore, the present work presents their detailed photophysical and photochemical studies by transient optical and time-resolved EPR studies. On the basis of the present results, a potential RC adduct is proposed for the high field optical DNP experiments. Finally, the prospect of exploiting the large EPR signal enhancement due to ESP in the field of spin trapping studies has been discussed.
Collapse
Affiliation(s)
- Sushma Kundu
- Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai-400005, India
| | - Vinayak Rane
- Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| |
Collapse
|
12
|
Tripathi AK. Interaction of alkyl chain containing pyrene derivatives with different micellar media: Synthesis and photophysical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117806. [PMID: 31761543 DOI: 10.1016/j.saa.2019.117806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The present work describes the synthesis and photophysical studies of four newly synthesized alkyl chain containing pyrene derivatives and their applications in micellization process of different types of surfactants e.g. CTAB and SDS. The fluorescent properties of these pyrene derivatives were utilized to understand the micellization process of CTAB and SDS. The length of alkyl chain affects the hydrophobicity of pyrene fluorophore which also affects the sensitivity of fluorophore towards the micellization of CTAB and SDS surfactants. The longest alkyl tail containing, PBBU showed more sensitivity whereas moderate alkyl chain containing, PABU and PBME showed moderate sensitivity and finally PAME contained smallest alkyl tail, showed no sensitivity towards the micellization of CTAB and SDS. The alkyl tail of fluorophore make it more hydrophobic and it could easily bind with the hydrophobic inner core of micelles. In both surfactants, PBBU showed LE emission at ~400 nm and aggregate emission at ~470 nm, whereas, PABU and PBME showed LE emission band at ~400 nm. Before CMC, the aggregates band of PBBU increased with increasing the surfactant concentrations, but after CMC the individual PBBU present into the water medium could binds with the inner core of micelles. Thus PBBU senses the formation of premicellar aggregates of CTAB and SDS. The LE emission of the fluorophore gradually increases while increasing the CTAB and SDS concentrations. The change in fluorescence emission of PABU, PBME and PBBU with increasing concentration of CTAB and SDS were used to calculate the CMC of CTAB and SDS surfactants.
Collapse
Affiliation(s)
- Alok Kumar Tripathi
- Department of Chemistry, National Taiwan University, Taiwan, ROC; Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
13
|
Mani P, Pandey AK, Tripathi AK. Synthesis and Binding Affinity of Hydrophobic Tail Containing Naphthalene Derivatives with Different Type of Organized Media. ChemistrySelect 2020. [DOI: 10.1002/slct.201904460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pavnesh Mani
- Department of ChemistryUniversity of Delhi Delhi India
| | | | | |
Collapse
|
14
|
Dal Farra MG, Martin C, Bergantino E, Kandrashkin YE, van der Est A, Di Valentin M. Electron spin polarization transfer induced by triplet–radical interactions in the weakly coupled regime. Phys Chem Chem Phys 2020; 22:19982-19991. [DOI: 10.1039/d0cp03565c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the observation of electron spin polarization transfer from the triplet state of a porphyrin to a weakly coupled nitroxide radical in a mutant of human neuroglobin (NGB).
Collapse
Affiliation(s)
| | - Caterina Martin
- Dipartimento di Biologia
- Università degli Studi di Padova
- I-35131 Padova
- Italy
| | | | - Yuri E. Kandrashkin
- Zavoisky Physical-Technical Institute
- FRC Kazan Scientific Center of RAS
- Kazan 420029
- Russian Federation
| | | | - Marilena Di Valentin
- Dipartimento di Scienze Chimiche
- Università degli studi di Padova
- 35131 Padova
- Italy
| |
Collapse
|
15
|
Poddutoori PK, Kandrashkin YE, Karr P, van der Est A. Electron spin polarization in an Al(III) porphyrin complex with an axially bound nitroxide radical. J Chem Phys 2019; 151:204303. [DOI: 10.1063/1.5127760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Prashanth K. Poddutoori
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, USA
| | - Yuri E. Kandrashkin
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract 10/7, Kazan 420029, Russia
| | - Paul Karr
- Department of Physical Sciences and Mathematics, Wayne State College, Wayne, Nebraska 68787, USA
| | - Art van der Est
- Department of Chemistry Brock University, St. Catharines Ontario L2S 3A1, Canada
| |
Collapse
|
16
|
Kandrashkin YE, van der Est A. The triplet mechanism of electron spin polarization in moderately coupled triplet-doublet rigid complexes as a source of the enhanced +1/2 ↔ −1/2 transitions. J Chem Phys 2019; 151:184301. [DOI: 10.1063/1.5127762] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Yuri E. Kandrashkin
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
| | - Art van der Est
- Department of Chemistry Brock University, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
17
|
Tripathi AK, Rane V, Kundu S, Das R. A phenomenological scheme for reversed quartet mechanism of electron spin polarization in covalently linked systems of chromophore and free radical: Determination of magnitude of polarization and application to pyrene–TEMPO linked molecules. J Chem Phys 2019; 151:154305. [DOI: 10.1063/1.5124731] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Alok Kumar Tripathi
- Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | - Vinayak Rane
- Radiochemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085, India
| | - Sushma Kundu
- Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | - Ranjan Das
- Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| |
Collapse
|