1
|
Yang B, Li C, Ren Y, Wang W, Zhang X, Han X. Construction of the Glycolysis Metabolic Pathway Inside an Artificial Cell for the Synthesis of Amino Acid and Its Reversible Deformation. J Am Chem Soc 2024; 146:21847-21858. [PMID: 39042264 DOI: 10.1021/jacs.4c06227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The bottom-up construction of artificial cells is beneficial for understanding cell working mechanisms. The glycolysis metabolism mimicry inside artificial cells is challenging. Herein, the glycolytic pathway (Entner-Doudoroff pathway in archaea) is reconstituted inside artificial cells. The glycolytic pathway comprising glucose dehydrogenase (GDH), gluconate dehydratase (GAD), and 2-keto-3-deoxygluconate aldolase (KDGA) converts glucose molecules to pyruvate molecules. Inside artificial cells, pyruvate molecules are further converted into alanine with the help of alanine dehydrogenase (AlaDH) to build a metabolic pathway for synthesizing amino acid. On the other hand, the pyruvate molecules from glycolysis stimulate the living mitochondria to produce ATP inside artificial cells, which further trigger actin monomers to polymerize to form actin filaments. With the addition of methylcellulose inside the artificial cell, the actin filaments form adjacent to the inner lipid bilayer, deforming the artificial cell from a spherical shape to a spindle shape. The spindle-shaped artificial cell reverses to a spherical shape by depolymerizing the actin filament upon laser irradiation. The glycolytic pathway and its further extension to produce amino acids (or ATP) inside artificial cells pave the path to build functional artificial cells with more complicated metabolic pathways.
Collapse
Affiliation(s)
- Boyu Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Chao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Yongshuo Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Weichen Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Xiangxiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| |
Collapse
|
2
|
Jaiswal VK, Aranda Ruiz D, Petropoulos V, Kabaciński P, Montorsi F, Uboldi L, Ugolini S, Mukamel S, Cerullo G, Garavelli M, Santoro F, Nenov A. Sub-100-fs energy transfer in coenzyme NADH is a coherent process assisted by a charge-transfer state. Nat Commun 2024; 15:4900. [PMID: 38851775 PMCID: PMC11162464 DOI: 10.1038/s41467-024-48871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/15/2024] [Indexed: 06/10/2024] Open
Abstract
Excitation energy transfer (EET) is a key photoinduced process in biological chromophoric assemblies. Here we investigate the factors which can drive EET into efficient ultrafast sub-ps regimes. We demonstrate how a coherent transport of electronic population could facilitate this in water solvated NADH coenzyme and uncover the role of an intermediate dark charge-transfer state. High temporal resolution ultrafast optical spectroscopy gives a 54±11 fs time constant for the EET process. Nonadiabatic quantum dynamical simulations computed through the time-evolution of multidimensional wavepackets suggest that the population transfer is mediated by photoexcited molecular vibrations due to strong coupling between the electronic states. The polar aqueous solvent environment leads to the active participation of a dark charge transfer state, accelerating the vibronically coherent EET process in favorably stacked conformers and solvent cavities. Our work demonstrates how the interplay of structural and environmental factors leads to diverse pathways for the EET process in flexible heterodimers and provides general insights relevant for coherent EET processes in stacked multichromophoric aggregates like DNA strands.
Collapse
Affiliation(s)
- Vishal Kumar Jaiswal
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Daniel Aranda Ruiz
- ICMol, Universidad de Valencia, Catedrático José Beltrán Martínez, 2, 46980, Paterna, Spain
| | - Vasilis Petropoulos
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Piotr Kabaciński
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Francesco Montorsi
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Lorenzo Uboldi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Simone Ugolini
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
| | - Marco Garavelli
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy.
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via Moruzzi 1, I-56124, Pisa, Italy
| | - Artur Nenov
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy.
| |
Collapse
|
3
|
Reza MM, Durán-Hernández J, González-Cano B, Jara-Cortés J, López-Arteaga R, Cadena-Caicedo A, Muñoz-Rugeles L, Hernández-Trujillo J, Peon J. Primary Photophysics of Nicotinamide Chromophores in Their Oxidized and Reduced Forms. J Phys Chem B 2023; 127:8432-8445. [PMID: 37733881 DOI: 10.1021/acs.jpcb.3c03246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Nicotinamide adenine dinucleotide (NADH) is an important enzyme cofactor with emissive properties that allow it to be used in fluorescence microscopies to study cell metabolism. Its oxidized form NAD+, on the other hand, is considered to produce negligible fluorescence. In this contribution, we describe the photophysics of the isolated nicotinamidic system in both its reduced and oxidized states. This was achieved through the study of model molecules that do not carry the adenine nucleotide since its absorbance would overlap with the absorption spectrum of the nicotinamidic chromophores. We studied three model molecules: nicotinamide (niacinamide, an oxidized form without nitrogen substitution), the oxidized chromophore 1-benzyl-3-carbamoyl-pyridinium bromide (NBzOx), and its reduced form 1-benzyl-1,4-dihydronicotinamide (NBz). For a full understanding of the dynamics, we performed both femtosecond-resolved emission and transient absorption experiments. The oxidized systems, nicotinamide and NBzOx, have similar photophysics, where the originally excited bright state decays on an ultrafast timescale of less than 400 fs. The depopulation of this state is followed by excited-state positive absorption signals, which evolve in two timescales: the first one is from 1 to a few picoseconds and is followed by a second decaying component of 480 ps for nicotinamide in water and of 80-90 ps for nicotinamide in methanol and NBzOx in aqueous solution. The long decay times are assigned as the S1 lifetimes populated from the original higher-lying bright singlet, where this state is nonemissive but can be detected by transient absorption. While for NBzOx in aqueous solution and for nicotinamide in methanol, the S1 signal decays to the solvent-only level, for the aqueous solutions of nicotinamide, a small transient absorption signal remains after the 480 ps decay. This residual signal was assigned to a small population of triplet states formed during the slower S1 decay for nicotinamide in water. The experimental results were complemented by XMS-CASPT2 calculations, which reveal that in the oxidized forms, the rapid evolution of the initial π-π* state is due to a direct crossing with lower-energy dark n-π* singlet states. This coincides with the experimental observation of long-lived nonemissive states (80 to 480 ps depending on the system). On the other hand, the reduced model compound NBz has a long-lived emissive π-π* S1 state, which decays with a 510 ps time constant, similarly to the parent compound NADH. This is consistent with the XMS-CASPT2 calculations, which show that for the reduced chromophore, the dark states lie at higher energies than the bright π-π* S1 state.
Collapse
Affiliation(s)
- Mariana M Reza
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Jesús Durán-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Beatriz González-Cano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Jesús Jara-Cortés
- Unidad Académica de Ciencias Básicas e Ingenierías, Universidad Autónoma de Nayarit, Tepic 63155, México
| | - Rafael López-Arteaga
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Andrea Cadena-Caicedo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Leonardo Muñoz-Rugeles
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Jesús Hernández-Trujillo
- Departamento de Física y Química Teórica, Facultad de Química, UNAM, Ciudad de México 04510, México
| | - Jorge Peon
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
4
|
Li H, Cao S, Zhang S, Chen J, Xu J, Knutson JR. Ultrafast Förster resonance energy transfer from tyrosine to tryptophan in monellin: potential intrinsic spectroscopic ruler. Phys Chem Chem Phys 2023; 25:7239-7250. [PMID: 36853740 DOI: 10.1039/d2cp05842a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Ultrafast Förster Resonance Energy Transfer (FRET) between tyrosine (Tyr) and tryptophan (Trp) residues in the protein monellin has been investigated using picosecond and femtosecond time-resolved fluorescence spectroscopy. Decay associated spectra (DAS) and time-resolved emission spectra (TRES) taken with the different excitation wavelengths of 275, 290 and 295 nm were constructed via global analysis. At two of those three excitation loci (275 and 290 nm), earmarks of energy transfer from Tyr to Trp in monellin are seen, and particularly when the excitation is 275 nm, the energy transfer between Tyr and Trp clearly changes the signature emission DAS shape to that indicating excited state reaction (especially on the red side of fluorescence emission, near 380 nm). Those FRET signatures may overlap with the conventional signatory DAS in heterogeneous systems. When overlap and addition occur between FRET type DAS and "full positive" QSSQ (quasi-static self-quenching), mixed DAS shapes will emerge that still show "positive blue side and negative red sides", just with zero crossing shifted. In addition, excitation decay associated spectra (EDAS) taken with the different emission wavelengths of 330, 350 and 370 nm were constructed. In the study of protein dynamics, ultrafast FRET between Tyr and Trp could provide a basis for an intrinsic (non-perturbing) "spectroscopic ruler", potentially a powerful tool to detect even slight changes in protein structures.
Collapse
Affiliation(s)
- Haoyang Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Simin Cao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Jay R Knutson
- Laboratory of Advanced Microscopy & Biophotonics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
5
|
Li H, Cao S, Chen J, Zhang S, Xu J, Knutson JR. Ultrafast fluorescence dynamics of NADH in aprotic solvents: Quasi-static self-quenching unmasked. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Determination of fluorescence quantum yields and decay times of NADH and FAD in water-alcohol mixtures: The analysis of radiative and nonradiative relaxation pathways. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Das S, Das S, Singh AK, Datta A. 3-aminoquinoline: a turn-on fluorescent probe for preferential solvation in binary solvent mixtures. Methods Appl Fluoresc 2022; 10. [PMID: 35697038 DOI: 10.1088/2050-6120/ac784d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022]
Abstract
3-Aminoquinoline (3AQ) has been used as a fluorescent probe for preferential solvation in hexane-ethanol solvent mixtures. Results of the present experiment have been put into context by comparison with prior observations with 5-aminoquinoline (5AQ) as the probe. 3AQ exhibits a relatively small change of dipole moment (Δμ= 2.2 D) upon photoexcitation, compared to 5AQ (Δμ= 6.1D), which might appear to be a hindrance in the way of its use as a solvation probe. Indeed, the values of parameters like spectral shifts are smaller for the present experiment with 3AQ. At the smallest concentration of alcohol used, its local mole fraction around the probe is significantly lower than in the previous experiments with 5AQ. However, these apparent disadvantages are outweighed by the significant increase in fluorescence intensity and lifetime observed with increasing concentration of ethanol in the solvent mixture, as opposed to the drastic fluorescence quenching that occurs for 5AQ. This is a marked advantage in the use of 3AQ in studies like the present one. The local mole fraction of ethanol and preferential solvation index experienced by 3AQ are in line with those reported for 5AQ. The disadvantage of the smaller magnitude of Δμpersists in the time resolved fluorescence experiments, for solvent mixtures with very low ethanol content. Negligible wavelength dependence of fluorescence transients of 3AQ is observed forxp= 0.002,. However, this effect is outweighed at higher alcohol concentrations, for which nanosecond dynamics of preferential solvation is observed.
Collapse
Affiliation(s)
- Sharmistha Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shirsendu Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Avinash Kumar Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
8
|
Das S, Singha PK, Singh AK, Datta A. The Role of Hydrogen Bonding in the Preferential Solvation of 5-Aminoquinoline in Binary Solvent Mixtures. J Phys Chem B 2021; 125:12763-12773. [PMID: 34709811 DOI: 10.1021/acs.jpcb.1c06208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
5-Aminoquinoline (5AQ) has been used as a fluorescent probe of preferential solvation (PS) in binary solvent mixtures in which the nonpolar component is diethyl ether and the polar component is protic (methanol) or aprotic (acetonitrile). Hence, the roles of solvent polarity and solute-solvent hydrogen bonding have been delineated. Positive deviations of spectral shifts from a linear dependence on the concentration of the polar component, signifying PS, are markedly more pronounced in case of the protic solvent. Solvation dynamics on a nanosecond time scale mark the formation of the solvation shell around the fluorescent probe. Time-resolved area-normalized emission spectra indicate the occurrence of the continuous solvation of the excited state when the polar component is acetonitrile. In contrast, two distinct states were observed when the polar component was methanol, the second state being the hydrogen bonded one. Translational diffusion is the rate-determining step for formation of the solvation shell. The time constant associated with it has been estimated from rise times observed in fluorescence transients monitored at the red end of the fluorescence spectra and also from the time evolution of the spectral width of time-resolved emission spectra.
Collapse
Affiliation(s)
- Sharmistha Das
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Prajit Kumar Singha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Avinash Kumar Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
9
|
Gorbunova IA, Sasin ME, Golyshev DP, Semenov AA, Smolin AG, Beltukov YM, Vasyutinskii OS. Two-Photon Excited Fluorescence Dynamics in Enzyme-Bound NADH: the Heterogeneity of Fluorescence Decay Times and Anisotropic Relaxation. J Phys Chem B 2021; 125:9692-9707. [PMID: 34410128 DOI: 10.1021/acs.jpcb.1c04226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics of polarized fluorescence in NADH in alcohol dehydrogenase (ADH) in buffer solution has been studied using the TCSPC spectroscopy. A global fit procedure was used for determination of the fluorescence parameters from experiment. The interpretation of the results obtained was supported by ab initio calculations of the NADH structure. A theoretical model was developed describing the polarized fluorescence decay in ADH-NADH complexes that considered several interaction scenarios. A comparative analysis of the polarization-insensitive fluorescence decay using multiexponential fitting models has been carried out. As shown, the origin of a significant enhancement of the decay time in the ADH-NADH complex can be attributed to the decrease of nonradiative relaxation rates in the nicotinamide ring in the conditions of the apolar binding site environment. The existence of a single decay time in the ADH-NADH complex in comparison with two decay times observed in free NADH was attributed to a single NADH unfolded conformation in the ADH binding site. Comparison of the experimental data with the theoretical model suggested the existence of an anisotropic relaxation time of about 1 ns that is related with the rotation of fluorescence transition dipole moment due to the rearrangement of the excited state NADH nuclear configuration.
Collapse
Affiliation(s)
| | - Maxim E Sasin
- Ioffe Institute, 26 Polytekhnicheskaya, St. Petersburg, 194021, Russia
| | - Dmitrii P Golyshev
- Ioffe Institute, 26 Polytekhnicheskaya, St. Petersburg, 194021, Russia.,Peter the Great St.Petersburg Polytechnic University, 29 Polytechnicheskaya, St. Petersburg, 195251, Russia
| | | | - Andrey G Smolin
- Ioffe Institute, 26 Polytekhnicheskaya, St. Petersburg, 194021, Russia
| | | | | |
Collapse
|
10
|
Nature of Linear Spectral Properties and Fast Electronic Relaxations in Green Fluorescent Pyrrolo[3,4-c]Pyridine Derivative. Int J Mol Sci 2021; 22:ijms22115592. [PMID: 34070488 PMCID: PMC8197551 DOI: 10.3390/ijms22115592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
The electronic nature of 4-hydroxy-1H-pyrrolo[3,4-c]pyridine-1,3,6(2H,5H)-trione (HPPT) was comprehensively investigated in liquid media at room temperature using steady-state and time-resolved femtosecond transient absorption spectroscopic techniques. The analysis of the linear photophysical and photochemical parameters of HPPT, including steady-state absorption, fluorescence and excitation anisotropy spectra, along with the lifetimes of fluorescence emission and photodecomposition quantum yields, revealed the nature of its large Stokes shift, specific changes in the permanent dipole moments under electronic excitation, weak dipole transitions with partially anisotropic character, and high photostability. Transient absorption spectra of HPPT were obtained with femtosecond resolution and no characteristic solvate relaxation processes in protic (methanol) solvent were revealed. Efficient light amplification (gain) was observed in the fluorescence spectral range of HPPT, but no super-luminescence and lasing phenomena were detected. The electronic structure of HPPT was also analyzed with quantum-chemical calculations using a DFT/B3LYP method and good agreement with experimental data was shown. The development and investigation of new pyrrolo[3,4-c]pyridine derivatives are important due to their promising fluorescent properties and potential for use in physiological applications.
Collapse
|
11
|
Cao S, Li H, Zhao Z, Zhang S, Chen J, Xu J, Knutson JR, Brand L. Ultrafast Fluorescence Spectroscopy via Upconversion and Its Applications in Biophysics. Molecules 2021; 26:molecules26010211. [PMID: 33401638 PMCID: PMC7794851 DOI: 10.3390/molecules26010211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022] Open
Abstract
In this review, the experimental set-up and functional characteristics of single-wavelength and broad-band femtosecond upconversion spectrophotofluorometers developed in our laboratory are described. We discuss applications of this technique to biophysical problems, such as ultrafast fluorescence quenching and solvation dynamics of tryptophan, peptides, proteins, reduced nicotinamide adenine dinucleotide (NADH), and nucleic acids. In the tryptophan dynamics field, especially for proteins, two types of solvation dynamics on different time scales have been well explored: ~1 ps for bulk water, and tens of picoseconds for “biological water”, a term that combines effects of water and macromolecule dynamics. In addition, some proteins also show quasi-static self-quenching (QSSQ) phenomena. Interestingly, in our more recent work, we also find that similar mixtures of quenching and solvation dynamics occur for the metabolic cofactor NADH. In this review, we add a brief overview of the emerging development of fluorescent RNA aptamers and their potential application to live cell imaging, while noting how ultrafast measurement may speed their optimization.
Collapse
Affiliation(s)
- Simin Cao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China; (S.C.); (H.L.); (Z.Z.); (S.Z.); (J.C.)
| | - Haoyang Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China; (S.C.); (H.L.); (Z.Z.); (S.Z.); (J.C.)
| | - Zenan Zhao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China; (S.C.); (H.L.); (Z.Z.); (S.Z.); (J.C.)
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China; (S.C.); (H.L.); (Z.Z.); (S.Z.); (J.C.)
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China; (S.C.); (H.L.); (Z.Z.); (S.Z.); (J.C.)
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China; (S.C.); (H.L.); (Z.Z.); (S.Z.); (J.C.)
- Correspondence: (J.X.); (J.R.K.); Tel.: +86-21-6223-3936 (J.X.); +1-301-496-2557 (J.R.K.)
| | - Jay R. Knutson
- Laboratory for Advanced Microscopy and Biophotonics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence: (J.X.); (J.R.K.); Tel.: +86-21-6223-3936 (J.X.); +1-301-496-2557 (J.R.K.)
| | - Ludwig Brand
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA;
| |
Collapse
|
12
|
Gorbunova IA, Sasin ME, Rubayo-Soneira J, Smolin AG, Vasyutinskii OS. Two-Photon Excited Fluorescence Dynamics in NADH in Water-Methanol Solutions: The Role of Conformation States. J Phys Chem B 2020; 124:10682-10697. [PMID: 33175534 DOI: 10.1021/acs.jpcb.0c07620] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics of polarized fluorescence in reduced nicotinamide adenine dinucleotide (NADH) at 460 nm under two-photon excitation at 720 nm by femtosecond laser pulses in water-methanol solutions has been studied experimentally and theoretically as a function of methanol concentration. A number of fluorescence parameters have been determined from experiment by means of the global fit procedure and then compared with the results reported by other authors. A comprehensive analysis of experimental errors was made. Ab initio calculations of the structure of NADH in water and methanol and of β-nicotinamide mononucleotide (NMNH) in vacuum have been carried out for clarifying the role of decay time heterogeneity. The main results obtained are as follows. An explanation of the heterogeneity in the measured fluorescence decay times in NADH has been suggested based on the influence of the internal molecular electric field in the nicotinamide ring on nonradiative decay rates. We suggest that different charge distributions in the cis and trans configurations result in different internal electrostatic field distributions that lead to the decay time heterogeneity. A slight but noticeable rise of the fluorescence decay times τ1 and τ2 with methanol concentration was observed and treated as a minor effect of a nonradiative relaxation slowing due to the decrease in solution polarity. Relative concentrations of the folded and unfolded NADH conformations in solutions have been determined using a new method of analysis of the rotational diffusion time τr as a function of methanol concentration on the basis of the Stokes-Einstein-Debye equation. The analysis of the fluorescence anisotropy parameters obtained under linearly and circularly polarized excitation and the parameter Ω has been carried out and resulted in the determination of the two-photon excitation tensor components and suggested the existence of two excitation channels with comparable intensities. These were the longitudinal excitation channel dominated by the diagonal tensor component Szz and the mixed excitation channel dominated by the off-diagonal tensor components |Sxz2 + Syz2|1/2.
Collapse
Affiliation(s)
| | - Maxim E Sasin
- Ioffe Institute, 26 Polytekhnicheskaya, St.Petersburg 194021, Russia
| | - Jesus Rubayo-Soneira
- Universidad de La Habana, Instituto Superior de Tecnologías y Ciencias Aplicadas, La Habana 10400, Cuba
| | - Andrey G Smolin
- Ioffe Institute, 26 Polytekhnicheskaya, St.Petersburg 194021, Russia
| | | |
Collapse
|
13
|
Cao S, Li H, Liu Y, Wang M, Zhang M, Zhang S, Chen J, Xu J, Knutson JR, Brand L. Dehydrogenase Binding Sites Abolish the "Dark" Fraction of NADH: Implication for Metabolic Sensing via FLIM. J Phys Chem B 2020; 124:6721-6727. [PMID: 32660250 PMCID: PMC7477841 DOI: 10.1021/acs.jpcb.0c04835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The fluorescence of dinucleotide NADH has been exploited for decades to determine the redox state of cells and tissues in vivo and in vitro. Particularly, nanosecond (ns) fluorescence lifetime imaging microscopy (FLIM) of NADH (in free vs bound forms) has recently offered a label-free readout of mitochondrial function and allowed the different "pools" of NADH to be distinguished in living cells. In this study, the ultrafast fluorescence dynamics of NADH-dehydrogenase (MDH/LDH) complexes have been investigated by using both a femtosecond (fs) upconversion spectrophotofluorometer and a picosecond (ps) time-correlated single photon counting (TCSPC) apparatus. With these enhanced time-resolved tools, a few-picosecond decay process with a signatory spectrum was indeed found for bound NADH, and it can best be ascribed to the solvent relaxation originating in "bulk water". However, it is quite unlike our previously discovered ultrafast "dark" component (∼26 ps) that is prominent in free NADH (Chemical Physics Letters 2019, 726, 18-21). For these two critical protein-bound NADH exemplars, the decay transients lack the ultrafast quenching that creates the "dark" subpopulation of free NADH. Therefore, we infer that the apparent ratio of free to bound NADH recovered by ordinary (>50 ps) FLIM methods may be low, since the "dark" molecule subpopulation (lifetime too short for conventional FLIM), which effectively hides about a quarter of free molecules, is not present in the dehydrogenase-bound state.
Collapse
Affiliation(s)
- Simin Cao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Haoyang Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Yangyi Liu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Mengyu Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Mengjie Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jay R Knutson
- Laboratory for Advanced Microscopy and Biophotonics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ludwig Brand
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|