1
|
Ettedgui J, Yamamoto K, Blackman B, Koyasu N, Raju N, Vasalatiy O, Merkle H, Chekmenev EY, Goodson BM, Krishna MC, Swenson RE. In vivo Metabolic Sensing of Hyperpolarized [1- 13C]Pyruvate in Mice Using a Recyclable Perfluorinated Iridium Signal Amplification by Reversible Exchange Catalyst. Angew Chem Int Ed Engl 2024; 63:e202407349. [PMID: 38829568 DOI: 10.1002/anie.202407349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Real-time visualization of metabolic processes in vivo provides crucial insights into conditions like cancer and metabolic disorders. Metabolic magnetic resonance imaging (MRI), by amplifying the signal of pyruvate molecules through hyperpolarization, enables non-invasive monitoring of metabolic fluxes, aiding in understanding disease progression and treatment response. Signal Amplification By Reversible Exchange (SABRE) presents a simpler, cost-effective alternative to dissolution dynamic nuclear polarization, eliminating the need for expensive equipment and complex procedures. We present the first in vivo demonstration of metabolic sensing in a human pancreatic cancer xenograft model compared to healthy mice. A novel perfluorinated Iridium SABRE catalyst in a fluorinated solvent and methanol blend facilitated this breakthrough with a 1.2-fold increase in [1-13C]pyruvate SABRE hyperpolarization. The perfluorinated moiety allowed easy separation of the heavy-metal-containing catalyst from the hyperpolarized [1-13C]pyruvate target. The perfluorinated catalyst exhibited recyclability, maintaining SABRE-SHEATH activity through subsequent hyperpolarization cycles with minimal activity loss after the initial two cycles. Remarkably, the catalyst retained activity for at least 10 cycles, with a 3.3-fold decrease in hyperpolarization potency. This proof-of-concept study encourages wider adoption of SABRE hyperpolarized [1-13C]pyruvate MR for studying in vivo metabolism, aiding in diagnosing stages and monitoring treatment responses in cancer and other diseases.
Collapse
Affiliation(s)
- Jessica Ettedgui
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, 9800 Medical Center Drive, Rockville, Maryland, 20850, United States
| | - Kazutoshi Yamamoto
- Center for Cancer Research, National Cancer Institute, Bethesda, 10 Center Drive Maryland, 20814, United States
| | - Burchelle Blackman
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, 9800 Medical Center Drive, Rockville, Maryland, 20850, United States
| | - Norikazu Koyasu
- Center for Cancer Research, National Cancer Institute, Bethesda, 10 Center Drive Maryland, 20814, United States
| | - Natarajan Raju
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, 9800 Medical Center Drive, Rockville, Maryland, 20850, United States
| | - Olga Vasalatiy
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, 9800 Medical Center Drive, Rockville, Maryland, 20850, United States
| | - Hellmut Merkle
- National Institute of Neurological Disorders and Stroke, Bethesda, 10 Center Drive Maryland, 20814, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
| | - Boyd M Goodson
- School of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, Illinois, 62901, United States
| | - Murali C Krishna
- Center for Cancer Research, National Cancer Institute, Bethesda, 10 Center Drive Maryland, 20814, United States
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, 9800 Medical Center Drive, Rockville, Maryland, 20850, United States
| |
Collapse
|
2
|
Sviyazov SV, Burueva DB, Chukanov NV, Razumov IA, Chekmenev EY, Salnikov OG, Koptyug IV. 15N Hyperpolarization of Metronidazole Antibiotic in Aqueous Media Using Phase-Separated Signal Amplification by Reversible Exchange with Parahydrogen. J Phys Chem Lett 2024; 15:5382-5389. [PMID: 38738984 PMCID: PMC11151165 DOI: 10.1021/acs.jpclett.4c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Metronidazole is a prospective hyperpolarized MRI contrast agent with potential hypoxia sensing utility for applications in cancer, stroke, neurodegenerative diseases, etc. We demonstrate a pilot procedure for production of ∼30 mM hyperpolarized [15N3]metronidazole in aqueous media by using a phase-separated SABRE-SHEATH hyperpolarization method, with nitrogen-15 polarization exceeding 2.2% on all three 15N sites achieved in less than 2 min. The 15N polarization T1 of ∼12 min is reported for the 15NO2 group at the clinically relevant field of 1.4 T in the aqueous phase, demonstrating a remarkably long lifetime of the hyperpolarized state. The produced aqueous solution of [15N3]metronidazole that contained only ∼100 μM of residual Ir was deemed biocompatible via validation through the MTT colorimetric test for assessing cell metabolic activity using human embryotic kidney HEK293T cells. This low-cost and ultrafast hyperpolarization procedure represents a major advance for the production of a biocompatible HP [15N3]metronidazole (and potentially other hyperpolarized drugs) formulation for MRI sensing applications.
Collapse
Affiliation(s)
- Sergey V. Sviyazov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Dudari B. Burueva
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Ivan A. Razumov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Oleg G. Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Li S, Bhattacharya S, Chou CY, Chu M, Chou SC, Tonelli M, Goger M, Yang H, Palmer AG, Cavagnero S. LC-Photo-CIDNP hyperpolarization of biomolecules bearing a quasi-isolated spin pair: Magnetic-Field dependence via a rapid-shuttling device. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 359:107616. [PMID: 38271744 PMCID: PMC10922348 DOI: 10.1016/j.jmr.2023.107616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024]
Abstract
Liquid-state low-concentration photochemically induced dynamic nuclear polarization (LC-photo-CIDNP) is an emerging technology tailored to enhance the sensitivity of NMR spectroscopy via LED- or laser-mediated optical irradiation. LC-photo-CIDNP is particularly useful to detect solvent-exposed aromatic residues (Trp, Tyr), either in isolation or within polypeptides and proteins. This study investigates the magnetic-field dependence of the LC-photo-CIDNP of Trp-α-13C-β,β,2,4,5,6,7-d7, a Trp isotopolog bearing a quasi-isolated 1Hα-13Cαspin pair (QISP). We employed a new rapid-shuttling side-illumination field-cycling device that enables ultra-fast (90-120 ms) vertical movements of NMR samples within the bore of a superconducting magnet. Thus, LC-photo-CIDNP hyperpolarization occurs at low field, while hyperpolarized signals are detected at high field (700 MHz). Resonance lineshapes were excellent, and the effect of several fields (1.18-7.08 T range) on hyperpolarization efficiency could be readily explored. Remarkably, unprecedented LC-photo-CIDNP enhancements ε ≅ 1,200 were obtained at 50 MHz (1.18 T), suggesting exciting avenues to hypersensitive LED-enhanced NMR in liquids at low field.
Collapse
Affiliation(s)
- Siyu Li
- Dept. of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | | | - Ching-Yu Chou
- Field Cycling Technology LTD., New Taipei City 23444, Taiwan, ROC
| | - Minglee Chu
- Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
| | - Shu-Cheng Chou
- Field Cycling Technology LTD., New Taipei City 23444, Taiwan, ROC
| | - Marco Tonelli
- Dept. of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Michael Goger
- New York Structural Biology Center, New York, NY 10027, United States
| | - Hanming Yang
- Dept. of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Arthur G Palmer
- New York Structural Biology Center, New York, NY 10027, United States; Dept. of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, United States
| | - Silvia Cavagnero
- Dept. of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
4
|
Ettedgui J, Blackman B, Raju N, Kotler SA, Chekmenev EY, Goodson BM, Merkle H, Woodroofe CC, LeClair C, Krishna MC, Swenson RE. Perfluorinated Iridium Catalyst for Signal Amplification by Reversible Exchange Provides Metal-Free Aqueous Hyperpolarized [1- 13C]-Pyruvate. J Am Chem Soc 2024; 146:946-953. [PMID: 38154120 PMCID: PMC10785822 DOI: 10.1021/jacs.3c11499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Hyperpolarized (HP) carbon-13 [13C] enables the specific investigation of dynamic metabolic and physiologic processes via in vivo MRI-based molecular imaging. As the leading HP metabolic agent, [1-13C]pyruvate plays a pivotal role due to its rapid tissue uptake and central role in cellular energetics. Dissolution dynamic nuclear polarization (d-DNP) is considered the gold standard method for the production of HP metabolic probes; however, development of a faster, less expensive technique could accelerate the translation of metabolic imaging via HP MRI to routine clinical use. Signal Amplification by Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) achieves rapid hyperpolarization by using parahydrogen (p-H2) as the source of nuclear spin order. Currently, SABRE is clinically limited due to the toxicity of the iridium catalyst, which is crucial to the SABRE process. To mitigate Ir contamination, we introduce a novel iteration of the SABRE catalyst, incorporating bis(polyfluoroalkylated) imidazolium salts. This novel perfluorinated SABRE catalyst retained polarization properties while exhibiting an enhanced hydrophobicity. This modification allows the easy removal of the perfluorinated SABRE catalyst from HP [1-13C]-pyruvate after polarization in an aqueous solution, using the ReD-SABRE protocol. The residual Ir content after removal was measured via ICP-MS at 177 ppb, which is the lowest reported to date for pyruvate and is sufficiently safe for use in clinical investigations. Further improvement is anticipated once automated processes for delivery and recovery are initiated. SABRE-SHEATH using the perfluorinated SABRE catalyst can become an attractive low-cost alternative to d-DNP to prepare biocompatible HP [1-13C]-pyruvate formulations for in vivo applications in next-generation molecular imaging modalities.
Collapse
Affiliation(s)
- Jessica Ettedgui
- Chemistry
and Synthesis Center, National Heart, Lung,
and Blood Institute 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Burchelle Blackman
- Chemistry
and Synthesis Center, National Heart, Lung,
and Blood Institute 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Natarajan Raju
- Chemistry
and Synthesis Center, National Heart, Lung,
and Blood Institute 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Samuel A. Kotler
- National
Center for Advancing Translational Sciences 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
- Russian
Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| | - Boyd M. Goodson
- School
of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Hellmut Merkle
- National
Institute of Neurological Disorder and Stroke, Laboratory for Functional and Molecular Imaging, 31 Center Drive, Bethesda, Maryland 20814, United States
| | - Carolyn C. Woodroofe
- Frederick
National Laboratory for Cancer Research, Division of Cancer Treatment
and Diagnosis (DCTD), National Cancer Institute, 8560 Progress Drive, Frederick, Maryland 21701 United States
| | - Christopher
A. LeClair
- National
Center for Advancing Translational Sciences 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Murali C. Krishna
- Center
for Cancer Research, National Cancer Institute, 31 Center Drive, Bethesda, Maryland 20814, United States
| | - Rolf E. Swenson
- Chemistry
and Synthesis Center, National Heart, Lung,
and Blood Institute 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
5
|
Min S, Baek J, Kim J, Jeong HJ, Chung J, Jeong K. Water-Compatible and Recyclable Heterogeneous SABRE Catalyst for NMR Signal Amplification. JACS AU 2023; 3:2912-2917. [PMID: 37885596 PMCID: PMC10598823 DOI: 10.1021/jacsau.3c00487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
A water-compatible and recyclable catalyst for nuclear magnetic resonance (NMR) hyperpolarization via signal amplification by reversible exchange (SABRE) was developed. The [Ir(COD)(IMes)Cl] catalyst was attached to a polymeric resin of bis(2-pyridyl)amine (heterogeneous SABRE catalyst, HET-SABRE catalyst), and it amplified the 1H NMR signal of pyridine up to (-) 4455-fold (43.2%) at 1.4 T in methanol and (-) 50-fold (0.5%) in water. These are the highest amplification factors ever reported among HET-SABRE catalysts and for the first time in aqueous media. Moreover, the HET-SABRE catalyst demonstrated recyclability by retaining its activity in water after more than three uses. This newly designed polymeric resin-based heterogeneous catalyst shows great promise for NMR signal amplification for biomedical NMR and MRI applications in the future.
Collapse
Affiliation(s)
- Sein Min
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Juhee Baek
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Jisu Kim
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Hye Jin Jeong
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jean Chung
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Keunhong Jeong
- Department
of Chemistry, Korea Military Academy, Seoul 01805, South Korea
| |
Collapse
|
6
|
Najera D, Fout AR. Iron-Catalyzed Parahydrogen Induced Polarization. J Am Chem Soc 2023; 145:21086-21095. [PMID: 37698953 PMCID: PMC10863066 DOI: 10.1021/jacs.3c07735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Indexed: 09/14/2023]
Abstract
Parahydrogen induced polarization (PHIP) can address the low sensitivity problem intrinsic to nuclear magnetic resonance spectroscopy. Using a catalyst capable of reacting with parahydrogen and substrate in either a hydrogenative or nonhydrogenative manner can result in signal enhancement of the substrate. This work describes the development of a rare example of an iron catalyst capable of reacting with parahydrogen to hyperpolarize olefins. Complexes of the form (MesCCC)Fe(H)(L)(N2) (L = Py (Py = pyridine), PMe3, PPh3) were synthesized from the reaction of the parent complexes (MesCCC)FeMes(L) (Mes = mesityl) with H2. The isolated low-spin iron(II) hydride compounds were characterized via multinuclear NMR spectroscopy, infrared spectroscopy, and single crystal X-ray diffraction. (MesCCC)Fe(H)(Py)(N2) is competent in the hydrogenation of olefins and demonstrated high activity toward the hydrogenation of monosubstituted terminal olefins. Reactions with p-H2 resulted in the first PHIP effect mediated by iron which requires diamagnetism throughout the reaction sequence. This work represents the development of a new PHIP catalyst featuring iron, unlocking potential to develop more PHIP catalysts based on first-row transition metals.
Collapse
Affiliation(s)
- Daniel
C. Najera
- School
of Chemical Sciences, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Alison R. Fout
- Department
of Chemistry, Texas A&M University, College Station, Texas 77840, United States
| |
Collapse
|
7
|
Saul P, Schröder L, Schmidt AB, Hövener JB. Nanomaterials for hyperpolarized nuclear magnetic resonance and magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1879. [PMID: 36781151 DOI: 10.1002/wnan.1879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 02/15/2023]
Abstract
Nanomaterials play an important role in the development and application of hyperpolarized materials for magnetic resonance imaging (MRI). In this context they can not only act as hyperpolarized materials which are directly imaged but also play a role as carriers for hyperpolarized gases and catalysts for para-hydrogen induced polarization (PHIP) to generate hyperpolarized substrates for metabolic imaging. Those three application possibilities are discussed, focusing on carbon-based materials for the directly imaged particles. An overview over recent developments in all three fields is given, including the early developments in each field as well as important steps towards applications in MRI, such as making the initially developed methods more biocompatible and first imaging experiments with spatial resolution in either phantoms or in vivo studies. Focusing on the important features nanomaterials need to display to be applicable in the MRI context, a wide range of different approaches to that extent is covered, giving the reader a general idea of different possibilities as well as recent developments in those different fields of hyperpolarized magnetic resonance. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Philip Saul
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Leif Schröder
- Division of Translational Molecular Imaging, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.,Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Andreas B Schmidt
- Intergrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, USA.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
8
|
Alam MS, Li X, Brittin DO, Islam S, Deria P, Chekmenev EY, Goodson BM. Anomalously Large Antiphase Signals from Hyperpolarized Orthohydrogen Using a MOF-Based SABRE Catalyst. Angew Chem Int Ed Engl 2023; 62:e202213581. [PMID: 36526582 DOI: 10.1002/anie.202213581] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Hyperpolarized orthohydrogen (o-H2 ) is a frequent product of parahydrogen-based hyperpolarization approaches like signal amplification by reversible exchange (SABRE), where the hyperpolarized o-H2 signal is usually absorptive. We describe a novel manifestation of this effect wherein large antiphase o-H2 signals are observed, with 1 H enhancements up to ≈500-fold (effective polarization PH ≈1.6 %). This anomalous effect is attained only when using an intact heterogeneous catalyst constructed using a metal-organic framework (MOF) and is qualitatively independent of substrate nature. This seemingly paradoxical observation is analogous to the "partial negative line" (PNL) effect recently explained in the context of Parahydrogen Induced Polarization (PHIP) by Ivanov and co-workers. The two-spin order of the o-H2 resonance is manifested by a two-fold higher Rabi frequency, and the lifetime of the antiphase HP o-H2 resonance is extended by several-fold.
Collapse
Affiliation(s)
- Md Shahabuddin Alam
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL-62901, USA
| | - Xinlin Li
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL-62901, USA
| | - Drew O Brittin
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL-62901, USA
| | - Saiful Islam
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL-62901, USA
| | - Pravas Deria
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL-62901, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Karmanos Cancer Institute, Integrative Biosciences, Wayne State University, Detroit, MI, USA.,Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| | - Boyd M Goodson
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL-62901, USA.,Materials Technology Center, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL, 62901, USA
| |
Collapse
|
9
|
Yang H, Li S, Mickles CA, Guzman-Luna V, Sugisaki K, Thompson CM, Dang HH, Cavagnero S. Selective Isotope Labeling and LC-Photo-CIDNP Enable NMR Spectroscopy at Low-Nanomolar Concentration. J Am Chem Soc 2022; 144:11608-11619. [PMID: 35700317 PMCID: PMC9577358 DOI: 10.1021/jacs.2c01809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
NMR spectroscopy is a powerful tool to investigate molecular structure and dynamics. The poor sensitivity of this technique, however, limits its ability to tackle questions requiring dilute samples. Low-concentration photochemically induced dynamic nuclear polarization (LC-photo-CIDNP) is an optically enhanced NMR technology capable of addressing the above challenge by increasing the detection limit of aromatic amino acids in solution up to 1000-fold, either in isolation or within proteins. Here, we show that the absence of NMR-active nuclei close to a magnetically active site of interest (e.g., the structurally diagnostic 1Hα-13Cα pair of amino acids) is expected to significantly increase LC-photo-CIDNP hyperpolarization. Then, we exploit the spin-diluted tryptophan isotopolog Trp-α-13C-β,β,2,4,5,6,7-d7 and take advantage of the above prediction to experimentally achieve a ca 4-fold enhancement in NMR sensitivity over regular LC-photo-CIDNP. This advance enables the rapid (within seconds) detection of 20 nM concentrations or the molecule of interest, corresponding to a remarkable 3 ng detection limit. Finally, the above Trp isotopolog is amenable to incorporation within proteins and is readily detectable at a 1 μM concentration in complex cell-like media, including Escherichia coli cell-free extracts.
Collapse
Affiliation(s)
- Hanming Yang
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Siyu Li
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Clayton A Mickles
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Valeria Guzman-Luna
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kenji Sugisaki
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Clayton M Thompson
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Hung H Dang
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
10
|
Rapid SABRE Catalyst Scavenging Using Functionalized Silicas. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020332. [PMID: 35056646 PMCID: PMC8778821 DOI: 10.3390/molecules27020332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
In recent years the NMR hyperpolarisation method signal amplification by reversible exchange (SABRE) has been applied to multiple substrates of potential interest for in vivo investigation. Unfortunately, SABRE commonly requires an iridium-containing catalyst that is unsuitable for biomedical applications. This report utilizes inductively coupled plasma-optical emission spectroscopy (ICP-OES) to investigate the potential use of metal scavengers to remove the iridium catalytic species from the solution. The most sensitive iridium emission line at 224.268 nm was used in the analysis. We report the effects of varying functionality, chain length, and scavenger support identity on iridium scavenging efficiency. The impact of varying the quantity of scavenger utilized is reported for the three scavengers with the highest iridium removed from initial investigations: 3-aminopropyl (S1), 3-(imidazole-1-yl)propyl (S4), and 2-(2-pyridyl) (S5) functionalized silica gels. Exposure of an activated SABRE sample (1.6 mg mL-1 of iridium catalyst) to 10 mg of the most promising scavenger (S5) resulted in <1 ppm of iridium being detectable by ICP-OES after 2 min of exposure. We propose that combining the approach described herein with other recently reported approaches, such as catalyst separated-SABRE (CASH-SABRE), would enable the rapid preparation of a biocompatible SABRE hyperpolarized bolus.
Collapse
|
11
|
Pokochueva EV, Burueva DB, Salnikov OG, Koptyug IV. Heterogeneous Catalysis and Parahydrogen-Induced Polarization. Chemphyschem 2021; 22:1421-1440. [PMID: 33969590 DOI: 10.1002/cphc.202100153] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/05/2021] [Indexed: 01/11/2023]
Abstract
Parahydrogen-induced polarization with heterogeneous catalysts (HET-PHIP) has been a subject of extensive research in the last decade since its first observation in 2007. While NMR signal enhancements obtained with such catalysts are currently below those achieved with transition metal complexes in homogeneous hydrogenations in solution, this relatively new field demonstrates major prospects for a broad range of advanced fundamental and practical applications, from providing catalyst-free hyperpolarized fluids for biomedical magnetic resonance imaging (MRI) to exploring mechanisms of industrially important heterogeneous catalytic processes. This review covers the evolution of the heterogeneous catalysts used for PHIP observation, from metal complexes immobilized on solid supports to bulk metals and single-atom catalysts and discusses the general visions for maximizing the obtained NMR signal enhancements using HET-PHIP. Various practical applications of HET-PHIP, both for catalytic studies and for potential production of hyperpolarized contrast agents for MRI, are described.
Collapse
Affiliation(s)
- Ekaterina V Pokochueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Dudari B Burueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia.,Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia
| |
Collapse
|
12
|
Kondo Y, Nonaka H, Takakusagi Y, Sando S. Entwicklung molekularer Sonden für die hyperpolarisierte NMR‐Bildgebung im biologischen Bereich. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201915718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoichi Takakusagi
- Institute of Quantum Life Science National Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa, Inage Chiba-city 263-8555 Japan
- National Institute of Radiological Sciences National Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa, Inage Chiba-city 263-8555 Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Bioengineering Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
13
|
Kondo Y, Nonaka H, Takakusagi Y, Sando S. Design of Nuclear Magnetic Resonance Molecular Probes for Hyperpolarized Bioimaging. Angew Chem Int Ed Engl 2021; 60:14779-14799. [PMID: 32372551 DOI: 10.1002/anie.201915718] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Nuclear hyperpolarization has emerged as a method to dramatically enhance the sensitivity of NMR spectroscopy. By application of this powerful tool, small molecules with stable isotopes have been used for highly sensitive biomedical molecular imaging. The recent development of molecular probes for hyperpolarized in vivo analysis has demonstrated the ability of this technique to provide unique metabolic and physiological information. This review presents a brief introduction of hyperpolarization technology, approaches to the rational design of molecular probes for hyperpolarized analysis, and examples of molecules that have met with success in vitro or in vivo.
Collapse
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoichi Takakusagi
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city, 263-8555, Japan.,National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city, 263-8555, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
14
|
Colell JFP, Logan AWJ, Zhou Z, Lindale JR, Laasner R, Shchepin RV, Chekmenev EY, Blum V, Warren WS, Malcolmson SJ, Theis T. Rational ligand choice extends the SABRE substrate scope. Chem Commun (Camb) 2020; 56:9336-9339. [PMID: 32671356 PMCID: PMC7443256 DOI: 10.1039/d0cc01330g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here we report on chelating ligands for Signal Amplification By Reversible Exchange (SABRE) catalysts that permit hyperpolarisation on otherwise sterically hindered substrates. We demonstrate 1H enhancements of ∼100-fold over 8.5 T thermal for 2-substituted pyridines, and smaller, yet significant enhancements for provitamin B6 and caffeine. We also show 15N-enhancements of ∼1000-fold and 19F-enhancements of 30-fold.
Collapse
Affiliation(s)
| | | | - Zijian Zhou
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | | - Raul Laasner
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Roman V. Shchepin
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - Eduard Y. Chekmenev
- Russian Academy of Sciences, Leninskiy Prospekt 14, 119991 Moscow, Russia
- Department of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI 48202, USA
| | - Volker Blum
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Warren S. Warren
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Departments of Physics, Radiology and Biomedical Engineering, Duke University, Durham, NC 27707, USA
| | | | - Thomas Theis
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| |
Collapse
|
15
|
Berthault P, Boutin C, Martineau-Corcos C, Carret G. Use of dissolved hyperpolarized species in NMR: Practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:74-90. [PMID: 32883450 DOI: 10.1016/j.pnmrs.2020.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Hyperpolarization techniques that can transiently boost nuclear spin polarization are generally carried out at low temperature - as in the case of dynamic nuclear polarization - or at high temperature in the gaseous state - as in the case of optically pumped noble gases. This review aims at describing the various issues and challenges that have been encountered during dissolution of hyperpolarized species, and solutions to these problems that have been or are currently proposed in the literature. During the transport of molecules from the polarizer to the NMR detection region, and when the hyperpolarized species or a precursor of hyperpolarization (e.g. parahydrogen) is introduced into the solution of interest, several obstacles need to be overcome to keep a high level of final magnetization. The choice of the magnetic field, the design of the dissolution setup, and ways to isolate hyperpolarized compounds from relaxation agents will be presented. Due to the non-equilibrium character of the hyperpolarization, new NMR pulse sequences that perform better than the classical ones will be described. Finally, three applications in the field of biology will be briefly mentioned.
Collapse
Affiliation(s)
- Patrick Berthault
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | - Céline Boutin
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Charlotte Martineau-Corcos
- ILV, UMR CNRS 8180, Université de Versailles Saint Quentin, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Guillaume Carret
- Cortecnet, 15 rue des tilleuls, 78960 Voisins-le-Bretonneux, France
| |
Collapse
|
16
|
Gemeinhardt ME, Limbach MN, Gebhardt TR, Eriksson CW, Eriksson SL, Lindale JR, Goodson EA, Warren WS, Chekmenev EY, Goodson BM. “Direct”
13
C Hyperpolarization of
13
C‐Acetate by MicroTesla NMR Signal Amplification by Reversible Exchange (SABRE). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Max E. Gemeinhardt
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | - Miranda N. Limbach
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | - Thomas R. Gebhardt
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | - Clark W. Eriksson
- Department of Biomedical Engineering University of Virginia Charlottesville VA USA
| | - Shannon L. Eriksson
- Department of Chemistry Duke University Durham NC USA
- School of Medicine Duke University Durham NC USA
| | | | | | - Warren S. Warren
- Department of Chemistry Duke University Durham NC USA
- James B. Duke Professor, Physics Chemistry, Radiology, and Biomedical Engineering; Director Center for Molecular and Biomolecular Imaging Duke University Durham NC USA
| | - Eduard Y. Chekmenev
- Department of Chemistry Karmanos Cancer Institute (KCI) Integrative Biosciences (Ibio) Wayne State University Detroit MI 48202 USA
- Russian Academy of Sciences (RAS) Moscow 119991 Russia
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
- Materials Technology Center Southern Illinois University Carbondale IL 62901 USA
| |
Collapse
|
17
|
Gemeinhardt ME, Limbach MN, Gebhardt TR, Eriksson CW, Eriksson SL, Lindale JR, Goodson EA, Warren WS, Chekmenev EY, Goodson BM. "Direct" 13 C Hyperpolarization of 13 C-Acetate by MicroTesla NMR Signal Amplification by Reversible Exchange (SABRE). Angew Chem Int Ed Engl 2019; 59:418-423. [PMID: 31661580 DOI: 10.1002/anie.201910506] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/16/2019] [Indexed: 01/06/2023]
Abstract
Herein, we demonstrate "direct" 13 C hyperpolarization of 13 C-acetate via signal amplification by reversible exchange (SABRE). The standard SABRE homogeneous catalyst [Ir-IMes; [IrCl(COD)(IMes)], (IMes=1,3-bis(2,4,6-trimethylphenyl), imidazole-2-ylidene; COD=cyclooctadiene)] was first activated in the presence of an auxiliary substrate (pyridine) in alcohol. Following addition of sodium 1-13 C-acetate, parahydrogen bubbling within a microtesla magnetic field (i.e. under conditions of SABRE in shield enables alignment transfer to heteronuclei, SABRE-SHEATH) resulted in positive enhancements of up to ≈100-fold in the 13 C NMR signal compared to thermal equilibrium at 9.4 T. The present results are consistent with a mechanism of "direct" transfer of spin order from parahydrogen to 13 C spins of acetate weakly bound to the catalyst, under conditions of fast exchange with respect to the 13 C acetate resonance, but we find that relaxation dynamics at microtesla fields alter the optimal matching from the traditional SABRE-SHEATH picture. Further development of this approach could lead to new ways to rapidly, cheaply, and simply hyperpolarize a broad range of substrates (e.g. metabolites with carboxyl groups) for various applications, including biomedical NMR and MRI of cellular and in vivo metabolism.
Collapse
Affiliation(s)
- Max E Gemeinhardt
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Miranda N Limbach
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Thomas R Gebhardt
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Clark W Eriksson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Shannon L Eriksson
- Department of Chemistry, Duke University, Durham, NC, USA.,School of Medicine, Duke University, Durham, NC, USA
| | | | | | - Warren S Warren
- Department of Chemistry, Duke University, Durham, NC, USA.,James B. Duke Professor, Physics, Chemistry, Radiology, and Biomedical Engineering; Director, Center for Molecular and Biomolecular Imaging, Duke University, Durham, NC, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences (Ibio), Wayne State University, Detroit, MI, 48202, USA.,Russian Academy of Sciences (RAS), Moscow, 119991, Russia
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA.,Materials Technology Center, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
18
|
Semenova O, Richardson PM, Parrott AJ, Nordon A, Halse ME, Duckett SB. Reaction Monitoring Using SABRE-Hyperpolarized Benchtop (1 T) NMR Spectroscopy. Anal Chem 2019; 91:6695-6701. [PMID: 30985110 PMCID: PMC6892580 DOI: 10.1021/acs.analchem.9b00729] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
![]()
The
conversion of [IrCl(COD)(IMes)] (COD = cis,cis-1,5-cyclooctadiene, IMes = 1,3-bis(2,4,6-trimethyl-phenyl)imidazole-2-ylidene)
in the presence of an excess of para-hydrogen (p-H2) and a substrate (4-aminopyridine (4-AP) or 4-methylpyridine (4-MP)) into [Ir(H)2(IMes)(substrate)3]Cl is monitored by 1H NMR spectroscopy using a benchtop (1 T) spectrometer in conjunction
with the p-H2-based hyperpolarization
technique signal amplification by reversible exchange (SABRE). A series
of single-shot 1H NMR measurements are used to monitor
the chemical changes that take place in solution through the lifetime
of the hyperpolarized response. Non-hyperpolarized high-field 1H NMR control measurements were also undertaken to confirm
that the observed time-dependent changes relate directly to the underlying
chemical evolution. The formation of [Ir(H)2(IMes)(substrate)3]Cl is further linked to the hydrogen isotope exchange (HIE)
reaction, which leads to the incorporation of deuterium into the ortho positions of 4-AP, where the source of
deuterium is the solvent, methanol-d4.
Comparable reaction monitoring results are achieved at both high-field
(9.4 T) and low-field (1 T). It is notable that the low sensitivity
of the benchtop (1 T) NMR enables the use of protio solvents, which when used here allows the effects of catalyst formation
and substrate deuteration to be separated. Collectively, these methods illustrate how low-cost low-field NMR
measurements provide unique insight into a complex catalytic process
through a combination of hyperpolarization and relaxation data.
Collapse
Affiliation(s)
- Olga Semenova
- Centre for Hyperpolarisation in Magnetic Resonance, Chemistry , The University of York , York YO10 5NY , U.K
| | - Peter M Richardson
- Centre for Hyperpolarisation in Magnetic Resonance, Chemistry , The University of York , York YO10 5NY , U.K
| | - Andrew J Parrott
- WestCHEM, Department of Pure and Applied Chemistry and CPACT , University of Strathclyde , Glasgow G11XQ , U.K
| | - Alison Nordon
- WestCHEM, Department of Pure and Applied Chemistry and CPACT , University of Strathclyde , Glasgow G11XQ , U.K
| | - Meghan E Halse
- Centre for Hyperpolarisation in Magnetic Resonance, Chemistry , The University of York , York YO10 5NY , U.K
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Chemistry , The University of York , York YO10 5NY , U.K
| |
Collapse
|
19
|
Štěpánek P, Sanchez-Perez C, Telkki VV, Zhivonitko VV, Kantola AM. High-throughput continuous-flow system for SABRE hyperpolarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 300:8-17. [PMID: 30684826 DOI: 10.1016/j.jmr.2019.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 05/22/2023]
Abstract
Signal Amplification By Reversible Exchange (SABRE) is a versatile method for hyperpolarizing small organic molecules that helps to overcome the inherent low signal-to-noise ratio of nuclear magnetic resonance (NMR) measurements. It offers orders of magnitude enhanced signal strength, but the obtained nuclear polarization usually rapidly relaxes, requiring a quick transport of the sample to the spectrometer. Here we report a new design of a polarizing system, which can be used to prepare a continuous flow of SABRE-hyperpolarized sample with a considerable throughput of several millilitres per second and a rapid delivery into an NMR instrument. The polarizer performance under different conditions such as flow rate of the hydrogen or liquid sample is tested by measuring a series of NMR spectra and magnetic resonance images (MRI) of hyperpolarized pyridine in methanol. Results show a capability to continuously produce sample with dramatically enhanced signal over two orders of magnitude. The constant supply of hyperpolarized sample can be exploited, e.g., in experiments requiring multiple repetitions, such as 2D- and 3D-NMR or MRI measurements, and also naturally allows measurements of flow maps, including systems with high flow rates, for which the level of achievable thermal polarization might not be usable any more. In addition, the experiments can be viably carried out in a non-deuterated solvent, due to the effective suppression of the thermal polarization by the fast sample flow. The presented system opens the possibilities for SABRE experiments requiring a long-term, stable and high level of nuclear polarization.
Collapse
Affiliation(s)
- Petr Štěpánek
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014, Finland.
| | - Clara Sanchez-Perez
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu, FI-90014, Finland.
| | - Ville-Veikko Telkki
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014, Finland.
| | - Vladimir V Zhivonitko
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014, Finland.
| | - Anu M Kantola
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014, Finland.
| |
Collapse
|
20
|
Manoharan A, Rayner PJ, Fekete M, Iali W, Norcott P, Hugh Perry V, Duckett SB. Catalyst-Substrate Effects on Biocompatible SABRE Hyperpolarization. Chemphyschem 2018; 20:285-294. [DOI: 10.1002/cphc.201800915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/02/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Anand Manoharan
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| | - Peter J. Rayner
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| | - Marianna Fekete
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| | - Wissam Iali
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| | - Philip Norcott
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| | - V. Hugh Perry
- School of Biological Sciences; University of Southampton; Southampton UK
| | - Simon B. Duckett
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| |
Collapse
|
21
|
Burueva DB, Kovtunova LM, Bukhtiyarov VI, Kovtunov KV, Koptyug IV. Single-Site Heterogeneous Catalysts: From Synthesis to NMR Signal Enhancement. Chemistry 2018; 25:1420-1431. [DOI: 10.1002/chem.201803515] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Dudari B. Burueva
- Laboratory of Magnetic Resonance Microimaging; International Tomography Center, SB RAS; 3A Institutskaya St. 630090 Novosibirsk Russia
- Novosibirsk State University; 2 Pirogov St. 630090 Novosibirsk Russia
| | - Larisa M. Kovtunova
- Boreskov Institute of Catalysis; 5 Acad. Lavrentiev Ave. 630090 Novosibirsk Russia
- Novosibirsk State University; 2 Pirogov St. 630090 Novosibirsk Russia
| | - Valerii I. Bukhtiyarov
- Boreskov Institute of Catalysis; 5 Acad. Lavrentiev Ave. 630090 Novosibirsk Russia
- Novosibirsk State University; 2 Pirogov St. 630090 Novosibirsk Russia
| | - Kirill V. Kovtunov
- Laboratory of Magnetic Resonance Microimaging; International Tomography Center, SB RAS; 3A Institutskaya St. 630090 Novosibirsk Russia
- Novosibirsk State University; 2 Pirogov St. 630090 Novosibirsk Russia
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging; International Tomography Center, SB RAS; 3A Institutskaya St. 630090 Novosibirsk Russia
- Novosibirsk State University; 2 Pirogov St. 630090 Novosibirsk Russia
| |
Collapse
|
22
|
Pravdivtsev AN, Kozinenko VP, Hövener JB. Only Para-Hydrogen Spectroscopy (OPSY) Revisited: In-Phase Spectra for Chemical Analysis and Imaging. J Phys Chem A 2018; 122:8948-8956. [PMID: 30293421 DOI: 10.1021/acs.jpca.8b07459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We revisited only para-hydrogen spectroscopy (OPSY) for the analysis of para-hydrogen-enhanced NMR spectra at high magnetic fields. We found that the sign of the gradients and interpulse delays are pivotal for the performance of the sequence: the variant of double-quantum filter OPSY, where the second time interval is twice as long as the first one (OPSYd-12) converts the antiphase spectrum to in-phase and efficiently suppresses the background signal in a single scan better than the other variants. OPSYd-12 strongly facilitates the analysis of para-hydrogen-derived NMR spectra in homogeneous and inhomogeneous magnetic fields. Furthermore, the net magnetization produced is essential for subsequent applications such as imaging, e.g., in a reaction chamber or in vivo.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH) , Kiel University , Am Botanischen Garten 18 , 24118 , Kiel , Germany
| | - Vitaly P Kozinenko
- Novosibirsk State University , Pirogova str. 2 , 630090 , Novosibirsk , Russia.,International Tomography Center SB RAS , Institutskaya str. 3a , 630090 , Novosibirsk , Russia
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH) , Kiel University , Am Botanischen Garten 18 , 24118 , Kiel , Germany
| |
Collapse
|
23
|
Rayner PJ, Norcott P, Appleby KM, Iali W, John RO, Hart SJ, Whitwood AC, Duckett SB. Fine-tuning the efficiency of para-hydrogen-induced hyperpolarization by rational N-heterocyclic carbene design. Nat Commun 2018; 9:4251. [PMID: 30315170 PMCID: PMC6185983 DOI: 10.1038/s41467-018-06766-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/24/2018] [Indexed: 11/24/2022] Open
Abstract
Iridium N-heterocyclic carbene (NHC) complexes catalyse the para-hydrogen-induced hyperpolarization process, Signal Amplification by Reversible Exchange (SABRE). This process transfers the latent magnetism of para-hydrogen into a substrate, without changing its chemical identity, to dramatically improve its nuclear magnetic resonance (NMR) detectability. By synthesizing and examining over 30 NHC containing complexes, here we rationalize the key characteristics of efficient SABRE catalysis prior to using appropriate catalyst-substrate combinations to quantify the substrate's NMR detectability. These optimizations deliver polarizations of 63% for 1H nuclei in methyl 4,6-d2-nicotinate, 25% for 13C nuclei in a 13C2-diphenylpyridazine and 43% for the 15N nucleus of pyridine-15N. These high detectability levels compare favourably with the 0.0005% 1H value harnessed by a routine 1.5 T clinical MRI system. As signal strength scales with the square of the number of observations, these low cost innovations offer remarkable improvements in detectability threshold that offer routes to significantly reduce measurement time.
Collapse
Affiliation(s)
- Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Philip Norcott
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Kate M Appleby
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Wissam Iali
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Richard O John
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Sam J Hart
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Adrian C Whitwood
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, YO10 5NY, UK.
| |
Collapse
|
24
|
Hövener JB, Pravdivtsev AN, Kidd B, Bowers CR, Glöggler S, Kovtunov KV, Plaumann M, Katz-Brull R, Buckenmaier K, Jerschow A, Reineri F, Theis T, Shchepin RV, Wagner S, Bhattacharya P, Zacharias NM, Chekmenev EY. Parahydrogen-Based Hyperpolarization for Biomedicine. Angew Chem Int Ed Engl 2018; 57:11140-11162. [PMID: 29484795 PMCID: PMC6105405 DOI: 10.1002/anie.201711842] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/14/2018] [Indexed: 12/22/2022]
Abstract
Magnetic resonance (MR) is one of the most versatile and useful physical effects used for human imaging, chemical analysis, and the elucidation of molecular structures. However, its full potential is rarely used, because only a small fraction of the nuclear spin ensemble is polarized, that is, aligned with the applied static magnetic field. Hyperpolarization methods seek other means to increase the polarization and thus the MR signal. A unique source of pure spin order is the entangled singlet spin state of dihydrogen, parahydrogen (pH2 ), which is inherently stable and long-lived. When brought into contact with another molecule, this "spin order on demand" allows the MR signal to be enhanced by several orders of magnitude. Considerable progress has been made in the past decade in the area of pH2 -based hyperpolarization techniques for biomedical applications. It is the goal of this Review to provide a selective overview of these developments, covering the areas of spin physics, catalysis, instrumentation, preparation of the contrast agents, and applications.
Collapse
Affiliation(s)
- Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Bryce Kidd
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - C Russell Bowers
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Stefan Glöggler
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Strasse 3A, 37075, Göttingen, Germany
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Markus Plaumann
- Department of Biometry and Medical Informatics, Otto-von-Guericke University of Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Kai Buckenmaier
- Magnetic resonance center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Alexej Jerschow
- Department of Chemistry, New York University, 100 Washington Sq. East, New York, NY, 10003, USA
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, Torino, Italy
| | - Thomas Theis
- Department of Chemistry & Department of Physics, Duke University, Durham, NC, 27708, USA
| | - Roman V Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology and Radiological Sciences, 1161 21st Ave South, MCN AA-1105, Nashville, TN, 37027, USA
| | - Shawn Wagner
- Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Niki M Zacharias
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Eduard Y Chekmenev
- Russian Academy of Sciences (RAS), Leninskiy Prospekt 14, Moscow, 119991, Russia
- Department of Chemistry, Karmanos Cancer Institute (KCI) and Integrative Biosciences (Ibio), Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
25
|
Hövener J, Pravdivtsev AN, Kidd B, Bowers CR, Glöggler S, Kovtunov KV, Plaumann M, Katz‐Brull R, Buckenmaier K, Jerschow A, Reineri F, Theis T, Shchepin RV, Wagner S, Bhattacharya P, Zacharias NM, Chekmenev EY. Parawasserstoff‐basierte Hyperpolarisierung für die Biomedizin. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711842] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jan‐Bernd Hövener
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC) Klinik für Radiologie und Neuroradiologie Universitätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität Kiel Am Botanischen Garten 14 24118 Kiel Deutschland
| | - Andrey N. Pravdivtsev
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC) Klinik für Radiologie und Neuroradiologie Universitätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität Kiel Am Botanischen Garten 14 24118 Kiel Deutschland
| | - Bryce Kidd
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | - C. Russell Bowers
- Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Stefan Glöggler
- Max Planck-Institut für Biophysikalische Chemie Am Fassberg 11 37077 Göttingen Deutschland
- Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straße 3A 37075 Göttingen Deutschland
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS 630090 Novosibirsk Russland
- Department of Natural Sciences Novosibirsk State University Pirogova St. 2 630090 Novosibirsk Russland
| | - Markus Plaumann
- Institut für Biometrie und Medizinische Informatik Otto-von-Guericke-Universität Magdeburg Leipziger Straße 44 39120 Magdeburg Deutschland
| | - Rachel Katz‐Brull
- Department of Radiology Hadassah-Hebrew University Medical Center Jerusalem Israel
| | - Kai Buckenmaier
- Magnetresonanz-Zentrum Max Planck-Institut für biologische Kybernetik Tübingen Deutschland
| | - Alexej Jerschow
- Department of Chemistry New York University 100 Washington Sq. East New York NY 10003 USA
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences University of Torino via Nizza 52 Torino Italien
| | - Thomas Theis
- Department of Chemistry & Department of Physics Duke University Durham NC 27708 USA
| | - Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS) Department of Radiology and Radiological Sciences 1161 21st Ave South, MCN AA-1105 Nashville TN 37027 USA
| | - Shawn Wagner
- Biomedical Imaging Research Institute Cedars Sinai Medical Center Los Angeles CA 90048 USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Niki M. Zacharias
- Department of Cancer Systems Imaging University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS) Department of Radiology and Radiological Sciences 1161 21st Ave South, MCN AA-1105 Nashville TN 37027 USA
- Russian Academy of Sciences (RAS) Leninskiy Prospekt 14 Moscow 119991 Russland
- Department of Chemistry, Karmanos Cancer Institute (KCI) and Integrative Biosciences (Ibio) Wayne State University Detroit MI 48202 USA
| |
Collapse
|
26
|
Kidd BE, Gesiorski JL, Gemeinhardt ME, Shchepin RV, Kovtunov KV, Koptyug IV, Chekmenev EY, Goodson BM. Facile Removal of Homogeneous SABRE Catalysts for Purifying Hyperpolarized Metronidazole, a Potential Hypoxia Sensor. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:16848-16852. [PMID: 30559921 PMCID: PMC6294139 DOI: 10.1021/acs.jpcc.8b05758] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report a simple and effective method to remove IrIMes homogeneous polarization transfer catalysts from solutions where NMR Signal Amplification By Reversible Exchange (SABRE) has been performed, while leaving intact the substrate's hyperpolarized state. Following microTesla SABRE hyperpolarization of 15N spins in metronidazole, addition of SiO2 microparticles functionalized with 3-mercaptopropyl or 2-mercaptoethyl ethyl sulfide moieties provides removal of the catalyst from solution well within the hyperpolarization decay time at 0.3 T (T 1>3 mins)-and enabling transfer to 9.4 T for detection of enhanced 15N signals in the absence of catalyst within the NMR-detection region. Successful catalyst removal from solution is supported by the inability to "re-hyperpolarize" 15N spins in subsequent attempts, as well as by 1H NMR and ICP-MS. Record-high 15N nuclear polarization of up to ~34% was achieved, corresponding to >100,000-fold enhancement at 9.4 T, and approximately 5/6th of the 15N hyperpolarization is retained after ~20-second-long purification procedure. Taken together, these results help pave the way for future studies involving in vivo molecular imaging using agents hyperpolarized via rapid and inexpensive parahydrogen-based methods.
Collapse
Affiliation(s)
- Bryce E. Kidd
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901 United States
| | - Jonathan L. Gesiorski
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901 United States
| | - Max E. Gemeinhardt
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901 United States
| | - Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2310 United States
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2310 United States
- Integrative Biosciences (Ibio), Department of Chemistry, Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202 United States
- Russian Academy of Sciences, Moscow, Leninskiy Prospekt 14, 119991, Russia
- Corresponding Authors: ,
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901 United States
- Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901 United States
- Corresponding Authors: ,
| |
Collapse
|
27
|
Kidd BE, Mashni JA, Limbach MN, Shi F, Chekmenev EY, Hou Y, Goodson BM. Toward Cleavable Metabolic/pH Sensing "Double Agents" Hyperpolarized by NMR Signal Amplification by Reversible Exchange. Chemistry 2018; 24:10641-10645. [PMID: 29800491 PMCID: PMC6097920 DOI: 10.1002/chem.201802622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 11/05/2022]
Abstract
We show the simultaneous generation of hyperpolarized 13 C-labeled acetate and 15 N-labeled imidazole following spin-relay of hyperpolarization and hydrolysis of the acetyl moiety on 1-13 C-15 N2 -acetylimidazole. Using SABRE-SHEATH (Signal Amplification by Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei), transfer of spin order occurs from parahydrogen to acetylimidazole 15 N atoms and the acetyl 13 C site (≈263-fold enhancement), giving rise to relatively long hyperpolarization lifetimes at 0.3 T (T1 ≈52 s and ≈149 s for 13 C and 15 N, respectively). Immediately following polarization transfer, the 13 C-labeled acetyl group is hydrolytically cleaved to produce hyperpolarized 13 C-acetate/acetic acid (≈140-fold enhancement) and 15 N-imidazole (≈180-fold enhancement), the former with a 13 C T1 of ≈14 s at 0.3 T. Straightforward synthetic routes, efficient spin-relay of SABRE hyperpolarization, and facile bond cleavage open a door to the cheap and rapid generation of long-lived hyperpolarized states within a wide range of molecular targets, including biologically relevant carboxylic acid derivatives, for metabolic and pH imaging.
Collapse
Affiliation(s)
- Bryce E Kidd
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Jamil A Mashni
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Miranda N Limbach
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Fan Shi
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, MI, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, 119991, Moscow, Russia
| | - Yuqing Hou
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
28
|
Richardson PM, Parrott AJ, Semenova O, Nordon A, Duckett SB, Halse ME. SABRE hyperpolarization enables high-sensitivity 1H and 13C benchtop NMR spectroscopy. Analyst 2018; 143:3442-3450. [PMID: 29917031 PMCID: PMC6040279 DOI: 10.1039/c8an00596f] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
Abstract
Benchtop NMR spectrometers operating with low magnetic fields of 1-2 T at sub-ppm resolution show great promise as analytical platforms that can be used outside the traditional laboratory environment for industrial process monitoring. One current limitation that reduces the uptake of benchtop NMR is associated with the detection fields' reduced sensitivity. Here we demonstrate how para-hydrogen (p-H2) based signal amplification by reversible exchange (SABRE), a simple to achieve hyperpolarization technique, enhances agent detectability within the environment of a benchtop (1 T) NMR spectrometer so that informative 1H and 13C NMR spectra can be readily recorded for low-concentration analytes. SABRE-derived 1H NMR signal enhancements of up to 17 000-fold, corresponding to 1H polarization levels of P = 5.9%, were achieved for 26 mM pyridine in d4-methanol in a matter of seconds. Comparable enhancement levels can be achieved in both deuterated and protio solvents but now the SABRE-enhanced analyte signals dominate due to the comparatively weak thermally-polarized solvent response. The SABRE approach also enables the acquisition of 13C NMR spectra of analytes at natural isotopic abundance in a single scan as evidenced by hyperpolarized 13C NMR spectra of tens of millimolar concentrations of 4-methylpyridine. Now the associated signal enhancement factors are up to 45 500 fold (P = 4.0%) and achieved in just 15 s. Integration of an automated SABRE polarization system with the benchtop NMR spectrometer framework produces renewable and reproducible NMR signal enhancements that can be exploited for the collection of multi-dimensional NMR spectra, exemplified here by a SABRE-enhanced 2D COSY NMR spectrum.
Collapse
Affiliation(s)
- Peter M. Richardson
- Centre for Hyperpolarisation in Magnetic Resonance
, Department of Chemistry
, University of York
,
UK
.
;
| | - Andrew J. Parrott
- WestCHEM
, Department of Pure and Applied Chemistry and CPACT
, University of Strathclyde
,
Glasgow
, UK
| | - Olga Semenova
- Centre for Hyperpolarisation in Magnetic Resonance
, Department of Chemistry
, University of York
,
UK
.
;
| | - Alison Nordon
- WestCHEM
, Department of Pure and Applied Chemistry and CPACT
, University of Strathclyde
,
Glasgow
, UK
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance
, Department of Chemistry
, University of York
,
UK
.
;
| | - Meghan E. Halse
- Centre for Hyperpolarisation in Magnetic Resonance
, Department of Chemistry
, University of York
,
UK
.
;
| |
Collapse
|
29
|
Kovtunov KV, Pokochueva EV, Salnikov OG, Cousin S, Kurzbach D, Vuichoud B, Jannin S, Chekmenev EY, Goodson BM, Barskiy DA, Koptyug IV. Hyperpolarized NMR Spectroscopy: d-DNP, PHIP, and SABRE Techniques. Chem Asian J 2018; 13:10.1002/asia.201800551. [PMID: 29790649 PMCID: PMC6251772 DOI: 10.1002/asia.201800551] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 11/10/2022]
Abstract
The intensity of NMR signals can be enhanced by several orders of magnitude by using various techniques for the hyperpolarization of different molecules. Such approaches can overcome the main sensitivity challenges facing modern NMR/magnetic resonance imaging (MRI) techniques, whilst hyperpolarized fluids can also be used in a variety of applications in material science and biomedicine. This Focus Review considers the fundamentals of the preparation of hyperpolarized liquids and gases by using dissolution dynamic nuclear polarization (d-DNP) and parahydrogen-based techniques, such as signal amplification by reversible exchange (SABRE) and parahydrogen-induced polarization (PHIP), in both heterogeneous and homogeneous processes. The various new aspects in the formation and utilization of hyperpolarized fluids, along with the possibility of observing NMR signal enhancement, are described.
Collapse
Affiliation(s)
- Kirill V. Kovtunov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia)
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia)
| | - Ekaterina V. Pokochueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia)
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia)
| | - Oleg G. Salnikov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia)
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia)
| | - Samuel Cousin
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Dennis Kurzbach
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Basile Vuichoud
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Sami Jannin
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Eduard Y. Chekmenev
- Department of Chemistry & Karmanos Cancer Center, Wayne State University, Detroit, 48202, MI, United States
- Russian Academy of Sciences, Moscow, 119991, Russia
| | - Boyd M. Goodson
- Southern Illinois University, Carbondale, IL 62901, United States
| | - Danila A. Barskiy
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-3220, United States
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia)
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia)
| |
Collapse
|
30
|
Iglesias M, Oro LA. A leap forward in iridium-NHC catalysis: new horizons and mechanistic insights. Chem Soc Rev 2018; 47:2772-2808. [PMID: 29557434 DOI: 10.1039/c7cs00743d] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarises the most recent advances in Ir-NHC catalysis while revisiting all the classical reactions in which this type of catalyst has proved to be active. The influence of the ligand system and, in particular, the impact of the NHC ligand on the activity and selectivity of the reaction have been analysed, accompanied by an examination of the great variety of catalytic cycles hitherto reported. The reaction mechanisms so far proposed are described and commented on for each individual process. Moreover, some general considerations that attempt to explain the influence of the NHC from a mechanistic viewpoint are presented at the end of the review. The first sections are dedicated to the most widely explored reactions that use Ir-NHCs, i.e., hydrogenation and transfer hydrogenation, for which a general overview that tries to compile all the Ir-NHC catalysts hitherto reported for these processes is provided. The next sections deal with hydrogen borrowing, hydrosilylation, water splitting, dehydrogenation (of alcohols, alkanes, aminoboranes and formic acid), hydrogen isotope exchange (HIE), signal amplification by reversible exchange and C-H bond functionalisation (silylation and borylation). The last section compiles a series of reactions somewhat less explored for Ir-NHC catalysts that include the hydroalkynylation of imines, hydroamination, diboration of olefins, hydrolysis and methanolysis of silanes, arylation of aldehydes with boronic acids, addition of aroyl chlorides to alkynes, visible light driven reactions, isomerisation of alkenes, asymmetric intramolecular allylic amination and reactions that employ heterometallic catalysts containing at least one Ir-NHC unit.
Collapse
Affiliation(s)
- Manuel Iglesias
- Departamento Química Inorgánica - ISQCH, Universidad de Zaragoza - CSIC, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Luis A Oro
- Departamento Química Inorgánica - ISQCH, Universidad de Zaragoza - CSIC, Pedro Cerbuna 12, 50009 Zaragoza, Spain. and King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
31
|
Shchepin RV, Jaigirdar L, Chekmenev EY. Spin-Lattice Relaxation of Hyperpolarized Metronidazole in Signal Amplification by Reversible Exchange in Micro-Tesla Fields. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:4984-4996. [PMID: 29955244 PMCID: PMC6017983 DOI: 10.1021/acs.jpcc.8b00283] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Simultaneous reversible chemical exchange of parahydrogen and to-be-hyperpolarized substrate on metal centers enables spontaneous transfer of spin order from parahydrogen singlet to nuclear spins of the substrate. When performed at sub-micro-Tesla magnetic field, this technique of NMR Signal Amplification by Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH). SABRE-SHEATH has been shown to hyperpolarize nitrogen-15 sites of a wide range of biologically interesting molecules to a high polarization level (P > 20%) in one minute. Here, we report on a systematic study of 1H, 13C and 15N spin-lattice relaxation (T1) of metronidazole-13C2-15N2 in SABRE-SHEATH hyperpolarization process. In micro-Tesla range, we find that all 1H, 13C and 15N spins studied share approximately the same T1 values (ca. 4 s at the conditions studied) due to mixing of their Zeeman levels, which is consistent with the model of relayed SABRE-SHEATH effect. These T1 values are significantly lower than those at higher magnetic (i.e. the Earth's magnetic field and above), which exceed 3 minutes in some cases. Moreover, these relatively short T1 values observed below 1 micro-Tesla limit the polarization build-up process of SABRE-SHEATH- thereby, limiting maximum attainable 15N polarization. The relatively short nature of T1 values observed below 1 micro-Tesla is primarily caused by intermolecular interactions with quadrupolar iridium centers or dihydride protons of the employed polarization transfer catalyst, whereas intramolecular spin-spin interactions with 14N quadrupolar centers have significantly smaller contribution. The presented experimental results and their analysis will be beneficial for more rational design of SABRE-SHEATH (i) polarization transfer catalyst, and (ii) hyperpolarized molecular probes in the context of biomedical imaging and other applications.
Collapse
Affiliation(s)
- Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee 37232-2310 United States
| | - Lamya Jaigirdar
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee 37232-2310 United States
- Vanderbilt University, School of Engineering, Nashville, Tennessee 37232 United States
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee 37232-2310 United States
- Department of Biomedical Engineering, Vanderbilt University, Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tennessee 37232-2310, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
32
|
Olaru AM, Robertson TBR, Lewis JS, Antony A, Iali W, Mewis RE, Duckett SB. Extending the Scope of 19F Hyperpolarization through Signal Amplification by Reversible Exchange in MRI and NMR Spectroscopy. ChemistryOpen 2017; 7:97-105. [PMID: 29318102 PMCID: PMC5754555 DOI: 10.1002/open.201700166] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Indexed: 01/21/2023] Open
Abstract
Fluorinated ligands have a variety of uses in chemistry and industry, but it is their medical applications as 18F-labelled positron emission tomography (PET) tracers where they are most visible. In this work, we illustrate the potential of using 19F-containing ligands as future magnetic resonance imaging (MRI) contrast agents and as probes in magnetic resonance spectroscopy studies by significantly increasing their magnetic resonance detectability through the signal amplification by reversible exchange (SABRE) hyperpolarization method. We achieve 19F SABRE polarization in a wide range of molecules, including those essential to medication, and analyze how their steric bulk, the substrate loading, polarization transfer field, pH, and rate of ligand exchange impact the efficiency of SABRE. We conclude by presenting 19F MRI results in phantoms, which demonstrate that many of these agents show great promise as future 19F MRI contrast agents for diagnostic investigations.
Collapse
Affiliation(s)
- Alexandra M Olaru
- Centre for Hyperpolarization in Magnetic Resonance, Department of Chemistry University of York Heslington YO10 5NY United Kingdom
| | - Thomas B R Robertson
- School of Science and the Environment, Division of Chemistry and Environmental Science Manchester Metropolitan University John Dalton Building, Chester St. Manchester M1 5GD United Kingdom
| | - Jennifer S Lewis
- Centre for Hyperpolarization in Magnetic Resonance, Department of Chemistry University of York Heslington YO10 5NY United Kingdom
| | - Alex Antony
- School of Science and the Environment, Division of Chemistry and Environmental Science Manchester Metropolitan University John Dalton Building, Chester St. Manchester M1 5GD United Kingdom
| | - Wissam Iali
- Centre for Hyperpolarization in Magnetic Resonance, Department of Chemistry University of York Heslington YO10 5NY United Kingdom
| | - Ryan E Mewis
- School of Science and the Environment, Division of Chemistry and Environmental Science Manchester Metropolitan University John Dalton Building, Chester St. Manchester M1 5GD United Kingdom
| | - Simon B Duckett
- Centre for Hyperpolarization in Magnetic Resonance, Department of Chemistry University of York Heslington YO10 5NY United Kingdom
| |
Collapse
|
33
|
Kovtunov KV, Kovtunova LM, Gemeinhardt ME, Bukhtiyarov AV, Gesiorski J, Bukhtiyarov VI, Chekmenev EY, Koptyug IV, Goodson BM. Heterogeneous Microtesla SABRE Enhancement of 15 N NMR Signals. Angew Chem Int Ed Engl 2017; 56:10433-10437. [PMID: 28644918 PMCID: PMC5561492 DOI: 10.1002/anie.201705014] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Indexed: 11/06/2022]
Abstract
The hyperpolarization of heteronuclei via signal amplification by reversible exchange (SABRE) was investigated under conditions of heterogeneous catalysis and microtesla magnetic fields. Immobilization of [IrCl(COD)(IMes)], [IMes=1,3-bis(2,4,6-trimethylphenyl), imidazole-2-ylidene; COD=cyclooctadiene] catalyst onto silica particles modified with amine linkers engenders an effective heterogeneous SABRE (HET-SABRE) catalyst that was used to demonstrate a circa 100-fold enhancement of 15 N NMR signals in 15 N-pyridine at 9.4 T following parahydrogen bubbling within a magnetic shield. No 15 N NMR enhancement was observed from the supernatant liquid following catalyst separation, which along with XPS characterization supports the fact that the effects result from SABRE under heterogeneous catalytic conditions. The technique can be developed further for producing catalyst-free agents via SABRE with hyperpolarized heteronuclear spins, and thus is promising for biomedical NMR and MRI applications.
Collapse
Affiliation(s)
- Kirill V Kovtunov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Larisa M Kovtunova
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Max E Gemeinhardt
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Andrey V Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Jonathan Gesiorski
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Eduard Y Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, Department of Physics and Astronomy, Vanderbilt-Ingram Cancer Center (VICC), Nashville, TN, 37232-2310, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, 119991, Moscow, Russia
| | - Igor V Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
- Materials Technology Center, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
34
|
Lehmkuhl S, Emondts M, Schubert L, Spannring P, Klankermayer J, Blümich B, Schleker PPM. Hyperpolarizing Water with Parahydrogen. Chemphyschem 2017; 18:2426-2429. [DOI: 10.1002/cphc.201700750] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Sören Lehmkuhl
- ITMC.MC; RWTH Aachen University; Worringerweg 2 52074 Aachen Germany
| | - Meike Emondts
- ITMC.MC; RWTH Aachen University; Worringerweg 2 52074 Aachen Germany
| | - Lukas Schubert
- ITMC.MC; RWTH Aachen University; Worringerweg 2 52074 Aachen Germany
| | - Peter Spannring
- ITMC.MC; RWTH Aachen University; Worringerweg 2 52074 Aachen Germany
| | | | - Bernhard Blümich
- ITMC.MC; RWTH Aachen University; Worringerweg 2 52074 Aachen Germany
| | - P. Philipp M. Schleker
- ITMC.MC; RWTH Aachen University; Worringerweg 2 52074 Aachen Germany
- Max-Planck-Institut für Chemische Energiekonversion; Stiftstr. 34-36 45470 Mülheim an der Ruhr Germany
- Institut für Energie und Klimaforschung (IEK-9); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| |
Collapse
|
35
|
Kovtunov KV, Kovtunova LM, Gemeinhardt ME, Bukhtiyarov AV, Gesiorski J, Bukhtiyarov VI, Chekmenev EY, Koptyug IV, Goodson BM. Heterogeneous Microtesla SABRE Enhancement of
15
N NMR Signals. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kirill V. Kovtunov
- Laboratory of Magnetic Resonance Microimaging International Tomography Center, SB RAS 3A Institutskaya St. Novosibirsk 630090 Russia
- Novosibirsk State University 2 Pirogova St. Novosibirsk 630090 Russia
| | - Larisa M. Kovtunova
- Novosibirsk State University 2 Pirogova St. Novosibirsk 630090 Russia
- Boreskov Institute of Catalysis SB RAS 5 Acad. Lavrentiev Pr. Novosibirsk 630090 Russia
| | - Max E. Gemeinhardt
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | - Andrey V. Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS 5 Acad. Lavrentiev Pr. Novosibirsk 630090 Russia
| | - Jonathan Gesiorski
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | | | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS) Department of Radiology Department of Biomedical Engineering Department of Physics and Astronomy, Vanderbilt-Ingram Cancer Center (VICC) Nashville TN 37232-2310 USA
- Russian Academy of Sciences Leninskiy Prospekt 14 119991 Moscow Russia
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging International Tomography Center, SB RAS 3A Institutskaya St. Novosibirsk 630090 Russia
- Novosibirsk State University 2 Pirogova St. Novosibirsk 630090 Russia
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
- Materials Technology Center Southern Illinois University Carbondale IL 62901 USA
| |
Collapse
|
36
|
Iali W, Olaru AM, Green GGR, Duckett SB. Achieving High Levels of NMR-Hyperpolarization in Aqueous Media With Minimal Catalyst Contamination Using SABRE. Chemistry 2017; 23:10491-10495. [PMID: 28609572 PMCID: PMC5582620 DOI: 10.1002/chem.201702716] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Indexed: 01/02/2023]
Abstract
Signal amplification by reversible exchange (SABRE) is shown to allow access to strongly enhanced 1H NMR signals in a range of substrates in aqueous media. To achieve this outcome, phase‐transfer catalysis is exploited, which leads to less than 1.5×10−6 mol dm−3 of the iridium catalyst in the aqueous phase. These observations reflect a compelling route to produce a saline‐based hyperpolarized bolus in just a few seconds for subsequent in vivo MRI monitoring. The new process has been called catalyst separated hyperpolarization through signal amplification by reversible exchange or CASH‐SABRE. We illustrate this method for the substrates pyrazine, 5‐methylpyrimidine, 4,6‐d2‐methyl nicotinate, 4,6‐d2‐nicotinamide and pyridazine achieving 1H signal gains of approximately 790‐, 340‐, 3000‐, 260‐ and 380‐fold per proton at 9.4 T at the time point at which phase separation is complete.
Collapse
Affiliation(s)
- Wissam Iali
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Alexandra M Olaru
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Gary G R Green
- York Neuroimaging Centre, The Biocentre, York Science Park Innovation Way, Heslington, York, YO10 5DD, UK
| | - Simon B Duckett
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
37
|
Zhou Z, Yu J, Colell JFP, Laasner R, Logan A, Barskiy D, Schepin R, Chekmenev EY, Blum V, Warren WS, Theis T. Long-Lived 13C 2 Nuclear Spin States Hyperpolarized by Parahydrogen in Reversible Exchange at Microtesla Fields. J Phys Chem Lett 2017; 8:3008-3014. [PMID: 28594557 PMCID: PMC5580346 DOI: 10.1021/acs.jpclett.7b00987] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Parahydrogen is an inexpensive and readily available source of hyperpolarization used to enhance magnetic resonance signals by up to four orders of magnitude above thermal signals obtained at ∼10 T. A significant challenge for applications is fast signal decay after hyperpolarization. Here we use parahydrogen-based polarization transfer catalysis at microtesla fields (first introduced as SABRE-SHEATH) to hyperpolarize 13C2 spin pairs and find decay time constants of 12 s for magnetization at 0.3 mT, which are extended to 2 min at that same field, when long-lived singlet states are hyperpolarized instead. Enhancements over thermal at 8.5 T are between 30 and 170 fold (0.02 to 0.12% polarization). We control the spin dynamics of polarization transfer by choice of microtesla field, allowing for deliberate hyperpolarization of either magnetization or long-lived singlet states. Density functional theory calculations and experimental evidence identify two energetically close mechanisms for polarization transfer: First, a model that involves direct binding of the 13C2 pair to the polarization transfer catalyst and, second, a model transferring polarization through auxiliary protons in substrates.
Collapse
Affiliation(s)
- Zijian Zhou
- Department of Chemistry, Duke University, Durham NC 27708, United States
| | - Jin Yu
- Department of Chemistry, Duke University, Durham NC 27708, United States
| | | | - Raul Laasner
- Department of Mechanical Engineering and Materials Science, Duke University, Durham NC 27708, United States
| | - Angus Logan
- Department of Chemistry, Duke University, Durham NC 27708, United States
| | - Danila Barskiy
- Departments of Radiology, Biomedical Engineering and Physics, Vanderbilt University, Institute of Imaging Science (VUIIS), Nashville, TN 37232, United States
| | - Roman Schepin
- Departments of Radiology, Physics and Biomedical Engineering, Duke University, Durham NC 27708, United States
| | - Eduard Y. Chekmenev
- Departments of Radiology, Physics and Biomedical Engineering, Duke University, Durham NC 27708, United States
| | - Volker Blum
- Department of Chemistry, Duke University, Durham NC 27708, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham NC 27708, United States
| | - Warren S. Warren
- Department of Chemistry, Duke University, Durham NC 27708, United States
- Departments of Radiology, Physics and Biomedical Engineering, Duke University, Durham NC 27708, United States
| | - Thomas Theis
- Department of Chemistry, Duke University, Durham NC 27708, United States
- Corresponding Author: To whom correspondence should be addressed.
| |
Collapse
|
38
|
Shchepin RV, Goodson BM, Theis T, Warren WS, Chekmenev EY. Toward Hyperpolarized 19 F Molecular Imaging via Reversible Exchange with Parahydrogen. Chemphyschem 2017; 18:1961-1965. [PMID: 28557156 DOI: 10.1002/cphc.201700594] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 01/16/2023]
Abstract
Fluorine-19 has high NMR detection sensitivity-similar to that of protons-owing to its large gyromagnetic ratio and high natural abundance (100 %). Unlike protons, however, fluorine-19 (19 F) has a negligible occurrence in biological objects, as well as a more sensitive chemical shift. As a result, in vivo 19 F NMR spectroscopy and MR imaging offer advantages of negligible background signal and sensitive reporting of the local molecular environment. Here we report on NMR hyperpolarization of 19 F nuclei using reversible exchange reactions with parahydrogen gas as the source of nuclear spin order. NMR signals of 3-fluoropyridine were enhanced by ≈100 fold, corresponding to 0.3 % 19 F nuclear spin polarization (at 9.4 T), using about 50 % parahydrogen. While future optimization efforts will likely significantly increase the hyperpolarization levels, we already demonstrate the utility of 19 F hyperpolarization for high-resolution hyperpolarized 19 F imaging and hyperpolarized 19 F pH sensing.
Collapse
Affiliation(s)
- Roman V Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tennessee, 37232-2310, USA
| | - Boyd M Goodson
- Southern Illinois University, Department of Chemistry and Biochemistry, Materials Technology Center, Carbondale, IL, 62901, USA
| | - Thomas Theis
- Departments of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Warren S Warren
- Departments of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Eduard Y Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tennessee, 37232-2310, USA.,Russian Academy of Sciences, Leninskiy Prospekt 14, 119991, Moscow, Russia
| |
Collapse
|
39
|
Shchepin RV, Barskiy DA, Coffey AM, Feldman MA, Kovtunova LM, Bukhtiyarov VI, Kovtunov KV, Goodson BM, Koptyug IV, Chekmenev EY. Robust Imidazole‐
15
N
2
Synthesis for High‐Resolution Low‐Field (0.05 T)
15
N Hyperpolarized NMR Spectroscopy. ChemistrySelect 2017. [DOI: 10.1002/slct.201700718] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering Department of Physics and Astronomy Nashville, Tennessee 37232-2310 United States
| | - Danila A. Barskiy
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering Department of Physics and Astronomy Nashville, Tennessee 37232-2310 United States
| | - Aaron M. Coffey
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering Department of Physics and Astronomy Nashville, Tennessee 37232-2310 United States
| | - Matthew A. Feldman
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering Department of Physics and Astronomy Nashville, Tennessee 37232-2310 United States
| | - Larisa M. Kovtunova
- Novosibirsk State University 2 Pirogova St. Novosibirsk 630090 Russia
- Boreskov Institute of Catalysis SB RAS 5 Acad. Lavrentiev Pr. Novosibirsk 630090 Russia
| | - Valerii I. Bukhtiyarov
- Novosibirsk State University 2 Pirogova St. Novosibirsk 630090 Russia
- Boreskov Institute of Catalysis SB RAS 5 Acad. Lavrentiev Pr. Novosibirsk 630090 Russia
| | - Kirill V. Kovtunov
- Novosibirsk State University 2 Pirogova St. Novosibirsk 630090 Russia
- Laboratory of Magnetic Resonance Microimaging International Tomography Center (ITC), SB RAS 3 A Institutskaya St. Novosibirsk 630090 Russia
| | - Boyd M. Goodson
- Southern Illinois University, Department of Chemistry and Biochemistry Materials Technology Center Carbondale IL 62901 United States
| | - Igor V. Koptyug
- Novosibirsk State University 2 Pirogova St. Novosibirsk 630090 Russia
- Laboratory of Magnetic Resonance Microimaging International Tomography Center (ITC), SB RAS 3 A Institutskaya St. Novosibirsk 630090 Russia
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering Department of Physics and Astronomy Nashville, Tennessee 37232-2310 United States
- Russian Academy of Sciences Leninskiy Prospekt 14 119991 Moscow Russia
| |
Collapse
|
40
|
Barskiy DA, Shchepin RV, Tanner CPN, Colell JFP, Goodson BM, Theis T, Warren WS, Chekmenev EY. The Absence of Quadrupolar Nuclei Facilitates Efficient
13
C Hyperpolarization via Reversible Exchange with Parahydrogen. Chemphyschem 2017; 18:1493-1498. [DOI: 10.1002/cphc.201700416] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Danila A. Barskiy
- Vanderbilt University Institute of Imaging Science (VUIIS) Department of Radiology Department of Biomedical Engineering Department of Physics Vanderbilt-Ingram Cancer Center (VICC) Nashville Tennessee 37232-2310 United States
| | - Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS) Department of Radiology Department of Biomedical Engineering Department of Physics Vanderbilt-Ingram Cancer Center (VICC) Nashville Tennessee 37232-2310 United States
| | | | | | - Boyd M. Goodson
- Southern Illinois University Department of Chemistry and Biochemistry Materials Technology Center Carbondale IL 62901 United States
| | - Thomas Theis
- Departments of Chemistry Duke University 124 Science Drive Durham NC 27708 USA
| | - Warren S. Warren
- Departments of Chemistry Duke University 124 Science Drive Durham NC 27708 USA
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS) Department of Radiology Department of Biomedical Engineering Department of Physics Vanderbilt-Ingram Cancer Center (VICC) Nashville Tennessee 37232-2310 United States
- Russian Academy of Sciences Leninskiy Prospekt 14 119991 Moscow Russia
| |
Collapse
|
41
|
Colell JP, Logan AWJ, Zhou Z, Shchepin RV, Barskiy DA, Ortiz GX, Wang Q, Malcolmson SJ, Chekmenev EY, Warren WS, Theis T. Generalizing, Extending, and Maximizing Nitrogen-15 Hyperpolarization Induced by Parahydrogen in Reversible Exchange. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:6626-6634. [PMID: 28392884 PMCID: PMC5378067 DOI: 10.1021/acs.jpcc.6b12097] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/13/2017] [Indexed: 05/17/2023]
Abstract
Signal Amplification by Reversible Exchange (SABRE) is a fast and convenient NMR hyperpolarization method that uses cheap and readily available para-hydrogen as a hyperpolarization source. SABRE can hyperpolarize protons and heteronuclei. Here we focus on the heteronuclear variant introduced as SABRE-SHEATH (SABRE in SHield Enables Alignment Transfer to Heteronuclei) and nitrogen-15 targets in particular. We show that 15N-SABRE works more efficiently and on a wider range of substrates than 1H-SABRE, greatly generalizing the SABRE approach. In addition, we show that nitrogen-15 offers significantly extended T1 times of up to 12 minutes. Long T1 times enable higher hyperpolarization levels but also hold the promise of hyperpolarized molecular imaging for several tens of minutes. Detailed characterization and optimization are presented, leading to nitrogen-15 polarization levels in excess of 10% on several compounds.
Collapse
Affiliation(s)
- Johannes
F. P. Colell
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Angus W. J. Logan
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zijian Zhou
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Roman V. Shchepin
- Vanderbilt
University Institute of Imaging Science (VUIIS), Department of Radiology,
Department of Biomedical Engineering, Vanderbilt Ingram Cancer Center
(VICC), Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Danila A. Barskiy
- Vanderbilt
University Institute of Imaging Science (VUIIS), Department of Radiology,
Department of Biomedical Engineering, Vanderbilt Ingram Cancer Center
(VICC), Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Gerardo X. Ortiz
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Qiu Wang
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Steven J. Malcolmson
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Eduard Y. Chekmenev
- Vanderbilt
University Institute of Imaging Science (VUIIS), Department of Radiology,
Department of Biomedical Engineering, Vanderbilt Ingram Cancer Center
(VICC), Vanderbilt University, Nashville, Tennessee 37232, United States
- Russian
Academy of Sciences, Moscow, Russia
| | - Warren S. Warren
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Departments
of Physics, Radiology and Biomedical Engineering, Duke University, Durham, North Carolina 27707, United States
- E-mail:
| | - Thomas Theis
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
- E-mail:
| |
Collapse
|
42
|
He Z, Zhang X, Huang J, Wu Y, Huang X, Chen J, Xia J, Jiang H, Ma J, Wu J. Immune activity and biodistribution of polypeptide K237 and folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles radiolabeled with 99mTc. Oncotarget 2016; 7:76635-76646. [PMID: 27791199 PMCID: PMC5363536 DOI: 10.18632/oncotarget.12850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/12/2016] [Indexed: 12/29/2022] Open
Abstract
In a previous study, amphiphilic copolymer, polypeptide K237 (HTMYYHHYQHHL) and folic acid (FA) modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (K237/FA-PEG-PLGA) nanoparticles were developed and studied as a drug carrier. To further promote the clinical application of K237/FA-PEG-PLGA nanoparticles and provide guidance for future research, we need to examine their specific biodistribution in vivo. In this study, K237/FA-PEG-PLGA nanoparticles were effectively labeled by a direct method with Technetium-99m (99mTc) using stannous chloride as a reducing agent. The optimal stability of the labeled nanoparticles was determined by evaluating their radiochemical purity in serum, physiological saline, diethylenetriaminepentaacetic acid (DTPA) and cysteine solutions. The affinity of ligands and receptors was elicited by cell binding and blocking experiments in KDR/folate receptor high expressing SKOV-3 ovarian cancer cells. The nanoparticles biodistribution was studied after intravenous administration in healthy mice xenografted with SKOV-3 cells. A higher percent injected dose per gram of tissue (% ID/g) was observed in liver, kidney, spleen, blood and tumor at 3 and 9 h post-injection. Scintigraphic images revealed that the radioactivity was mainly concentrated in tumor, liver, kidney and bladder; and in the heart, lung, and muscle was significantly lower at 3 h. The radioactivity distribution in the images is consistent with the in vivo biodistribution data. Our works demonstrated that K237/FA-PEG-PLGA nanoparticles have great potential as biodegradable drug carriers, especially for tumors expressing the folate and KDr receptor.
Collapse
Affiliation(s)
- Zelai He
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiangyu Zhang
- Department of Pathology, Jining No.1 Peoples' Hospital, Jining, China
| | - Jingwen Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yufeng Wu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xuanzhang Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junyong Xia
- Department of Nuclear Medicine, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Hao Jiang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Ma
- Ultrasonic Department, Shanghai Songjiang Center Hospital, Shanghai, China
| | - Jian Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
43
|
Kovtunov KV, Salnikov OG, Zhivonitko VV, Skovpin IV, Bukhtiyarov VI, Koptyug IV. Catalysis and Nuclear Magnetic Resonance Signal Enhancement with Parahydrogen. Top Catal 2016. [DOI: 10.1007/s11244-016-0688-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Shchepin RV, Barskiy DA, Coffey AM, Goodson BM, Chekmenev EY. NMR Signal Amplification by Reversible Exchange of Sulfur-Heterocyclic Compounds Found In Petroleum. ChemistrySelect 2016; 1:2552-2555. [PMID: 27500206 DOI: 10.1002/slct.201600761] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
NMR hyperpolarization via Signal Amplification by Reversible Exchange (SABRE) was employed to investigate the feasibility of enhancing the NMR detection sensitivity of sulfur-heterocycles (specifically 2-methylthiophene and dibenzothiophenes), a family of compounds typically found in petroleum and refined petroleum products. SABRE hyperpolarization of sulfur-heterocycles (conducted in seconds) offers potential advantages of providing structural information about sulfur-containing contaminants in petroleum, thereby informing petroleum purification and refining to minimize sulfur content in refined products such as gasoline. Moreover, NMR spectroscopy sensitivity gains endowed by hyperpolarization potentially allows for performing structural assays using inexpensive, low-magnetic-field (ca. 1 T) high-resolution NMR spectrometers ideally suited for industrial applications in the field.
Collapse
Affiliation(s)
- Roman V Shchepin
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, TN 37232 USA
| | - Danila A Barskiy
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, TN 37232 USA
| | - Aaron M Coffey
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, TN 37232 USA
| | - Boyd M Goodson
- Southern Illinois University, Department of Chemistry and Biochemistry, Materials Technology Center, Carbondale, IL 62901 USA
| | - Eduard Y Chekmenev
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, TN 37232 USA.,Russian Academy of Sciences, 119991 Moscow Russia
| |
Collapse
|
45
|
Shchepin RV, Barskiy DA, Coffey AM, Theis T, Shi F, Warren WS, Goodson BM, Chekmenev EY. 15N Hyperpolarization of Imidazole- 15N 2 for Magnetic Resonance pH Sensing via SABRE-SHEATH. ACS Sens 2016; 1:640-644. [PMID: 27379344 PMCID: PMC4924567 DOI: 10.1021/acssensors.6b00231] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/14/2016] [Indexed: 12/17/2022]
Abstract
![]()
15N nuclear spins of imidazole-15N2 were
hyperpolarized using NMR signal amplification by reversible
exchange in shield enables alignment transfer to heteronuclei (SABRE-SHEATH).
A 15N NMR signal enhancement of ∼2000-fold at 9.4
T is reported using parahydrogen gas (∼50% para-) and ∼0.1
M imidazole-15N2 in methanol:aqueous buffer
(∼1:1). Proton binding to a 15N site of imidazole
occurs at physiological pH (pKa ∼
7.0), and the binding event changes the 15N isotropic chemical
shift by ∼30 ppm. These properties are ideal for in vivo pH
sensing. Additionally, imidazoles have low toxicity and are readily
incorporated into a wide range of biomolecules. 15N-Imidazole
SABRE-SHEATH hyperpolarization potentially enables pH sensing on scales
ranging from peptide and protein molecules to living organisms.
Collapse
Affiliation(s)
| | | | | | - Thomas Theis
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | | | - Warren S. Warren
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | | | | |
Collapse
|
46
|
Barskiy DA, Shchepin RV, Coffey AM, Theis T, Warren WS, Goodson BM, Chekmenev EY. Over 20% (15)N Hyperpolarization in Under One Minute for Metronidazole, an Antibiotic and Hypoxia Probe. J Am Chem Soc 2016; 138:8080-3. [PMID: 27321159 PMCID: PMC4937835 DOI: 10.1021/jacs.6b04784] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Direct NMR hyperpolarization of naturally abundant (15)N sites in metronidazole is demonstrated using SABRE-SHEATH (Signal Amplification by Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei). In only a few tens of seconds, nuclear spin polarization P(15)N of up to ∼24% is achieved using parahydrogen with 80% para fraction corresponding to P(15)N ≈ 32% if ∼100% parahydrogen were employed (which would translate to a signal enhancement of ∼0.1-million-fold at 9.4 T). In addition to this demonstration on the directly binding (15)N site (using J(2)H-(15)N), we also hyperpolarized more distant (15)N sites in metronidazole using longer-range spin-spin couplings (J(4)H-(15)N and J(5)H-(15)N). Taken together, these results significantly expand the range of molecular structures and sites amenable to hyperpolarization via low-cost parahydrogen-based methods. In particular, hyperpolarized nitroimidazole and its derivatives have powerful potential applications such as direct in vivo imaging of mechanisms of action or hypoxia sensing.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Radiology, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Roman V Shchepin
- Department of Radiology, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Aaron M Coffey
- Department of Radiology, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Thomas Theis
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Warren S Warren
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry and Materials Technology Center, Southern Illinois University , Carbondale, Illinois 62901, United States
| | - Eduard Y Chekmenev
- Department of Radiology, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States.,Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville, Tennessee 37232, United States.,Russian Academy of Sciences , Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
47
|
Shi F, He P, Best QA, Groome K, Truong M, Coffey AM, Zimay G, Shchepin RV, Waddell KW, Chekmenev EY, Goodson BM. Aqueous NMR Signal Enhancement by Reversible Exchange in a Single Step Using Water-Soluble Catalysts. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2016; 120:12149-12156. [PMID: 27350846 PMCID: PMC4918635 DOI: 10.1021/acs.jpcc.6b04484] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/11/2016] [Indexed: 05/26/2023]
Abstract
Two synthetic strategies are investigated for the preparation of water-soluble iridium-based catalysts for NMR signal amplification by reversible exchange (SABRE). In one approach, PEGylation of a variant N-heterocyclic carbene provided a novel catalyst with excellent water solubility. However, while SABRE-active in ethanol solutions, the catalyst lost activity in >50% water. In a second approach, synthesis of a novel di-iridium complex precursor where the cyclooctadiene (COD) rings have been replaced by CODDA (1,2-dihydroxy-3,7-cyclooctadiene) leads to the creation of a catalyst [IrCl(CODDA)IMes] that can be dissolved and activated in water-enabling aqueous SABRE in a single step, without need for either an organic cosolvent or solvent removal followed by aqueous reconstitution. The potential utility of the CODDA catalyst for aqueous SABRE is demonstrated with the ∼(-)32-fold enhancement of 1H signals of pyridine in water with only 1 atm of parahydrogen.
Collapse
Affiliation(s)
- Fan Shi
- Department
of Chemistry and Biochemistry, and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Ping He
- Department
of Chemistry and Biochemistry, and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Quinn A. Best
- Department
of Chemistry and Biochemistry, and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Kirsten Groome
- Department
of Chemistry and Biochemistry, and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Milton
L. Truong
- Department
of Radiology, Vanderbilt University Institute
of Imaging Science, Nashville, Tennessee 37232, United States
| | - Aaron M. Coffey
- Department
of Radiology, Vanderbilt University Institute
of Imaging Science, Nashville, Tennessee 37232, United States
| | - Greg Zimay
- Department
of Chemistry and Biochemistry, and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Roman V. Shchepin
- Department
of Radiology, Vanderbilt University Institute
of Imaging Science, Nashville, Tennessee 37232, United States
| | - Kevin W. Waddell
- Department
of Radiology, Vanderbilt University Institute
of Imaging Science, Nashville, Tennessee 37232, United States
| | - Eduard Y. Chekmenev
- Department
of Radiology, Vanderbilt University Institute
of Imaging Science, Nashville, Tennessee 37232, United States
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt-Ingram
Cancer Center, Nashville, Tennessee 37232, United States
- Russian
Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| | - Boyd M. Goodson
- Department
of Chemistry and Biochemistry, and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| |
Collapse
|
48
|
Shchepin RV, Barskiy DA, Mikhaylov DM, Chekmenev EY. Efficient Synthesis of Nicotinamide-1-¹⁵N for Ultrafast NMR Hyperpolarization Using Parahydrogen. Bioconjug Chem 2016; 27:878-82. [PMID: 26999571 PMCID: PMC4843783 DOI: 10.1021/acs.bioconjchem.6b00148] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Nicotinamide (a vitamin B3 amide) is one of the key
vitamins as well as a drug for treatment of M. tuberculosis, HIV, cancer, and other diseases. Here, an improved Zincke reaction
methodology is presented allowing for straightforward and scalable
synthesis of nicotinamide-1-15N with an excellent isotopic
purity (98%) and good yield (55%). 15N nuclear spin label
in nicotinamide-1-15N can be NMR hyperpolarized in seconds
using parahydrogen gas. NMR hyperpolarization using the process of
temporary conjugation between parahydrogen and to-be-hyperpolarized
biomolecule on hexacoordinate iridium complex via the Signal Amplification
By Reversible Exchange (SABRE) method significantly increases detection
sensitivity (e.g., >20 000-fold for nicotinamide-1-15N at 9.4 T) as has been shown by Theis T. et al. (J. Am.
Chem. Soc.2015, 137, 1404),
and hyperpolarized in this fashion, nicotinamide-1-15N
can be potentially used to probe metabolic processes in vivo in future
studies. Moreover, the presented synthetic methodology utilizes mild
reaction conditions, and therefore can also be potentially applied
to synthesis of a wide range of 15N-enriched N-heterocycles
that can be used as hyperpolarized contrast agents for future in vivo
molecular imaging studies.
Collapse
|
49
|
Zhao EW, Zheng H, Ludden K, Xin Y, Hagelin-Weaver HE, Bowers CR. Strong Metal–Support Interactions Enhance the Pairwise Selectivity of Parahydrogen Addition over Ir/TiO2. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02632] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Yan Xin
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | | | | |
Collapse
|
50
|
He Z, Shi Z, Sun W, Ma J, Xia J, Zhang X, Chen W, Huang J. Hemocompatibility of folic-acid-conjugated amphiphilic PEG-PLGA copolymer nanoparticles for co-delivery of cisplatin and paclitaxel: treatment effects for non-small-cell lung cancer. Tumour Biol 2015; 37:7809-21. [PMID: 26695149 DOI: 10.1007/s13277-015-4634-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/10/2015] [Indexed: 12/18/2022] Open
Abstract
In this study, we used folic-acid-modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) to encapsulate cisplatin and paclitaxel (separately or together), and evaluated their antitumor effects against lung cancer; this study was conducted in order to investigate the antitumor effects of the co-delivery of cisplatin and paclitaxel by a targeted drug delivery system. Blood compatibility assays and complement activation tests revealed that FA-PEG-PLGA nanoparticles did not induce blood hemolysis, blood clotting, or complement activation. The results also indicated that FA-PEG-PLGA nanoparticles had no biotoxic effects, the drug delivery system allowed controlled release of the cargo molecules, and the co-delivery of cisplatin and paclitaxel efficiently induces cancer cell apoptosis and cell cycle retardation. In addition, co-delivery of cisplatin and paclitaxel showed the ability to suppress xenograft lung cancer growth and prolong the survival time of xenografted mice. These results implied that FA-PEG-PLGA nanoparticles can function as effective carriers of cisplatin and paclitaxel, and that co-delivery of cisplatin and paclitaxel by FA-PEG-PLGA nanoparticles results in more effective antitumor effects than the combination of free-drugs or single-drug-loaded nanoparticles.
Collapse
Affiliation(s)
- Zelai He
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, 325027, China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Zengfang Shi
- Henan Polytechnic Institute, No 666, Kongming North Road, Nanyang Henan, 473000, China
| | - Wenjie Sun
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jing Ma
- Department of Ultrasound, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Junyong Xia
- Department of Nuclear Medicine, the Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, China
| | - Xiangyu Zhang
- Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| | - Wenjun Chen
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, 325027, China.
| | - Jingwen Huang
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, 325027, China.
| |
Collapse
|