1
|
Xiao Y, Gates BC, Yang D. Chemistry of Formate and Water Ligands on Metal Oxide Cluster Nodes of Metal-Organic Framework hcp Hf-UiO-66: Keys to Understanding Reactivity of Paired μ 2-OH and Defect Sites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52445-52454. [PMID: 39292754 DOI: 10.1021/acsami.4c11541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Many metal-organic frameworks (MOFs) incorporate nodes that are metal oxide clusters, and ligands that have been observed on these nodes include formates, acetates, water, hydroxyl groups, and others, all of which are potentially important in affecting reactivities for applications in separations, catalysis, and sensing. Formate is a common node ligand, arising from formic acid used as a modulator and from N,N-dimethylformamide used as a solvent in MOF syntheses. Yet only little work has been reported characterizing the reactivities of node formate ligands. Infrared spectra reported here show that formate bonds to two types of sites on the paired Hf6O8 nodes of hcp UiO-66, namely, defect and μ2-OH sites. Quantifying the number of formate ligands by 1H NMR spectroscopy of digested samples showed an almost equal number of formate ligands on the two sites, indicating the likelihood that they neighbor each other. These formate ligands interact with water molecules, reversibly switching their bonding from bidentate to monodentate. The formates on μ2-OH sites of hcp Hf-UiO-66 interact much more strongly with water than those on defect sites of the same node, and both interact more strongly than isolated defect sites of Hf-UiO-66. Correspondingly, the catalytic activities of hcp UiO-66 determined as turnover frequencies on each site are approximately twofold higher than those on UiO-66, bolstering the inference that methanol dehydration is catalyzed by a node defect site and a neighboring node μ2-OH site. The results show how MOFs, with their well-defined node structures, provide unprecedented opportunities to understand details of reactivities and catalysis on metal oxide clusters, in contrast to bulk metal oxide surfaces.
Collapse
Affiliation(s)
- Yue Xiao
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 21000, China
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Dong Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 21000, China
| |
Collapse
|
2
|
Ajibade S, Catalano L, Kölbel J, Mittleman DM, Ruggiero MT. Terahertz Spectroscopy Unambiguously Determines the Orientation of Guest Water Molecules in a Structurally Elusive Metal-Organic Framework. J Phys Chem Lett 2024; 15:5549-5555. [PMID: 38753602 PMCID: PMC11129291 DOI: 10.1021/acs.jpclett.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024]
Abstract
Porous materials, particularly metal-organic frameworks (MOFs), hold great promise for advanced applications. MIL-53(Al) is an exceptionally well-studied MOF that exhibits a phase transition upon guest capture─in this case, water─resulting in a dramatic change in the pore volume. Despite extensive studies, the structure of the water-loaded narrow-pore phase, MIL-53(Al)-np, remains controversial, particularly with respect to the positions of the adsorbed water molecules. We use terahertz spectroscopy, coupled with powder X-ray diffraction and density functional theory simulations, to unambiguously resolve this controversy. We show that the low-frequency (<100 cm-1) vibrational spectrum depends on weak long-range forces that are extremely sensitive to the orientation of the adsorbed water molecules. This enables definitively determining the correct structure of MIL-53(Al)-np while highlighting the extreme sensitivity of terahertz spectroscopy to bulk structure, suggesting its potential as a robust complement to X-ray diffraction for precise characterization of host-guest complexes.
Collapse
Affiliation(s)
- Saheed
A. Ajibade
- Department
of Chemistry, University of Vermont, Burlington, Vermont 05405, United States
| | - Luca Catalano
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- Department
of Life Sciences, University of Modena and
Reggio Emilia, 41125 Modena, Italy
| | - Johanna Kölbel
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Daniel M. Mittleman
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Michael T. Ruggiero
- Department
of Chemistry, University of Vermont, Burlington, Vermont 05405, United States
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
3
|
Wang H, Du G, Jia J, Huang J, Tu M, Zhang J, Peng Y, Li H, Xu C. Ru-Doped NiFe-MIL-53 with Facilitated Reconstruction and Active Hydrogen Supplement for Enhanced Nitrate Reduction. Inorg Chem 2024; 63:9212-9220. [PMID: 38718298 DOI: 10.1021/acs.inorgchem.4c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The Electrochemical reduction of nitrate to ammonia (NH3) is a process of great significance to energy utilization and environmental protection. However, it suffers from sluggish multielectron/proton-involved steps involving coupling reactions between different reaction intermediates and active hydrogen species (Hads) produced by water decomposition. In this study, a Ru-doped NiFe-MIL-53 (NiFeRu-MIL-53) supported on Ni foam (NF) has been designed for the nitrate reduction reaction (NO3RR). The NiFeRu-MIL-53 exhibits excellent NO3RR activity with a maximum Faradaic efficiency (FE) of 100% at -0.4 V vs. RHE for NH3 and a maximum NH3 yield of 62.39 mg h-1 cm-2 at -0.7 V vs. RHE in alkaline media. This excellent performance for the NO3RR is attributed to a strong synergistic effect between Ru and reconstructed NiFe(OH)2. Additionally, the doped Ru facilitates water dissociation, leading to an appropriate supply of Hads required for N species hydrogenation during NO3RR, thereby further enhancing its performance. Furthermore, in situ Raman analysis reveals that incorporating Ru facilitates the reconstruction of MOFs and promotes the formation of hydroxide active species during the NO3RR process. This work provides a valuable strategy for designing electrocatalysts to improve the efficiency of the reduction of electrochemical nitrate to ammonia.
Collapse
Affiliation(s)
- Huijiao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Gening Du
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jinzhi Jia
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Junfeng Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Mudong Tu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jinhua Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yong Peng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hua Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
4
|
Ugalino R, Yamazoe K, Miyawaki J, Kiuchi H, Kurahashi N, Kosegawa Y, Harada Y. The role of carboxylate ligand orbitals in the breathing dynamics of a metal-organic framework by resonant X-ray emission spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:217-221. [PMID: 38363223 PMCID: PMC10914173 DOI: 10.1107/s1600577524000584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
Metal-organic frameworks (MOFs) exhibit structural flexibility induced by temperature and guest adsorption, as demonstrated in the structural breathing transition in certain MOFs between narrow-pore and large-pore phases. Soft modes were suggested to entropically drive such pore breathing through enhanced vibrational dynamics at high temperatures. In this work, oxygen K-edge resonant X-ray emission spectroscopy of the MIL-53(Al) MOF was performed to selectively probe the electronic perturbation accompanying pore breathing dynamics at the ligand carboxylate site for metal-ligand interaction. It was observed that the temperature-induced vibrational dynamics involves switching occupancy between antisymmetric and symmetric configurations of the carboxylate oxygen lone pair orbitals, through which electron density around carboxylate oxygen sites is redistributed and metal-ligand interactions are tuned. In turn, water adsorption involves an additional perturbation of π orbitals not observed in the structural change solely induced by temperature.
Collapse
Affiliation(s)
- Ralph Ugalino
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
- Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Kosuke Yamazoe
- Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Jun Miyawaki
- Institute for Advanced Synchrotron Light Source, National Institutes for Quantum and Radiological Science and Technology (QST), Sendai, Miyagi 980-8579, Japan
| | - Hisao Kiuchi
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
- Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Naoya Kurahashi
- Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Yuka Kosegawa
- Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Yoshihisa Harada
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
- Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
- Synchrotron Radiation Collaborative Research Organization, The University of Tokyo, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
5
|
Cordero-Lanzac T, Capel Berdiell I, Airi A, Chung SH, Mancuso JL, Redekop EA, Fabris C, Figueroa-Quintero L, Navarro de Miguel JC, Narciso J, Ramos-Fernandez EV, Svelle S, Van Speybroeck V, Ruiz-Martínez J, Bordiga S, Olsbye U. Transitioning from Methanol to Olefins (MTO) toward a Tandem CO 2 Hydrogenation Process: On the Role and Fate of Heteroatoms (Mg, Si) in MAPO-18 Zeotypes. JACS AU 2024; 4:744-759. [PMID: 38425934 PMCID: PMC10900493 DOI: 10.1021/jacsau.3c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
The tandem CO2 hydrogenation to hydrocarbons over mixed metal oxide/zeolite catalysts (OXZEO) is an efficient way of producing value-added hydrocarbons (platform chemicals and fuels) directly from CO2via methanol intermediate in a single reactor. In this contribution, two MAPO-18 zeotypes (M = Mg, Si) were tested and their performance was compared under methanol-to-olefins (MTO) conditions (350 °C, PCH3OH = 0.04 bar, 6.5 gCH3OH h-1 g-1), methanol/CO/H2 cofeed conditions (350 °C, PCH3OH/PCO/PH2 = 1:7.3:21.7 bar, 2.5 gCH3OH h-1 g-1), and tandem CO2 hydrogenation-to-olefin conditions (350 °C, PCO2/PH2 = 7.5:22.5 bar, 1.4-12.0 gMAPO-18 h molCO2-1). In the latter case, the zeotypes were mixed with a fixed amount of ZnO:ZrO2 catalyst, well-known for the conversion of CO2/H2 to methanol. Focus was set on the methanol conversion activity, product selectivity, and performance stability with time-on-stream. In situ and ex situ Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), solid-state nuclear magnetic resonance (NMR), sorption experiments, and ab initio molecular dynamics (AIMD) calculations were performed to correlate material performance with material characteristics. The catalytic tests demonstrated the better performance of MgAPO-18 versus SAPO-18 at MTO conditions, the much superior performance of MgAPO-18 under methanol/CO/H2 cofeeds, and yet the increasingly similar performance of the two materials under tandem conditions upon increasing the zeotype-to-oxide ratio in the tandem catalyst bed. In situ FT-IR measurements coupled with AIMD calculations revealed differences in the MTO initiation mechanism between the two materials. SAPO-18 promoted initial CO2 formation, indicative of a formaldehyde-based decarboxylation mechanism, while CO and ketene were the main constituents of the initiation pool in MgAPO-18, suggesting a decarbonylation mechanism. Under tandem CO2 hydrogenation conditions, the presence of high water concentrations and low methanol partial pressure in the reaction medium led to lower, and increasingly similar, methanol turnover frequencies for the zeotypes. Despite both MAPO-18 zeotypes showing signs of activity loss upon storage due to the interaction of the sites with ambient humidity, they presented a remarkable stability after reaching steady state under tandem reaction conditions and after steaming and regeneration cycles at high temperatures. Water adsorption experiments at room temperature confirmed this observation. The faster activity loss observed in the Mg version is assigned to its harder Mg2+-ion character and the higher concentration of CHA defects in the AEI structure, identified by solid-state NMR and XRD. The low stability of a MgAPO-34 zeotype (CHA structure) upon storage corroborated the relationship between CHA defects and instability.
Collapse
Affiliation(s)
- Tomás Cordero-Lanzac
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| | - Izar Capel Berdiell
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| | - Alessia Airi
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin 10125, Italy
| | - Sang-Ho Chung
- KAUST
Catalysis Center (KCC), King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jenna L. Mancuso
- Center
for Molecular Modeling, Ghent University, Technologiepark 46, B-9052 Zwijnaarde, Belgium
| | - Evgeniy A. Redekop
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| | - Claudia Fabris
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| | - Leidy Figueroa-Quintero
- Inorganic
Chemistry Department, Laboratory of Advanced Materials, University Materials Institute of Alicante, University
of Alicante, Apartado 99, Alicante 03080, Spain
| | - Juan C. Navarro de Miguel
- KAUST
Catalysis Center (KCC), King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Javier Narciso
- Inorganic
Chemistry Department, Laboratory of Advanced Materials, University Materials Institute of Alicante, University
of Alicante, Apartado 99, Alicante 03080, Spain
| | - Enrique V. Ramos-Fernandez
- Inorganic
Chemistry Department, Laboratory of Advanced Materials, University Materials Institute of Alicante, University
of Alicante, Apartado 99, Alicante 03080, Spain
| | - Stian Svelle
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| | | | - Javier Ruiz-Martínez
- KAUST
Catalysis Center (KCC), King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Silvia Bordiga
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin 10125, Italy
| | - Unni Olsbye
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
6
|
Rehman TU, Agnello S, Gelardi FM, Calvino MM, Lazzara G, Buscarino G, Cannas M. Unveiling the MIL-53(Al) MOF: Tuning Photoluminescence and Structural Properties via Volatile Organic Compounds Interactions. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:388. [PMID: 38470719 PMCID: PMC10935077 DOI: 10.3390/nano14050388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
MIL-53(Al) is a metal-organic framework (MOF) with unique properties, including structural flexibility, thermal stability, and luminescence. Its ability to adsorb volatile organic compounds (VOCs) and water vapor makes it a promising platform for sensing applications. This study investigated the adsorption mechanism of MIL-53(Al) with different VOCs, including ketones, alcohols, aromatics, and water molecules, focusing on structural transformations due to pore size variation and photoluminescence properties. The reported results assess MIL-53(Al) selectivity towards different VOCs and provide insights into their fundamental properties and potential applications in sensing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marco Cannas
- Dipartimento di Fisica e Chimica−Emilio Segrè, Università degli Studi di Palermo, 90123 Palermo, Italy; (T.U.R.); (S.A.); (F.M.G.); (M.M.C.); (G.L.); (G.B.)
| |
Collapse
|
7
|
Hoffman AJ, Temmerman W, Campbell E, Damin AA, Lezcano-Gonzalez I, Beale AM, Bordiga S, Hofkens J, Van Speybroeck V. A Critical Assessment on Calculating Vibrational Spectra in Nanostructured Materials. J Chem Theory Comput 2024; 20:513-531. [PMID: 38157404 PMCID: PMC10809426 DOI: 10.1021/acs.jctc.3c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Vibrational spectroscopy is an omnipresent spectroscopic technique to characterize functional nanostructured materials such as zeolites, metal-organic frameworks (MOFs), and metal-halide perovskites (MHPs). The resulting experimental spectra are usually complex, with both low-frequency framework modes and high-frequency functional group vibrations. Therefore, theoretically calculated spectra are often an essential element to elucidate the vibrational fingerprint. In principle, there are two possible approaches to calculate vibrational spectra: (i) a static approach that approximates the potential energy surface (PES) as a set of independent harmonic oscillators and (ii) a dynamic approach that explicitly samples the PES around equilibrium by integrating Newton's equations of motions. The dynamic approach considers anharmonic and temperature effects and provides a more genuine representation of materials at true operating conditions; however, such simulations come at a substantially increased computational cost. This is certainly true when forces and energy evaluations are performed at the quantum mechanical level. Molecular dynamics (MD) techniques have become more established within the field of computational chemistry. Yet, for the prediction of infrared (IR) and Raman spectra of nanostructured materials, their usage has been less explored and remain restricted to some isolated successes. Therefore, it is currently not a priori clear which methodology should be used to accurately predict vibrational spectra for a given system. A comprehensive comparative study between various theoretical methods and experimental spectra for a broad set of nanostructured materials is so far lacking. To fill this gap, we herein present a concise overview on which methodology is suited to accurately predict vibrational spectra for a broad range of nanostructured materials and formulate a series of theoretical guidelines to this purpose. To this end, four different case studies are considered, each treating a particular material aspect, namely breathing in flexible MOFs, characterization of defects in the rigid MOF UiO-66, anharmonic vibrations in the metal-halide perovskite CsPbBr3, and guest adsorption on the pores of the zeolite H-SSZ-13. For all four materials, in their guest- and defect-free state and at sufficiently low temperatures, both the static and dynamic approach yield qualitatively similar spectra in agreement with experimental results. When the temperature is increased, the harmonic approximation starts to fail for CsPbBr3 due to the presence of anharmonic phonon modes. Also, the spectroscopic fingerprints of defects and guest species are insufficiently well predicted by a simple harmonic model. Both phenomena flatten the potential energy surface (PES), which facilitates the transitions between metastable states, necessitating dynamic sampling. On the basis of the four case studies treated in this Review, we can propose the following theoretical guidelines to simulate accurate vibrational spectra of functional solid-state materials: (i) For nanostructured crystalline framework materials at low temperature, insights into the lattice dynamics can be obtained using a static approach relying on a few points on the PES and an independent set of harmonic oscillators. (ii) When the material is evaluated at higher temperatures or when additional complexity enters the system, e.g., strong anharmonicity, defects, or guest species, the harmonic regime breaks down and dynamic sampling is required for a correct prediction of the phonon spectrum. These guidelines and their illustrations for prototype material classes can help experimental and theoretical researchers to enhance the knowledge obtained from a lattice dynamics study.
Collapse
Affiliation(s)
| | - Wim Temmerman
- Center
for Molecular Modeling, Ghent University, 9000 Ghent, Belgium
| | - Emma Campbell
- Cardiff
Catalysis Institute, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
| | | | - Ines Lezcano-Gonzalez
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Andrew M. Beale
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Silvia Bordiga
- Department
of Chemistry, University of Turin, 10124 Turin, Italy
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3000 Leuven, Belgium
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
| | | |
Collapse
|
8
|
Zheng J, Solomon MB, Rawal A, Chi Y, Yu R, Liu L, Tang J, Mao G, D'Alessandro DM, Kumar PV, Rahim MA, Kalantar-Zadeh K. Passivation-Free, Liquid-Metal-Based Electrosynthesis of Aluminum Metal-Organic Frameworks Mediated by Light Metal Activation. ACS NANO 2023; 17:25532-25541. [PMID: 38054450 DOI: 10.1021/acsnano.3c09472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The production of aluminum (Al) metal-organic frameworks (MOFs) by electrosynthesis using solid-state Al electrodes always faces significant challenges due to the formation of a passivating aluminum oxide layer in the process. Here, we developed a liquid-metal-based method to electrosynthesize an aluminum Al-MOF (MIL-53). This method uses a liquid-state gallium (Ga) anode as a reservoir and activator for a light metal, Al, in the form of Al-Ga alloys that releases Al3+ for the electrosynthesis of Al-MOFs. Introducing Ga into the system inhibits the formation of aluminum oxide passivation layer and promotes the electrochemical reaction for Al-MOF synthesis. The electrosynthesis using liquid Al-Ga alloy is conducted at ambient temperatures for long durations without requiring pretreatment for aluminum oxide removal. We show that the Al-MOF products synthesized from 0.40 wt % Al in liquid Ga lead to the highest crystallinity and possess a specific surface area greater than 800 m2 g-1 and a low capacity for CO2 adsorption that can be used as a potential matrix for CO2/N2 separation. This work provides evidence that employing liquid-metal electrodes offers a viable pathway to circumvent surface passivation effects that inevitably occur when using conventional solid metals. It also introduces an efficient electrosynthesis method based on liquid metals for producing atomically porous materials.
Collapse
Affiliation(s)
- Jiewei Zheng
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Marcello B Solomon
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Aditya Rawal
- Mark Wainwright Analytical Centre, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Yuan Chi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Ruohan Yu
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Li Liu
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Deanna M D'Alessandro
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Priyank V Kumar
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Md Arifur Rahim
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
9
|
Ursueguía D, Díaz E, Ordóñez S. Effect of Water and Carbon Dioxide on the Performance of Basolite Metal-Organic Frameworks for Methane Adsorption. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2023; 37:14836-14844. [PMID: 37817863 PMCID: PMC10561151 DOI: 10.1021/acs.energyfuels.3c02393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/15/2023] [Indexed: 10/12/2023]
Abstract
MOFs are potential adsorbents for methane separation from nitrogen, including recovery in diluted streams. However, water and carbon dioxide can seriously affect the adsorption performance. Three commercial MOFs, basolite C300, F300, and A100, were studied under similar conditions to fugitive methane streams, such as water (75 and 100% relative humidity) and carbon dioxide (0.33%) presence in a fixed bed. The presence of available open metal sites of copper (Cu2+) and aluminum (Al3+) in the case of basolite C300 and A100, respectively, constitutes a clear drawback under humid conditions, since water adsorbs on them, leading to significant methane capacity losses. Surprisingly, basolite F300 is the most resistant material due to its amorphous structure, which hinders water access. The combination of carbon dioxide and water creates a synergy that seriously affects basolite A100, closely related to its breathing effect, but does not constitute an important issue for basolite C300 and F300.
Collapse
Affiliation(s)
- David Ursueguía
- Catalysis, Reactors and Control
Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
| | - Eva Díaz
- Catalysis, Reactors and Control
Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
| | - Salvador Ordóñez
- Catalysis, Reactors and Control
Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
| |
Collapse
|
10
|
Wang Y, Zhao W, Ma Z, Li L, Ma L, Tian G. Theoretical study on the vibrational structures in the conductance spectra of a weakly coupled polycyclic aromatic hydrocarbon molecule. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2022.140272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Klokic S, Naumenko D, Marmiroli B, Carraro F, Linares-Moreau M, Zilio SD, Birarda G, Kargl R, Falcaro P, Amenitsch H. Unraveling the timescale of the structural photo-response within oriented metal-organic framework films. Chem Sci 2022; 13:11869-11877. [PMID: 36320901 PMCID: PMC9580475 DOI: 10.1039/d2sc02405e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/09/2022] [Indexed: 08/10/2023] Open
Abstract
Fundamental knowledge on the intrinsic timescale of structural transformations in photo-switchable metal-organic framework films is crucial to tune their switching performance and to facilitate their applicability as stimuli-responsive materials. In this work, for the first time, an integrated approach to study and quantify the temporal evolution of structural transformations is demonstrated on an epitaxially oriented DMOF-1-on-MOF film system comprising azobenzene in the DMOF-1 pores (DMOF-1/AB). We employed time-resolved Grazing Incidence Wide-Angle X-Ray Scattering measurements to track the structural response of the DMOF-1/AB film upon altering the length of the azobenzene molecule by photo-isomerization (trans-to-cis, 343 nm; cis-to-trans, 450 nm). Within seconds, the DMOF-1/AB response occurred fully reversible and over several switching cycles by cooperative photo-switching of the oriented DMOF-1/AB crystallites as confirmed further by infrared measurements. Our work thereby suggests a new avenue to elucidate the timescales and photo-switching characteristics in structurally responsive MOF film systems.
Collapse
Affiliation(s)
- Sumea Klokic
- Institute of Inorganic Chemistry, Graz University of Technology 8010 Graz Austria
| | - Denys Naumenko
- Institute of Inorganic Chemistry, Graz University of Technology 8010 Graz Austria
| | - Benedetta Marmiroli
- Institute of Inorganic Chemistry, Graz University of Technology 8010 Graz Austria
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology 8010 Graz Austria
| | - Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology 8010 Graz Austria
| | - Simone Dal Zilio
- IOM-CNR, Laboratorio TASC S.S. 14, 163.5 km, Basovizza Trieste 34149 Italy
| | - Giovanni Birarda
- Elettra Sincrotrone Trieste - SISSI Bio Beamline S.S. 14, 163.5 km, Basovizza Trieste 34149 Italy
| | - Rupert Kargl
- Institute of Chemistry and Technology of Bio-Based Systems, Graz University of Technology 8010 Graz Austria
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology 8010 Graz Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology 8010 Graz Austria
| |
Collapse
|
12
|
Hydrogen production from water splitting of real-time industry effluent using novel photocatalyst. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Krylov A, Yushina I, Slyusareva E, Krylova S, Vtyurin A, Kaskel S, Senkovska I. Structural phase transitions in flexible DUT-8(Ni) under high hydrostatic pressure. Phys Chem Chem Phys 2022; 24:3788-3798. [PMID: 35084013 DOI: 10.1039/d1cp05021d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The behaviours of the open pore (op) and closed pore (cp) phases of the flexible Ni2(ndc)2(dabco) (ndc - 2,6-naphthalene dicarboxylate, dabco - 1,4-diazabicyclo[2.2.2]octane, DUT-8(Ni)) metal-organic framework under high hydrostatic pressures up to 10 GPa in isopropanol and silicone oil were studied by Raman spectroscopy. Ab initio simulations of vibrational spectra were performed for the open and closed pore phases, which allowed us to disclose the characteristic vibrational modes affected by the structural transitions under pressure. Analysis of theoretical and experimental Raman data suggests that the op-cp transition involves gateway vibrations at 25 and 67 cm-1, corresponding to trampoline/rotational motions of aromatic linkers. The experiments reveal the formation of new distorted cp phases at pressures higher than 2 GPa, which are formed without amorphisation. The transition between the cp phase and the distorted cp phase is reversible. The experiments also reveal the pivotal role of the pressure transmitting medium on the phase transition behaviour.
Collapse
Affiliation(s)
- Alexander Krylov
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036, Krasnoyarsk, Russia.
| | - Irina Yushina
- South Ural State University, SEC Nahenotechnology, 454080, Lenin Avenue, 76, Chelyabinsk, Russia
| | - Evgenia Slyusareva
- Siberian Federal University, Svobodny Prospect 79, 660041 Krasnoyarsk, Russia
| | - Svetlana Krylova
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036, Krasnoyarsk, Russia.
| | - Alexander Vtyurin
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036, Krasnoyarsk, Russia. .,Siberian Federal University, Svobodny Prospect 79, 660041 Krasnoyarsk, Russia
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany.
| | - Irena Senkovska
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany.
| |
Collapse
|
14
|
Ben Uliel T, Farber EM, Aviv H, Stroek W, Farbinteanu M, Tischler YR, Eisenberg D. Combining polarized low-frequency Raman with XRD to identify directional structural motifs in a pyrolysis precursor. Chem Commun (Camb) 2021; 57:7015-7018. [PMID: 34165132 DOI: 10.1039/d1cc00420d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Long-range structures and dynamics are central to coordination chemistry, yet are hard to identify experimentally. By combining polarized low-frequency Raman spectroscopy with single crystal XRD to study barium nitrilotriacetate, a metal-organic coordination polymer and a useful pyrolysis precursor, we could assign Raman peaks experimentally to layer shear motions and perpendicular hydrogen bond vibrations. These directional long-range interactions further determined the preferred fracture directions during crystallization, establishing an important link between structural motifs in the precursor, and the porosity of the carbon it yields upon pyrolysis.
Collapse
Affiliation(s)
- Tal Ben Uliel
- Department of Chemistry and Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | - Eliyahu M Farber
- Schulich Faculty of Chemistry and the Grand Technion Energy Program (GTEP), Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Hagit Aviv
- Department of Chemistry and Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | - Wowa Stroek
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Marilena Farbinteanu
- Faculty of Chemistry, Inorganic Chemistry Department, University of Bucharest, Dumbrava Rosie 23, Bucharest 020462, Romania
| | - Yaakov R Tischler
- Department of Chemistry and Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | - David Eisenberg
- Schulich Faculty of Chemistry and the Grand Technion Energy Program (GTEP), Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
15
|
Maes K, Martin LIDJ, Khelifi S, Hoffman A, Leus K, Van Der Voort P, Goovaerts E, Smet PF, Van Speybroeck V, Callens F, Vrielinck H. Identification of vanadium dopant sites in the metal-organic framework DUT-5(Al). Phys Chem Chem Phys 2021; 23:7088-7100. [PMID: 33876075 DOI: 10.1039/d1cp00695a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Studying the structural environment of the VIV ions doped in the metal-organic framework (MOF) DUT-5(Al) ((AlIIIOH)BPDC) with electron paramagnetic resonance (EPR) reveals four different vanadium-related spectral components. The spin-Hamiltonian parameters are derived by analysis of X-, Q- and W-band powder EPR spectra. Complementary Q-band Electron Nuclear DOuble Resonance (ENDOR) experiments, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX), X-Ray Diffraction (XRD) and Fourier Transform InfraRed (FTIR) measurements are performed to investigate the origin of these spectral components. Two spectral components with well resolved 51V hyperfine structure are visible, one corresponding to VIV[double bond, length as m-dash]O substitution in a large (or open) pore and one to a narrow (or closed) pore variant of this MOF. Furthermore, a broad structureless Lorentzian line assigned to interacting vanadyl centers in each other's close neighborhood grows with increasing V-concentration. The last spectral component is best visible at low V-concentrations. We tentatively attribute it to (VIV[double bond, length as m-dash]O)2+ linked with DMF or dimethylamine in the pores of the MOF. Simulations using these four spectral components convincingly reproduce the experimental spectra and allow to estimate the contribution of each vanadyl species as a function of V-concentration.
Collapse
Affiliation(s)
- Kwinten Maes
- Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, B-9000 Gent, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kusaka S, Nakajima Y, Hori A, Yonezu A, Kikushima K, Kosaka W, Ma Y, Matsuda R. Molecular motion in the nanospace of MOFs upon gas adsorption investigated by in situ Raman spectroscopy. Faraday Discuss 2021; 225:70-83. [PMID: 33108427 DOI: 10.1039/d0fd00002g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Molecular motions taking place in the nanospace of metal-organic frameworks (MOFs) are an interesting research subject, although not yet fully investigated. In this work, we utilized in situ Raman spectroscopy in the ultralow-frequency region to investigate the libration motion (including the rotational motion of phenylene rings) of MOFs, in particular [Cu2(bdc)2(dabco)] (Cu-JAST-1), where bdc = 1,4-benzenedicarboxylate and dabco = 1,4-diazabicyclo[2.2.2]octane. The libration mode of Cu-JAST-1 was found to be significantly suppressed by the adsorption of various guest molecules, such as CO2, Ar, and N2. In addition, an appreciable correlation between the libration mode and adsorption equilibrium time was identified, which provides useful novel tools in the design of MOFs acting as molecular adsorption and separation materials.
Collapse
Affiliation(s)
- Shinpei Kusaka
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lamaire A, Wieme J, Hoffman AEJ, Van Speybroeck V. Atomistic insight in the flexibility and heat transport properties of the stimuli-responsive metal–organic framework MIL-53(Al) for water-adsorption applications using molecular simulations. Faraday Discuss 2021; 225:301-323. [DOI: 10.1039/d0fd00025f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insight into the heat transport and water-adsorption properties of the flexible MIL-53(Al) is obtained using advanced molecular dynamics simulations.
Collapse
Affiliation(s)
- Aran Lamaire
- Center for Molecular Modeling
- Ghent University
- 9052 Zwijnaarde
- Belgium
| | - Jelle Wieme
- Center for Molecular Modeling
- Ghent University
- 9052 Zwijnaarde
- Belgium
| | | | | |
Collapse
|
18
|
Hess C. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions. Chem Soc Rev 2021; 50:3519-3564. [PMID: 33501926 DOI: 10.1039/d0cs01059f] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gaining insight into the mode of operation of heterogeneous catalysts is of great scientific and economic interest. Raman spectroscopy has proven its potential as a powerful vibrational spectroscopic technique for a fundamental and molecular-level characterization of catalysts and catalytic reactions. Raman spectra provide important insight into reaction mechanisms by revealing specific information on the catalysts' (defect) structure in the bulk and at the surface, as well as the presence of adsorbates and reaction intermediates. Modern Raman instrumentation based on single-stage spectrometers allows high throughput and versatility in design of in situ/operando cells to study working catalysts. This review highlights major advances in the use of Raman spectroscopy for the characterization of heterogeneous catalysts made during the past decade, including the development of new methods and potential directions of research for applying Raman spectroscopy to working catalysts. The main focus will be on gas-solid catalytic reactions, but (photo)catalytic reactions in the liquid phase will be touched on if it appears appropriate. The discussion begins with the main instrumentation now available for applying vibrational Raman spectroscopy to catalysis research, including in situ/operando cells for studying gas-solid catalytic processes. The focus then moves to the different types of information available from Raman spectra in the bulk and on the surface of solid catalysts, including adsorbates and surface depositions, as well as the use of theoretical calculations to facilitate band assignments and to describe (resonance) Raman effects. This is followed by a presentation of major developments in enhancing the Raman signal of heterogeneous catalysts by use of UV resonance Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS), and shell-isolated nanoparticle surface-enhanced Raman spectroscopy (SHINERS). The application of time-resolved Raman studies to structural and kinetic characterization is then discussed. Finally, recent developments in spatially resolved Raman analysis of catalysts and catalytic processes are presented, including the use of coherent anti-Stokes Raman spectroscopy (CARS) and tip-enhanced Raman spectroscopy (TERS). The review concludes with an outlook on potential future developments and applications of Raman spectroscopy in heterogeneous catalysis.
Collapse
Affiliation(s)
- Christian Hess
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany.
| |
Collapse
|
19
|
Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, Drenchev NL. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem Rev 2020; 121:1286-1424. [DOI: 10.1021/acs.chemrev.0c00487] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Dimitar A. Panayotov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Mihail Y. Mihaylov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Elena Z. Ivanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kristina K. Chakarova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stanislava M. Andonova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikola L. Drenchev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
20
|
Goodman E, Zhou C, Cargnello M. Design of Organic/Inorganic Hybrid Catalysts for Energy and Environmental Applications. ACS CENTRAL SCIENCE 2020; 6:1916-1937. [PMID: 33274270 PMCID: PMC7706093 DOI: 10.1021/acscentsci.0c01046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 05/31/2023]
Abstract
Controlling selectivity between competing reaction pathways is crucial in catalysis. Several approaches have been proposed to achieve this goal in traditional heterogeneous catalysts including tuning nanoparticle size, varying alloy composition, and controlling supporting material. A less explored and promising research area to control reaction selectivity is via the use of hybrid organic/inorganic catalysts. These materials contain inorganic components which serve as sites for chemical reactions and organic components which either provide diffusional control or directly participate in the formation of active site motifs. Despite the appealing potential of these hybrid materials to increase reaction selectivity, there are significant challenges to the rational design of such hybrid nanostructures. Structural and mechanistic characterization of these materials play a key role in understanding and, therefore, designing these organic/inorganic hybrid catalysts. This Outlook highlights the design of hybrid organic/inorganic catalysts with a brief overview of four different classes of materials and discusses the practical catalytic properties and opportunities emerging from such designs in the area of energy and environmental transformations. Key structural and mechanistic characterization studies are identified to provide fundamental insight into the atomic structure and catalytic behavior of hybrid organic/inorganic catalysts. Exemplary works are used to show how specific active site motifs allow for remarkable changes in the reaction selectivity. Finally, to demonstrate the potential of hybrid catalyst materials, we suggest a characterization-based approach toward the design of biomimetic hybrid organic/inorganic materials for a specific application in the energy and environmental research space: the conversion of methane into methanol.
Collapse
|
21
|
Andreeva AB, Le KN, Chen L, Kellman ME, Hendon CH, Brozek CK. Soft Mode Metal-Linker Dynamics in Carboxylate MOFs Evidenced by Variable-Temperature Infrared Spectroscopy. J Am Chem Soc 2020; 142:19291-19299. [DOI: 10.1021/jacs.0c09499] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anastasia B. Andreeva
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Khoa N. Le
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Lihaokun Chen
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael E. Kellman
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Christopher H. Hendon
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Carl K. Brozek
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| |
Collapse
|
22
|
Formalik F, Neimark AV, Rogacka J, Firlej L, Kuchta B. Pore opening and breathing transitions in metal-organic frameworks: Coupling adsorption and deformation. J Colloid Interface Sci 2020; 578:77-88. [DOI: 10.1016/j.jcis.2020.05.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/28/2022]
|
23
|
Majumder M, Choudhary RB, Thakur AK, Khodayari A, Amiri M, Boukherroub R, Szunerits S. Aluminum based metal-organic framework integrated with reduced graphene oxide for improved supercapacitive performance. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
24
|
Hiraoka T, Shigeto S. Interactions of water confined in a metal-organic framework as studied by a combined approach of Raman, FTIR, and IR electroabsorption spectroscopies and multivariate curve resolution analysis. Phys Chem Chem Phys 2020; 22:17798-17806. [PMID: 32609125 DOI: 10.1039/d0cp02958k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water in nanoconfinement shows distinct properties that are markedly different from those of bulk water. These unique properties stem not only from the water-water interaction but also from the interactions between water and the surrounding confining environment. Here we used a combined approach of vibrational spectroscopies (Raman, FTIR, and IR electroabsorption) and a multivariate curve resolution technique to study the interactions of water in a heterogeneous confining environment within a prototype of pillared layer-type metal-organic frameworks (MOFs), CPL-1 ([Cu2(pzdc)2(pyz)]n, where pzdc = 2,3-pyrazinedicarboxylate, pyz = pyrazine). The OH stretching Raman spectrum of hydrated CPL-1 microcrystals revealed that the adsorbed water molecules resemble the subpopulation of bulk water whose hydrogen bond is weak. Multivariate curve resolution analysis of FTIR spectra monitoring water desorption from CPL-1 allowed for accurate assignments of the framework's carboxylate vibrational modes associated with water-filled and empty nanopores of the MOF, and for quantitative determination of the number fraction of these pores. Furthermore, building on the assignments so made, IR electroabsorption measurements showed that the hydrogen-bonding interaction with water adsorbed in CPL-1 has little impact on the response to electric fields of the framework vibrational modes. The present findings altogether provide a solid basis of elucidating water confined in CPL-1 and demonstrate the potential of the combined vibrational spectroscopic method for interrogating the interactions within MOFs.
Collapse
Affiliation(s)
- Takayuki Hiraoka
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337, Japan.
| | - Shinsuke Shigeto
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337, Japan.
| |
Collapse
|
25
|
Celeste A, Paolone A, Itié JP, Borondics F, Joseph B, Grad O, Blanita G, Zlotea C, Capitani F. Mesoporous Metal-Organic Framework MIL-101 at High Pressure. J Am Chem Soc 2020; 142:15012-15019. [PMID: 32786787 DOI: 10.1021/jacs.0c05882] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The chromium terephthalate MIL-101 is a mesoporous metal-organic framework (MOF) with unprecedented adsorption capacities due to the presence of giant pores. The application of an external pressure can effectively modify the open structure of MOFs and its interaction with guest molecules. In this work, we study MIL-101 under pressure by synchrotron X-ray diffraction and infrared (IR) spectroscopy with several pressure transmitting media (PTM). Our experimental results clearly show that when a solid medium as NaCl is employed, an irreversible amorphization of the empty structure occurs at about 0.4 GPa. Using a fluid PTM, as Nujol or high-viscosity silicone oil, results in a slight lattice expansion and a strong modification of the peak frequency and shape of the MOF hydroxyl vibration below 0.1 GPa. Moreover, the framework stability is enhanced under pressure with the amorphization onset shifted to about 7 GPa. This coherent set of results points out the insertion of the fluid inside the MIL-101 pores. Above 7 GPa, concomitantly to the nucleation of the amorphous phase, we observe a peculiar medium-dependent lattice expansion. The behavior of the OH stretching vibrations under pressure is profoundly affected by the presence of the guest fluid, showing that OH bonds are sensitive vibrational probes of the host-guest interactions. The present study demonstrates that even a polydimethylsiloxane silicone oil, although highly viscous, can be effectively inserted into the MIL-101 pores at a pressure below 0.2 GPa. High pressure can thus promote the incorporation of large polymers in mesoporous MOFs.
Collapse
Affiliation(s)
- Anna Celeste
- Institut de Chimie et des Matériaux Paris-Est, CNRS UMR 7182, UPEC, 2-8, rue Henri Dunant, 94320 Thiais, France.,Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91192 Cedex Gif sur Yvette, France
| | - Annalisa Paolone
- Consiglio Nazionale delle Ricerche-Istituto dei Sistemi Complessi, U.O.S. La Sapienza, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Jean-Paul Itié
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91192 Cedex Gif sur Yvette, France
| | - Ferenc Borondics
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91192 Cedex Gif sur Yvette, France
| | - Boby Joseph
- Elettra-Sincrotrone Trieste, S.S. 14-km 163.5, Basovizza, 34149 Trieste, Italy
| | - Oana Grad
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., RO-400293 Cluj-Napoca, Romania
| | - Gabriela Blanita
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., RO-400293 Cluj-Napoca, Romania
| | - Claudia Zlotea
- Institut de Chimie et des Matériaux Paris-Est, CNRS UMR 7182, UPEC, 2-8, rue Henri Dunant, 94320 Thiais, France
| | - Francesco Capitani
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91192 Cedex Gif sur Yvette, France
| |
Collapse
|
26
|
Roztocki K, Szufla M, Bon V, Senkovska I, Kaskel S, Matoga D. Interlinker Hydrogen Bonds Govern CO 2 Adsorption in a Series of Flexible 2D Diacylhydrazone/Isophthalate-Based MOFs: Influence of Metal Center, Linker Substituent, and Activation Temperature. Inorg Chem 2020; 59:10717-10726. [PMID: 32663400 PMCID: PMC7467668 DOI: 10.1021/acs.inorgchem.0c01182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
Four new layered flexible metal–organic
frameworks (MOFs)
containing a diacylhydrazone moiety, namely, guest-filled [Zn2(iso)2(tdih)2]n (1), [Zn2(NH2iso)2(tdih)2]n (2),
[Cd2(iso)2(tdih)2]n (3) and [Cd2(NH2iso)2(tdih)2]n (4) were synthesized using terephthalaldehyde di-isonicotinoylhydrazone
(tdih) as a linear ditopic linker as well as isophtalate
(iso) or 5-aminoisophthalate (NH2iso) as angular colinkers.
The MOFs with hexacoordinated cadmium centers feature two-dimensional
pore systems as compared to the MOFs with pentacoordinated zinc centers
showing either zero-dimensional or mixed zero-/one-dimensional voids,
as evidenced by single-crystal X-ray diffraction. In contrast to the
frameworks based on isophtalates which do not show any significant
gas uptakes, introduction of amino-substituted linker enables CO2 adsorption. Gently activated aminoisophthalate-based frameworks,
that is, guest-exchanged in methanol and heated to 100 °C, show
reversible gated CO2 adsorptions at 195 K, whereas the
increase of activation temperature to 150 °C or more leads to
one-step isotherms and lower adsorption capacities. X-ray diffraction
and IR spectroscopy reveal significant structural differences in interlayer
hydrogen bonding upon activation of materials at higher temperatures.
The work emphasizes the role of hydrogen bonds in crystal engineering
of layered materials and the importance of activation conditions in
such systems. Interplay between a metal center and
functionalization of
isophthalate linker leads to remarkable diversity of structures and
properties in the series of layered flexible metal−organic
frameworks. Intriguing adsorption properties include stepwise gated
CO2 adsorptions and strong dependence on activation conditions.
The role of hydrogen bonds in crystal engineering of layered materials
is underscored by activation−structure−adsorption correlations.
Collapse
Affiliation(s)
- Kornel Roztocki
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Monika Szufla
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Volodymyr Bon
- Department of Inorganic Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Irena Senkovska
- Department of Inorganic Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Stefan Kaskel
- Department of Inorganic Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Dariusz Matoga
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
27
|
Yang D, Gaggioli CA, Ray D, Babucci M, Gagliardi L, Gates BC. Tuning Catalytic Sites on Zr6O8 Metal–Organic Framework Nodes via Ligand and Defect Chemistry Probed with tert-Butyl Alcohol Dehydration to Isobutylene. J Am Chem Soc 2020; 142:8044-8056. [DOI: 10.1021/jacs.0c03175] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dong Yang
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Carlo Alberto Gaggioli
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Debmalya Ray
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Melike Babucci
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
28
|
Collins SM, Kepaptsoglou DM, Hou J, Ashling CW, Radtke G, Bennett TD, Midgley PA, Ramasse QM. Functional Group Mapping by Electron Beam Vibrational Spectroscopy from Nanoscale Volumes. NANO LETTERS 2020; 20:1272-1279. [PMID: 31944111 DOI: 10.1021/acs.nanolett.9b04732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vibrational spectroscopies directly record details of bonding in materials, but spatially resolved methods have been limited to surface techniques for mapping functional groups at the nanoscale. Electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope presents a route to functional group analysis from nanoscale volumes using transmitted subnanometer electron probes. Here, we now use vibrational EELS to map distinct carboxylate and imidazolate linkers in a metal-organic framework (MOF) crystal-glass composite material. Domains <100 nm in size are observed using vibrational EELS, with recorded spatial resolution <15 nm at interfaces in the composite. This nanoscale functional group mapping is confirmed by correlated EELS at core ionization edges as well as X-ray energy dispersive spectroscopy for elemental mapping of the metal centers of the two constituent MOFs. These results present a complete nanoscale analysis of the building blocks of the MOF composite and establish spatially resolved functional group analysis using electron beam spectroscopy for crystalline and amorphous organic and metal-organic solids.
Collapse
Affiliation(s)
- Sean M Collins
- Department of Materials Science and Metallurgy , University of Cambridge , 27 Charles Babbage Road , Cambridge CB3 0FS , United Kingdom
| | - Demie M Kepaptsoglou
- SuperSTEM Laboratory , SciTech Daresbury Campus , Daresbury WA4 4AD , United Kingdom
- Department of Physics , University of York , Heslington, York YO10 5DD , United Kingdom
| | - Jingwei Hou
- Department of Materials Science and Metallurgy , University of Cambridge , 27 Charles Babbage Road , Cambridge CB3 0FS , United Kingdom
| | - Christopher W Ashling
- Department of Materials Science and Metallurgy , University of Cambridge , 27 Charles Babbage Road , Cambridge CB3 0FS , United Kingdom
| | - Guillaume Radtke
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC , 75005 Paris , France
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy , University of Cambridge , 27 Charles Babbage Road , Cambridge CB3 0FS , United Kingdom
| | - Paul A Midgley
- Department of Materials Science and Metallurgy , University of Cambridge , 27 Charles Babbage Road , Cambridge CB3 0FS , United Kingdom
| | - Quentin M Ramasse
- SuperSTEM Laboratory , SciTech Daresbury Campus , Daresbury WA4 4AD , United Kingdom
- School of Chemical and Process Engineering and School of Physics , University of Leeds , Leeds LS2 9JT , United Kingdom
| |
Collapse
|
29
|
Embrechts H, Kriesten M, Ermer M, Peukert W, Hartmann M, Distaso M. In situ Raman and FTIR spectroscopic study on the formation of the isomers MIL-68(Al) and MIL-53(Al). RSC Adv 2020; 10:7336-7348. [PMID: 35492146 PMCID: PMC9049789 DOI: 10.1039/c9ra09968a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/08/2020] [Indexed: 11/21/2022] Open
Abstract
The paper describes a method to induce the formation of MIL-68(Al) rather than MIL-53(Al) using a formic acid modulated synthesis approach.
Collapse
Affiliation(s)
- Heidemarie Embrechts
- Institute of Particle Technology
- FAU Erlangen-Nürnberg
- Erlangen
- Germany
- Interdisciplinary Center for Functional Particle Systems
| | - Martin Kriesten
- Erlangen Center for Interface Research and Catalysis (ECRC)
- FAU Erlangen-Nürnberg
- Erlangen
- Germany
| | - Matthias Ermer
- Erlangen Center for Interface Research and Catalysis (ECRC)
- FAU Erlangen-Nürnberg
- Erlangen
- Germany
| | - Wolfgang Peukert
- Institute of Particle Technology
- FAU Erlangen-Nürnberg
- Erlangen
- Germany
- Interdisciplinary Center for Functional Particle Systems
| | - Martin Hartmann
- Interdisciplinary Center for Functional Particle Systems
- FAU Erlangen-Nürnberg
- Erlangen
- Germany
- Erlangen Center for Interface Research and Catalysis (ECRC)
| | - Monica Distaso
- Institute of Particle Technology
- FAU Erlangen-Nürnberg
- Erlangen
- Germany
- Interdisciplinary Center for Functional Particle Systems
| |
Collapse
|
30
|
Kavak S, Polat HM, Kulak H, Keskin S, Uzun A. MIL-53(Al) as a Versatile Platform for Ionic-Liquid/MOF Composites to Enhance CO 2 Selectivity over CH 4 and N 2. Chem Asian J 2019; 14:3655-3667. [PMID: 31339661 PMCID: PMC6851973 DOI: 10.1002/asia.201900634] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/05/2019] [Indexed: 11/25/2022]
Abstract
Five different imidazolium-based ionic liquids (ILs) were incorporated into a metal-organic framework (MOF), MIL-53(Al), to investigate the effect of IL incorporation on the CO2 separation performance of MIL-53(Al). CO2 , CH4 , and N2 adsorption isotherms of the IL/MIL-53(Al) composites and pristine MIL-53(Al) were measured to evaluate the effect of the ILs on the CO2 /CH4 and CO2 /N2 selectivities of the MOF. Of the composite materials that were tested, [BMIM][PF6 ]/MIL-53(Al) exhibited the largest increase in CO2 /CH4 selectivity, 2.8-times higher than that of pristine MIL-53(Al), whilst [BMIM][MeSO4 ]/MIL-53(Al) exhibited the largest increase in CO2 /N2 selectivity, 3.3-times higher than that of pristine MIL-53(Al). A comparison of the CO2 separation potentials of the IL/MOF composites showed that the [BMIM][BF4 ]- and [BMIM][PF6 ]-incorporated MIL-53(Al) composites both showed enhanced CO2 /N2 and CO2 /CH4 selectivities at pressures of 1-5 bar compared to composites of CuBTC and ZIF-8 with the same ILs. These results demonstrate that MIL-53(Al) is a versatile platform for IL/MOF composites and could help to guide the rational design of new composites for target gas-separation applications.
Collapse
Affiliation(s)
- Safiyye Kavak
- Department of Materials Science and EngineeringKoç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
- Koç University TÜPRAŞ Energy Center (KUTEM)Koç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
| | - H. Mert Polat
- Department of Materials Science and EngineeringKoç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
- Koç University TÜPRAŞ Energy Center (KUTEM)Koç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
| | - Harun Kulak
- Department of Chemical and Biological EngineeringKoç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
- Koç University TÜPRAŞ Energy Center (KUTEM)Koç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
| | - Seda Keskin
- Department of Chemical and Biological EngineeringKoç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
- Koç University TÜPRAŞ Energy Center (KUTEM)Koç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
| | - Alper Uzun
- Department of Chemical and Biological EngineeringKoç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
- Koç University TÜPRAŞ Energy Center (KUTEM)Koç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
- Koç University Surface Science and Technology Center (KUYTAM)Koç UniversityRumelifeneri Yolu34450 SariyerIstanbulTurkey
| |
Collapse
|
31
|
Romero-Muñiz C, Paredes-Roibás D, Hernanz A, Gavira-Vallejo JM. A comprehensive study of the molecular vibrations in solid-state benzylic amide [2]catenane. Phys Chem Chem Phys 2019; 21:19538-19547. [PMID: 31463506 DOI: 10.1039/c9cp03053k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The interpretation of vibrational spectra is often complex but a detailed knowledge of the normal modes responsible for the experimental bands provides valuable information about the molecular structure of the sample. In this work we record and assign in detail the infrared (IR) spectrum of the benzylic amide [2]catenane, a complex molecular solid displaying crimped mechanical bonds like the links of a chain. In spite of the large size of the unit cell, we calculate all the vibrational modes of the catenane crystal using quantum first-principles calculations. The activity of each mode is also evaluated using the Born effective charges approach and a theoretical spectrum is constructed for comparison purposes. We find a remarkable agreement between the calculations and the experimental results without the need to apply any further empirical correction or fitting to the eigenfrequencies. A detailed description in terms of the usual internal coordinates is provided for over 1000 normal modes. This thorough analysis allows us to perform the complete assignment of the spectrum, revealing the nature of the most active modes responsible for the IR features. Finally, we compare the obtained results with those of Raman spectroscopy, studying the effects of the rule of mutual exclusion in vibrational spectroscopy according to the different levels of molecular symmetry embedded in this mechanically interlocked molecular compound.
Collapse
Affiliation(s)
- Carlos Romero-Muñiz
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
| | - Denís Paredes-Roibás
- Departamento de Ciencias y Técnicas Fisicoquímicas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Paseo de la Senda del Rey 9, E-28040 Madrid, Spain
| | - Antonio Hernanz
- Departamento de Ciencias y Técnicas Fisicoquímicas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Paseo de la Senda del Rey 9, E-28040 Madrid, Spain
| | - José María Gavira-Vallejo
- Departamento de Ciencias y Técnicas Fisicoquímicas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Paseo de la Senda del Rey 9, E-28040 Madrid, Spain
| |
Collapse
|
32
|
Bailleul S, Yarulina I, Hoffman AEJ, Dokania A, Abou-Hamad E, Chowdhury AD, Pieters G, Hajek J, De Wispelaere K, Waroquier M, Gascon J, Van Speybroeck V. A Supramolecular View on the Cooperative Role of Brønsted and Lewis Acid Sites in Zeolites for Methanol Conversion. J Am Chem Soc 2019; 141:14823-14842. [PMID: 31464134 PMCID: PMC6753656 DOI: 10.1021/jacs.9b07484] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A systematic molecular level and spectroscopic investigation is presented to show the cooperative role of Brønsted acid and Lewis acid sites in zeolites for the conversion of methanol. Extra-framework alkaline-earth metal containing species and aluminum species decrease the number of Brønsted acid sites, as protonated metal clusters are formed. A combined experimental and theoretical effort shows that postsynthetically modified ZSM-5 zeolites, by incorporation of extra-framework alkaline-earth metals or by demetalation with dealuminating agents, contain both mononuclear [MOH]+ and double protonated binuclear metal clusters [M(μ-OH)2M]2+ (M = Mg, Ca, Sr, Ba, and HOAl). The metal in the extra-framework clusters has a Lewis acid character, which is confirmed experimentally and theoretically by IR spectra of adsorbed pyridine. The strength of the Lewis acid sites (Mg > Ca > Sr > Ba) was characterized by a blue shift of characteristic IR peaks, thus offering a tool to sample Lewis acidity experimentally. The incorporation of extra-framework Lewis acid sites has a substantial influence on the reactivity of propene and benzene methylations. Alkaline-earth Lewis acid sites yield increased benzene methylation barriers and destabilization of typical aromatic intermediates, whereas propene methylation routes are less affected. The effect on the catalytic function is especially induced by the double protonated binuclear species. Overall, the extra-framework metal clusters have a dual effect on the catalytic function. By reducing the number of Brønsted acid sites and suppressing typical catalytic reactions in which aromatics are involved, an optimal propene selectivity and increased lifetime for methanol conversion over zeolites is obtained. The combined experimental and theoretical approach gives a unique insight into the nature of the supramolecular zeolite catalyst for methanol conversion which can be meticulously tuned by subtle interplay of Brønsted and Lewis acid sites.
Collapse
Affiliation(s)
- Simon Bailleul
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| | - Irina Yarulina
- King Abdullah University of Science and Technology , KAUST Catalysis Center, Advanced Catalytic Materials , Thuwal 23955-6900 , Saudi Arabia
| | - Alexander E J Hoffman
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| | - Abhay Dokania
- King Abdullah University of Science and Technology , KAUST Catalysis Center, Advanced Catalytic Materials , Thuwal 23955-6900 , Saudi Arabia
| | - Edy Abou-Hamad
- King Abdullah University of Science and Technology (KAUST) , Core Laboratories , Thuwal , Saudi Arabia
| | - Abhishek Dutta Chowdhury
- King Abdullah University of Science and Technology , KAUST Catalysis Center, Advanced Catalytic Materials , Thuwal 23955-6900 , Saudi Arabia
| | - Giovanni Pieters
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| | - Julianna Hajek
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| | - Kristof De Wispelaere
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| | - Michel Waroquier
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| | - Jorge Gascon
- King Abdullah University of Science and Technology , KAUST Catalysis Center, Advanced Catalytic Materials , Thuwal 23955-6900 , Saudi Arabia
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , B-9052 Zwijnaarde , Belgium
| |
Collapse
|
33
|
Kulak H, Polat HM, Kavak S, Keskin S, Uzun A. Improving CO 2 Separation Performance of MIL-53(Al) by Incorporating 1- n-Butyl-3-Methylimidazolium Methyl Sulfate. ENERGY TECHNOLOGY (WEINHEIM, GERMANY) 2019; 7:1900157. [PMID: 32140382 PMCID: PMC7043311 DOI: 10.1002/ente.201900157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/19/2019] [Indexed: 06/10/2023]
Abstract
1-n-Butyl-3-methylimidazolium methyl sulfate is incorporated into MIL-53(Al). Detailed characterization is done by X-ray fluorescence, Brunauer-Emmett-Teller surface area, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Results show that ionic liquid (IL) interacts directly with the framework, significantly modifying the electronic environment of MIL-53(Al). Based on the volumetric gas adsorption measurements, CO2, CH4, and N2 adsorption capacities decreased from 112.0, 46.4, and 19.6 cc (STP) gMIL-53(Al) -1 to 42.2, 13.0, and 4.3 cc (STP) gMIL-53(Al) -1 at 5 bar, respectively, upon IL incorporation. Data show that this postsynthesis modification leads to more than two and threefold increase in the ideal selectivity for CO2 over CH4 and N2 separations, respectively, as compared with pristine MIL-53(Al). The isosteric heat of adsorption (Qst) values show that IL incorporation increases CO2 affinity and decreases CH4 and N2 affinities. Cycling adsorption-desorption measurements show that the composite could be regenerated with almost no decrease in the CO2 adsorption capacity for six cycles and confirm the lack of any significant IL leaching. The results offer MIL-53(Al) as an excellent platform for the development of a new class of IL/MOF composites with exceptional performance for CO2 separation.
Collapse
Affiliation(s)
- Harun Kulak
- Department of Chemical and Biological EngineeringKoç UniversityRumelifeneri Yolu34450SariyerIstanbulTurkey
- Koç University TÜPRAŞ Energy Center (KUTEM)Koç UniversityRumelifeneri Yolu34450SariyerIstanbulTurkey
| | - H. Mert Polat
- Koç University TÜPRAŞ Energy Center (KUTEM)Koç UniversityRumelifeneri Yolu34450SariyerIstanbulTurkey
- Department of Materials Science and EngineeringKoç UniversityRumelifeneri Yolu34450SariyerIstanbulTurkey
| | - Safiyye Kavak
- Koç University TÜPRAŞ Energy Center (KUTEM)Koç UniversityRumelifeneri Yolu34450SariyerIstanbulTurkey
- Department of Materials Science and EngineeringKoç UniversityRumelifeneri Yolu34450SariyerIstanbulTurkey
| | - Seda Keskin
- Department of Chemical and Biological EngineeringKoç UniversityRumelifeneri Yolu34450SariyerIstanbulTurkey
- Koç University TÜPRAŞ Energy Center (KUTEM)Koç UniversityRumelifeneri Yolu34450SariyerIstanbulTurkey
| | - Alper Uzun
- Department of Chemical and Biological EngineeringKoç UniversityRumelifeneri Yolu34450SariyerIstanbulTurkey
- Koç University TÜPRAŞ Energy Center (KUTEM)Koç UniversityRumelifeneri Yolu34450SariyerIstanbulTurkey
- Koç University Surface Science and Technology Center (KUYTAM)Koç UniversityRumelifeneri Yolu34450SariyerIstanbulTurkey
| |
Collapse
|
34
|
Beata G, Perego G, Civalleri B. CRYSPLOT: A new tool to visualize physical and chemical properties of molecules, polymers, surfaces, and crystalline solids. J Comput Chem 2019; 40:2329-2338. [PMID: 31077416 DOI: 10.1002/jcc.25858] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 01/10/2023]
Abstract
CRYSPLOT is a web-oriented tool (http://crysplot.crystalsolutions.eu) to visualize computed properties of periodic systems, in particular, as computed with the CRYSTAL code. Along with plotting, CRYSPLOT also permits the modification and customization of plots to meet the standards required for scientific graphics. CRYSPLOT has been designed with advanced and freely available graphical Javascript libraries as Plotly. The programming language used is Javascript. The code parses the input files, reads the data, and organizes them into objects ready to be plotted with the plotly.js library. It is modular and flexible so that it is very simple to add other input data formats. The new graphical tool is presented in details along with selected applications on metal-organic frameworks to show some of its capabilities. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Giorgia Beata
- Dipartimento di Chimica, Università di Torino, I-10125, Torino, Italy.,Aethia Srl, 10010, Colleretto Giacosa, Italy
| | | | | |
Collapse
|
35
|
Abstract
Abstract
Phonons are quantum elastic excitations of crystalline solids. Classically, they correspond to the collective vibrations of atoms in ordered periodic structures. They determine the thermodynamic properties of solids and their stability in the case of structural transformations. Here we review for the first time the existing examples of the phonon analysis of adsorption-induced transformations occurring in microporous crystalline materials. We discuss the role of phonons in determining the mechanism of the deformations. We point out that phonon-based methodology may be used as a predictive tool in characterization of flexible microporous structures; therefore, relevant numerical tools must be developed.
Collapse
|
36
|
Hoffman AE, Wieme J, Rogge SM, Vanduyfhuys L, Van Speybroeck V. The impact of lattice vibrations on the macroscopic breathing behavior of MIL-53(Al). ACTA ACUST UNITED AC 2019. [DOI: 10.1515/zkri-2018-2154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
The mechanism inducing the breathing in flexible metal-organic frameworks, such as MIL-53(Al), is still not fully understood. Herein, the influence of lattice vibrations on the breathing transition in MIL-53(Al) is investigated to gain insight in this phenomenon. Through solid-state density-functional theory calculations, the volume-dependent IR spectrum is computed together with the volume-frequency relations of all vibrational modes. Furthermore, important thermodynamic properties such as the Helmholtz free energy, the specific heat capacity, the bulk modulus, and the volumetric thermal expansion coefficient are derived via these volume-frequency relations using the quasi-harmonic approximation. The simulations expose a general volume-dependency of the vibrations with wavenumbers above 300 cm−1 due to their localized nature. In contrast, a diverse set of volume-frequency relations are observed for vibrations in the terahertz region (<300 cm−1) containing the vibrations exhibiting collective behavior. Some terahertz vibrations display large frequency differences over the computed volume range, induced by either repulsion or strain effects, potentially triggering the phase transformation. Finally, the impact of the lattice vibrations on the thermodynamic properties is investigated. This reveals that the closed pore to large pore phase transformation in MIL-53(Al) is mainly facilitated by terahertz vibrations inducing rotations of the organic linker, while the large pore to closed pore phase transformation relies on two framework-specific soft modes.
Collapse
Affiliation(s)
- Alexander E.J. Hoffman
- Center for Molecular Modeling, Ghent University , Technologiepark 46 , 9052 Zwijnaarde , Belgium
| | - Jelle Wieme
- Center for Molecular Modeling, Ghent University , Technologiepark 46 , 9052 Zwijnaarde , Belgium
| | - Sven M.J. Rogge
- Center for Molecular Modeling, Ghent University , Technologiepark 46 , 9052 Zwijnaarde , Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling, Ghent University , Technologiepark 46 , 9052 Zwijnaarde , Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling, Ghent University , Technologiepark 46 , 9052 Zwijnaarde , Belgium
| |
Collapse
|
37
|
Robatjazi H, Weinberg D, Swearer DF, Jacobson C, Zhang M, Tian S, Zhou L, Nordlander P, Halas NJ. Metal-organic frameworks tailor the properties of aluminum nanocrystals. SCIENCE ADVANCES 2019; 5:eaav5340. [PMID: 30783628 PMCID: PMC6368424 DOI: 10.1126/sciadv.aav5340] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/21/2018] [Indexed: 05/21/2023]
Abstract
Metal-organic frameworks (MOFs) and metal nanoparticles are two classes of materials that have received considerable recent attention, each for controlling chemical reactivities, albeit in very different ways. Here, we report the growth of MOF shell layers surrounding aluminum nanocrystals (Al NCs), an Earth-abundant metal with energetic, plasmonic, and photocatalytic properties. The MOF shell growth proceeds by means of dissolution-and-growth chemistry that uses the intrinsic surface oxide of the NC to obtain the Al3+ ions accommodated into the MOF nodes. Changes in the Al NC plasmon resonance provide an intrinsic optical probe of its dissolution and growth kinetics. This same chemistry enables a highly controlled oxidation of the Al NCs, providing a precise method for reducing NC size in a shape-preserving manner. The MOF shell encapsulation of the Al NCs results in increased efficiencies for plasmon-enhanced photocatalysis, which is observed for the hydrogen-deuterium exchange and reverse water-gas shift reactions.
Collapse
Affiliation(s)
- Hossein Robatjazi
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Laboratory for Nanophotonics, Rice University, Houston, TX, USA
| | - Daniel Weinberg
- Laboratory for Nanophotonics, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Dayne F. Swearer
- Laboratory for Nanophotonics, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Christian Jacobson
- Laboratory for Nanophotonics, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Ming Zhang
- Laboratory for Nanophotonics, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - Shu Tian
- Laboratory for Nanophotonics, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Linan Zhou
- Laboratory for Nanophotonics, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Peter Nordlander
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Laboratory for Nanophotonics, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Naomi J. Halas
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Laboratory for Nanophotonics, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| |
Collapse
|
38
|
Abednatanzi S, Gohari Derakhshandeh P, Depauw H, Coudert FX, Vrielinck H, Van Der Voort P, Leus K. Mixed-metal metal–organic frameworks. Chem Soc Rev 2019; 48:2535-2565. [DOI: 10.1039/c8cs00337h] [Citation(s) in RCA: 345] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mixed-metal MOFs contain at least 2 different metal ions presenting promising potential in heterogeneous catalysis, gas sorption/separation, luminescence and sensing.
Collapse
Affiliation(s)
- Sara Abednatanzi
- Center for Ordered Materials
- Organometallics and Catalysis
- Ghent University
- 9000 Gent
- Belgium
| | | | - Hannes Depauw
- Center for Ordered Materials
- Organometallics and Catalysis
- Ghent University
- 9000 Gent
- Belgium
| | | | - Henk Vrielinck
- Department of Solid State Sciences
- Ghent University
- 9000 Gent
- Belgium
| | - Pascal Van Der Voort
- Center for Ordered Materials
- Organometallics and Catalysis
- Ghent University
- 9000 Gent
- Belgium
| | - Karen Leus
- Center for Ordered Materials
- Organometallics and Catalysis
- Ghent University
- 9000 Gent
- Belgium
| |
Collapse
|
39
|
|
40
|
Millange F, Walton RI. MIL-53 and its Isoreticular Analogues: a Review of the Chemistry and Structure of a Prototypical Flexible Metal-Organic Framework. Isr J Chem 2018. [DOI: 10.1002/ijch.201800084] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Franck Millange
- Département de Chimie; Université de Versailles-St-Quentin-en-Yvelines; 45 Avenue des États-Unis 78035 Versailles cedex France
| | - Richard I. Walton
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV4 7AL United Kingdom
| |
Collapse
|
41
|
Souto M, Romero J, Calbo J, Vitórica-Yrezábal IJ, Zafra JL, Casado J, Ortí E, Walsh A, Mínguez Espallargas G. Breathing-Dependent Redox Activity in a Tetrathiafulvalene-Based Metal-Organic Framework. J Am Chem Soc 2018; 140:10562-10569. [PMID: 30040405 PMCID: PMC6166999 DOI: 10.1021/jacs.8b05890] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
"Breathing" metal-organic frameworks (MOFs) that involve changes in their structural and physical properties upon an external stimulus are an interesting class of crystalline materials due to their range of potential applications including chemical sensors. The addition of redox activity opens up a new pathway for multifunctional "breathing" frameworks. Herein, we report the continuous breathing behavior of a tetrathiafulvalene (TTF)-based MOF, namely MUV-2, showing a reversible swelling (up to ca. 40% of the volume cell) upon solvent adsorption. Importantly, the planarity of the TTF linkers is influenced by the breathing behavior of the MOF, directly impacting on its electrochemical properties and thus opening the way for the development of new electrochemical sensors. Quantum chemical calculations and Raman spectroscopy have been used to provide insights into the tunability of the oxidation potential.
Collapse
Affiliation(s)
- Manuel Souto
- Instituto de Ciencia Molecular (ICMol) , Universidad de Valencia , c/Catedrático José Beltrán, 2 , 46980 Paterna , Spain
| | - Jorge Romero
- Instituto de Ciencia Molecular (ICMol) , Universidad de Valencia , c/Catedrático José Beltrán, 2 , 46980 Paterna , Spain
| | - Joaquín Calbo
- Department of Materials , Imperial College London , London SW7 2AZ , United Kingdom
| | | | - José L Zafra
- Departamento de Química Física , Universidad de Málaga , 29071 Málaga , Spain
| | - Juan Casado
- Departamento de Química Física , Universidad de Málaga , 29071 Málaga , Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular (ICMol) , Universidad de Valencia , c/Catedrático José Beltrán, 2 , 46980 Paterna , Spain
| | - Aron Walsh
- Department of Materials , Imperial College London , London SW7 2AZ , United Kingdom.,Department of Materials Science and Engineering , Yonsei University , Seoul 03722 , Korea
| | - Guillermo Mínguez Espallargas
- Instituto de Ciencia Molecular (ICMol) , Universidad de Valencia , c/Catedrático José Beltrán, 2 , 46980 Paterna , Spain
| |
Collapse
|