1
|
Senanayake IM, Alam MS, Kabir MSH, Petrilla AF, Siraj Z, Theis T, Chekmenev EY, Goodson BM. 15N SABRE-SHEATH and NMR/DFT Characterization of Amino-Metronidazole, a Metabolic Product of the Antibiotic and Prospective Hypoxia Contrast Agent Metronidazole. J Phys Chem B 2025. [PMID: 39843250 DOI: 10.1021/acs.jpcb.4c07877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The antibiotic metronidazole (MNZ) has gained interest as a potential MRI contrast agent for imaging hypoxia. 15N-labeled MNZ can be efficiently hyperpolarized via SABRE-SHEATH (Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei), but the envisioned MRI approach requires that MNZ rapidly undergoes structural changes in hypoxic environments with significant 15N frequency differences manifested in its downstream metabolic products. We have performed NMR studies of the anticipated metabolic product amino-MNZ (despite anticipated stability concerns) accompanied by computational density functional theory (DFT) studies to predict the 15N chemical shifts of different relevant species. Direct hyperpolarization of sparse naturally abundant 15N spins in amino-MNZ via SABRE-SHEATH (enhancement up to ∼9400 fold), along with 1H-decoupled 15N NMR, allowed comparison with both 15N3-MNZ and naturally abundant MNZ. The results show significant 15N shift differences that agree with the DFT predictions. Taken together, the results show that it should be possible to readily distinguish the parent MNZ from product amino-MNZ in envisioned MRI approaches at clinically relevant magnetic fields.
Collapse
Affiliation(s)
- Ishani M Senanayake
- School of Chemical & Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901-6632, United States
| | - Md Shahabuddin Alam
- School of Chemical & Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901-6632, United States
| | - Mohammad S H Kabir
- Department of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences (Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Anthony F Petrilla
- School of Chemical & Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901-6632, United States
| | - Zahid Siraj
- School of Chemical & Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901-6632, United States
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences (Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Boyd M Goodson
- School of Chemical & Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901-6632, United States
| |
Collapse
|
2
|
Gater C, Mayne OJ, Collins BG, Evans KJ, Storr EME, Whitwood AC, Watts DP, Tickner BJ, Duckett SB. High H 2 Solubility of Perfluorocarbon Solvents and Their Use in Reversible Polarization Transfer from para-Hydrogen. J Phys Chem Lett 2025; 16:510-517. [PMID: 39757469 PMCID: PMC11744794 DOI: 10.1021/acs.jpclett.4c03190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
This research uses perfluorocarbons (PFCs) as effective alternatives to traditional toxic solvents in reversible para-hydrogen-induced polarization (PHIP) for NMR signal enhancement. Hydrogen solubility in PFCs is shown here to be an order of magnitude higher than in typical organic solvents by determination of Henry's constants. We demonstrate how this high H2 solubility enables the PFCs to deliver substantial polarization transfer from para-hydrogen, achieving up to 2400-fold signal gains for 1H NMR detection and 67,000-fold (22% polarization) for 15N NMR detection at 9.4 T in substrates such as pyridine and nicotine. Notably, methylperfluorobutylether outperforms catalytic efficiency in methanol-d4 and dichloromethane-d2 for pyridine at low catalyst loadings. This makes PFCs particularly advantageous for applications demanding high NMR sensitivity. With high polarization efficiency and reduced toxicity, PFCs hold strong potential for expanding hyperpolarized NMR applications across the biomedical and analytical fields.
Collapse
Affiliation(s)
- Callum
A. Gater
- Centre
for Hyperpolarization in Magnetic Resonance, University of York, Heslington YO10 5NY, United
Kingdom
- Department
of Chemistry, University of York, Heslington YO10 5DD, United Kingdom
| | - Orry J. Mayne
- Centre
for Hyperpolarization in Magnetic Resonance, University of York, Heslington YO10 5NY, United
Kingdom
- Department
of Chemistry, University of York, Heslington YO10 5DD, United Kingdom
| | - Benjamin G. Collins
- Centre
for Hyperpolarization in Magnetic Resonance, University of York, Heslington YO10 5NY, United
Kingdom
- Department
of Chemistry, University of York, Heslington YO10 5DD, United Kingdom
- Department
of Physics, Engineering and Technology, University of York, Heslington YO10 5DD, United
Kingdom
| | - Kieren J. Evans
- Centre
for Hyperpolarization in Magnetic Resonance, University of York, Heslington YO10 5NY, United
Kingdom
- Department
of Chemistry, University of York, Heslington YO10 5DD, United Kingdom
| | - Eleanor M. E. Storr
- Centre
for Hyperpolarization in Magnetic Resonance, University of York, Heslington YO10 5NY, United
Kingdom
- Department
of Chemistry, University of York, Heslington YO10 5DD, United Kingdom
| | - Adrian C. Whitwood
- Department
of Chemistry, University of York, Heslington YO10 5DD, United Kingdom
| | - Daniel P. Watts
- Department
of Physics, Engineering and Technology, University of York, Heslington YO10 5DD, United
Kingdom
| | - Ben J. Tickner
- Centre
for Hyperpolarization in Magnetic Resonance, University of York, Heslington YO10 5NY, United
Kingdom
- Department
of Chemistry, University of York, Heslington YO10 5DD, United Kingdom
| | - Simon B. Duckett
- Centre
for Hyperpolarization in Magnetic Resonance, University of York, Heslington YO10 5NY, United
Kingdom
- Department
of Chemistry, University of York, Heslington YO10 5DD, United Kingdom
| |
Collapse
|
3
|
Abdulmojeed MB, Grashei M, Dilday S, Wodtke P, McBride S, Davidsson A, Curran E, MacCulloch K, Browning A, TomHon P, Schmidt AB, Chekmenev EY, Schilling F, Theis T. SABRE-SHEATH Hyperpolarization of [1,5- 13C 2]Z-OMPD for Noninvasive pH Sensing. ACS Sens 2024; 9:6372-6381. [PMID: 39555976 DOI: 10.1021/acssensors.4c01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Hyperpolarized (HP) 13C-labeled probes are emerging as promising agents to noninvasively image pH in vivo. HP [1,5-13C2]Z-OMPD (Z-4-methyl-2-oxopent-3-enedioic acid) in particular has recently been used to simultaneously report on kidney perfusion, filtration, and pH homeostasis, in addition to the ability to detect local tumor acidification. In previous studies, dissolution dynamic nuclear polarization was used to hyperpolarize Z-OMPD. Here, we pioneered the hyperpolarization of [1,5-13C2]Z-OMPD via SABRE-SHEATH (signal amplification by reversible exchange in shield enabling alignment transfer to heteronuclei), which is relatively simple and fast and promises to be highly scalable. With SABRE-SHEATH, we achieve enhancement values of ∼3950 and ∼2400 at 1.1 T (P13C = 0.4 and 0.25%) on the labeled C-1 and C-5 positions of Z-OMPD. Density functional theory calculations at the B3LYP level of theory were used to investigate possible binding modes of Z-OMPD on the iridium-based polarization transfer catalyst. The experimental and theoretical results suggest that the equatorial binding mode to the catalyst, where Z-OMPD binds to the catalyst at both C-1 and C-5 carboxylate positions, is the most stable complex. The HP signals were used to measure the Z-OMPD chemical shift as a function of pH showing an ∼3 ppm shift across pH 4-11. This work lays a foundation for the development of a simple, low-cost hyperpolarization technique to image pH.
Collapse
Affiliation(s)
- Mustapha B Abdulmojeed
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Martin Grashei
- Technical University of Munich, School of Medicine and Health, Department of Nuclear Medicine, TUM University Hospital, D-81675 Munich, Germany
| | - Seth Dilday
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Pascal Wodtke
- Technical University of Munich, School of Medicine and Health, Department of Nuclear Medicine, TUM University Hospital, D-81675 Munich, Germany
| | - Stephen McBride
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Atli Davidsson
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Erica Curran
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Keilian MacCulloch
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Austin Browning
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Patrick TomHon
- Vizma Life Sciences, Chapel Hill, North Carolina 27514, United States
| | - Andreas B Schmidt
- Division of Medical Physics, Department of Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- Department of Chemistry, Integrated Biosciences (Ibio), Wayne State University, Karmanos Center Institute (KCI), Detroit, Michigan 48202, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrated Biosciences (Ibio), Wayne State University, Karmanos Center Institute (KCI), Detroit, Michigan 48202, United States
| | - Franz Schilling
- Technical University of Munich, School of Medicine and Health, Department of Nuclear Medicine, TUM University Hospital, D-81675 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
Bondar OA, Moustafa GAI, Robertson TBR. Hyperpolarised [2- 13C]-pyruvate by 13C SABRE in an acetone/water mixture. Analyst 2024; 149:5668-5674. [PMID: 39485096 PMCID: PMC11529384 DOI: 10.1039/d4an01005a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024]
Abstract
Signal Amplification By Reversible Exchange (SABRE) can provide strong signal enhancement (SE) to an array of molecules through reversible exchange of parahydrogen (pH2) derived hydrides and a suitable substrate coordinated to a transition metal. Among the substrates that can be used as a probe for hyperpolarised NMR and MRI, pyruvate has gained much attention. SABRE can hyperpolarise pyruvate in a low cost, fast, and reversible fashion that does not involve technologically demanding equipment. Most SABRE polarization studies have been done using methanol-d4 as a solvent, which is not suitable for in vivo application. The main goal of this work was to obtain hyperpolarized pyruvate in a solvent other than methanol which may open the door to further purification steps and enable a method to polarize pyruvate in water in future. This work demonstrates hyperpolarization of the [2-13C]pyruvate as well as [1-13C]pyruvate by SABRE in an acetone/water solvent system at room temperature as an alternative to methanol, which is commonly used. NMR signals are detected using a 1.1 T benchtop NMR spectrometer. In this work we have primarily focused on the study of [2-13C]pyruvate and investigated the effect of catalyst concentration, DMSO presence and water vs. acetone solvent concentration on the signal enhancement. The relaxation times for [2-13C]-pyruvate solutions are reported in the hope of informing the development of future purification methods.
Collapse
Affiliation(s)
- Oksana A Bondar
- School of Chemistry, Highfield Campus, Southampton, SO17 1BJ, UK.
| | - Gamal A I Moustafa
- ATDBio (Now Part of Biotage), Highfield Campus, Southampton, SO17 1BJ, UK
| | | |
Collapse
|
5
|
Salnikov OG, Assaf CD, Yi AP, Duckett SB, Chekmenev EY, Hövener JB, Koptyug IV, Pravdivtsev AN. Modeling Ligand Exchange Kinetics in Iridium Complexes Catalyzing SABRE Nuclear Spin Hyperpolarization. Anal Chem 2024; 96:11790-11799. [PMID: 38976810 PMCID: PMC11270526 DOI: 10.1021/acs.analchem.4c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024]
Abstract
Large signal enhancements can be obtained for NMR analytes using the process of nuclear spin hyperpolarization. Organometallic complexes that bind parahydrogen can themselves become hyperpolarized. Moreover, if parahydrogen and a to-be-hyperpolarized analyte undergo chemical exchange with the organometallic complex it is possible to catalytically sensitize the detection of the analyte via hyperpolarization transfer through spin-spin coupling in this organometallic complex. This process is called Signal Amplification By Reversible Exchange (SABRE). Signal intensity gains of several orders of magnitude can thus be created for various compounds in seconds. The chemical exchange processes play a defining role in controlling the efficiency of SABRE because the lifetime of the complex must match the spin-spin couplings. Here, we show how analyte dissociation rates in the key model substrates pyridine (the simplest six-membered heterocycle), 4-aminopyridine (a drug), and nicotinamide (an essential vitamin biomolecule) can be examined. This is achieved for the most widely employed SABRE motif that is based on IrIMes-derived catalysts by 1H 1D and 2D exchange NMR spectroscopy techniques. Several kinetic models are evaluated for their accuracy and simplicity. By incorporating variable temperature analysis, the data yields key enthalpies and entropies of activation that are critical for understanding the underlying SABRE catalyst properties and subsequently optimizing behavior through rational chemical design. While several studies of chemical exchange in SABRE have been reported, this work also aims to establish a toolkit on how to quantify chemical exchange in SABRE and ensure that data can be compared reliably.
Collapse
Affiliation(s)
- Oleg G. Salnikov
- International
Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
| | - Charbel D. Assaf
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Anna P. Yi
- International
Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
- Novosibirsk
State University, 2 Pirogova
St., 630090 Novosibirsk, Russia
| | - Simon B. Duckett
- Centre
for Hyperpolarization in Magnetic Resonance (CHyM), University of York, Heslington YO10 5NY, U.K.
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Jan-Bernd Hövener
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Igor V. Koptyug
- International
Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
| | - Andrey N. Pravdivtsev
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| |
Collapse
|
6
|
Sviyazov SV, Burueva DB, Chukanov NV, Razumov IA, Chekmenev EY, Salnikov OG, Koptyug IV. 15N Hyperpolarization of Metronidazole Antibiotic in Aqueous Media Using Phase-Separated Signal Amplification by Reversible Exchange with Parahydrogen. J Phys Chem Lett 2024; 15:5382-5389. [PMID: 38738984 PMCID: PMC11151165 DOI: 10.1021/acs.jpclett.4c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Metronidazole is a prospective hyperpolarized MRI contrast agent with potential hypoxia sensing utility for applications in cancer, stroke, neurodegenerative diseases, etc. We demonstrate a pilot procedure for production of ∼30 mM hyperpolarized [15N3]metronidazole in aqueous media by using a phase-separated SABRE-SHEATH hyperpolarization method, with nitrogen-15 polarization exceeding 2.2% on all three 15N sites achieved in less than 2 min. The 15N polarization T1 of ∼12 min is reported for the 15NO2 group at the clinically relevant field of 1.4 T in the aqueous phase, demonstrating a remarkably long lifetime of the hyperpolarized state. The produced aqueous solution of [15N3]metronidazole that contained only ∼100 μM of residual Ir was deemed biocompatible via validation through the MTT colorimetric test for assessing cell metabolic activity using human embryotic kidney HEK293T cells. This low-cost and ultrafast hyperpolarization procedure represents a major advance for the production of a biocompatible HP [15N3]metronidazole (and potentially other hyperpolarized drugs) formulation for MRI sensing applications.
Collapse
Affiliation(s)
- Sergey V. Sviyazov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Dudari B. Burueva
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Ivan A. Razumov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Oleg G. Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Ettedgui J, Blackman B, Raju N, Kotler SA, Chekmenev EY, Goodson BM, Merkle H, Woodroofe CC, LeClair C, Krishna MC, Swenson RE. Perfluorinated Iridium Catalyst for Signal Amplification by Reversible Exchange Provides Metal-Free Aqueous Hyperpolarized [1- 13C]-Pyruvate. J Am Chem Soc 2024; 146:946-953. [PMID: 38154120 PMCID: PMC10785822 DOI: 10.1021/jacs.3c11499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Hyperpolarized (HP) carbon-13 [13C] enables the specific investigation of dynamic metabolic and physiologic processes via in vivo MRI-based molecular imaging. As the leading HP metabolic agent, [1-13C]pyruvate plays a pivotal role due to its rapid tissue uptake and central role in cellular energetics. Dissolution dynamic nuclear polarization (d-DNP) is considered the gold standard method for the production of HP metabolic probes; however, development of a faster, less expensive technique could accelerate the translation of metabolic imaging via HP MRI to routine clinical use. Signal Amplification by Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) achieves rapid hyperpolarization by using parahydrogen (p-H2) as the source of nuclear spin order. Currently, SABRE is clinically limited due to the toxicity of the iridium catalyst, which is crucial to the SABRE process. To mitigate Ir contamination, we introduce a novel iteration of the SABRE catalyst, incorporating bis(polyfluoroalkylated) imidazolium salts. This novel perfluorinated SABRE catalyst retained polarization properties while exhibiting an enhanced hydrophobicity. This modification allows the easy removal of the perfluorinated SABRE catalyst from HP [1-13C]-pyruvate after polarization in an aqueous solution, using the ReD-SABRE protocol. The residual Ir content after removal was measured via ICP-MS at 177 ppb, which is the lowest reported to date for pyruvate and is sufficiently safe for use in clinical investigations. Further improvement is anticipated once automated processes for delivery and recovery are initiated. SABRE-SHEATH using the perfluorinated SABRE catalyst can become an attractive low-cost alternative to d-DNP to prepare biocompatible HP [1-13C]-pyruvate formulations for in vivo applications in next-generation molecular imaging modalities.
Collapse
Affiliation(s)
- Jessica Ettedgui
- Chemistry
and Synthesis Center, National Heart, Lung,
and Blood Institute 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Burchelle Blackman
- Chemistry
and Synthesis Center, National Heart, Lung,
and Blood Institute 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Natarajan Raju
- Chemistry
and Synthesis Center, National Heart, Lung,
and Blood Institute 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Samuel A. Kotler
- National
Center for Advancing Translational Sciences 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
- Russian
Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| | - Boyd M. Goodson
- School
of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Hellmut Merkle
- National
Institute of Neurological Disorder and Stroke, Laboratory for Functional and Molecular Imaging, 31 Center Drive, Bethesda, Maryland 20814, United States
| | - Carolyn C. Woodroofe
- Frederick
National Laboratory for Cancer Research, Division of Cancer Treatment
and Diagnosis (DCTD), National Cancer Institute, 8560 Progress Drive, Frederick, Maryland 21701 United States
| | - Christopher
A. LeClair
- National
Center for Advancing Translational Sciences 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Murali C. Krishna
- Center
for Cancer Research, National Cancer Institute, 31 Center Drive, Bethesda, Maryland 20814, United States
| | - Rolf E. Swenson
- Chemistry
and Synthesis Center, National Heart, Lung,
and Blood Institute 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
8
|
MacCulloch K, Browning A, Bedoya DOG, McBride SJ, Abdulmojeed MB, Dedesma C, Goodson BM, Rosen MS, Chekmenev EY, Yen YF, TomHon P, Theis T. Facile hyperpolarization chemistry for molecular imaging and metabolic tracking of [1- 13C]pyruvate in vivo. JOURNAL OF MAGNETIC RESONANCE OPEN 2023; 16-17:100129. [PMID: 38090022 PMCID: PMC10715622 DOI: 10.1016/j.jmro.2023.100129] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hyperpolarization chemistry based on reversible exchange of parahydrogen, also known as Signal Amplification By Reversible Exchange (SABRE), is a particularly simple approach to attain high levels of nuclear spin hyperpolarization, which can enhance NMR and MRI signals by many orders of magnitude. SABRE has received significant attention in the scientific community since its inception because of its relative experimental simplicity and its broad applicability to a wide range of molecules, however in vivo detection of molecular probes hyperpolarized by SABRE has remained elusive. Here we describe a first demonstration of SABRE-hyperpolarized contrast detected in vivo, specifically using hyperpolarized [1-13C]pyruvate. Biocompatible formulations of hyperpolarized [1-13C]pyruvate in, both, methanol-water mixtures, and ethanol-water mixtures followed by dilution with saline and catalyst filtration were prepared and injected into healthy Sprague Dawley and Wistar rats. Effective hyperpolarization-catalyst removal was performed with silica filters without major losses in hyperpolarization. Metabolic conversion of pyruvate to lactate, alanine, and bicarbonate was detected in vivo. Pyruvate-hydrate was also observed as minor byproduct. Measurements were performed on the liver and kidney at 4.7 T via time-resolved spectroscopy and chemical-shift-resolved MRI. In addition, whole-body metabolic measurements were obtained using a cryogen-free 1.5 T MRI system, illustrating the utility of combining lower-cost MRI systems with simple, low-cost hyperpolarization chemistry to develop safe, and scalable molecular imaging.
Collapse
Affiliation(s)
- Keilian MacCulloch
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695,USA
| | - Austin Browning
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695,USA
| | - David O. Guarin Bedoya
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Stephen J. McBride
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695,USA
| | | | - Carlos Dedesma
- Vizma Life Sciences Inc., Chapel Hill, NC, 27514, United States
| | - Boyd M. Goodson
- School of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Matthew S. Rosen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI 48202, USA
- Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yi-Fen Yen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Patrick TomHon
- Vizma Life Sciences Inc., Chapel Hill, NC, 27514, United States
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695,USA
- Department of Physics, North Carolina State University, Raleigh, NC 27606, USA
- Joint UNC & NC State Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
9
|
Min S, Baek J, Kim J, Jeong HJ, Chung J, Jeong K. Water-Compatible and Recyclable Heterogeneous SABRE Catalyst for NMR Signal Amplification. JACS AU 2023; 3:2912-2917. [PMID: 37885596 PMCID: PMC10598823 DOI: 10.1021/jacsau.3c00487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
A water-compatible and recyclable catalyst for nuclear magnetic resonance (NMR) hyperpolarization via signal amplification by reversible exchange (SABRE) was developed. The [Ir(COD)(IMes)Cl] catalyst was attached to a polymeric resin of bis(2-pyridyl)amine (heterogeneous SABRE catalyst, HET-SABRE catalyst), and it amplified the 1H NMR signal of pyridine up to (-) 4455-fold (43.2%) at 1.4 T in methanol and (-) 50-fold (0.5%) in water. These are the highest amplification factors ever reported among HET-SABRE catalysts and for the first time in aqueous media. Moreover, the HET-SABRE catalyst demonstrated recyclability by retaining its activity in water after more than three uses. This newly designed polymeric resin-based heterogeneous catalyst shows great promise for NMR signal amplification for biomedical NMR and MRI applications in the future.
Collapse
Affiliation(s)
- Sein Min
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Juhee Baek
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Jisu Kim
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Hye Jin Jeong
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jean Chung
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Keunhong Jeong
- Department
of Chemistry, Korea Military Academy, Seoul 01805, South Korea
| |
Collapse
|
10
|
de Maissin H, Groß PR, Mohiuddin O, Weigt M, Nagel L, Herzog M, Wang Z, Willing R, Reichardt W, Pichotka M, Heß L, Reinheckel T, Jessen HJ, Zeiser R, Bock M, von Elverfeldt D, Zaitsev M, Korchak S, Glöggler S, Hövener JB, Chekmenev EY, Schilling F, Knecht S, Schmidt AB. In Vivo Metabolic Imaging of [1- 13 C]Pyruvate-d 3 Hyperpolarized By Reversible Exchange With Parahydrogen. Angew Chem Int Ed Engl 2023; 62:e202306654. [PMID: 37439488 DOI: 10.1002/anie.202306654] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
Metabolic magnetic resonance imaging (MRI) using hyperpolarized (HP) pyruvate is becoming a non-invasive technique for diagnosing, staging, and monitoring response to treatment in cancer and other diseases. The clinically established method for producing HP pyruvate, dissolution dynamic nuclear polarization, however, is rather complex and slow. Signal Amplification By Reversible Exchange (SABRE) is an ultra-fast and low-cost method based on fast chemical exchange. Here, for the first time, we demonstrate not only in vivo utility, but also metabolic MRI with SABRE. We present a novel routine to produce aqueous HP [1-13 C]pyruvate-d3 for injection in 6 minutes. The injected solution was sterile, non-toxic, pH neutral and contained ≈30 mM [1-13 C]pyruvate-d3 polarized to ≈11 % (residual 250 mM methanol and 20 μM catalyst). It was obtained by rapid solvent evaporation and metal filtering, which we detail in this manuscript. This achievement makes HP pyruvate MRI available to a wide biomedical community for fast metabolic imaging of living organisms.
Collapse
Affiliation(s)
- Henri de Maissin
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Philipp R Groß
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
| | - Obaid Mohiuddin
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
| | - Moritz Weigt
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Marvin Herzog
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
| | - Zirun Wang
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
| | - Robert Willing
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Wilfried Reichardt
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
| | - Martin Pichotka
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
| | - Lisa Heß
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
| | - Thomas Reinheckel
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
| | - Henning J Jessen
- Bioorganic Chemistry, Institute of Organic Chemistry, Albert-Ludwigs-University of Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Robert Zeiser
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Hematology and Oncology, Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Michael Bock
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
| | - Dominik von Elverfeldt
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
| | - Sergey Korchak
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging SBMI, Molecular Imaging North Competence Center MOINCC, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel University, 24105, Kiel, Germany
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos CancerInstitute (KCI), Wayne State University, Detroit, MI 48202, USA
| | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | - Andreas B Schmidt
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos CancerInstitute (KCI), Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
11
|
Negroni M, Kurzbach D. Missing Pieces in Structure Puzzles: How Hyperpolarized NMR Spectroscopy Can Complement Structural Biology and Biochemistry. Chembiochem 2023; 24:e202200703. [PMID: 36624049 DOI: 10.1002/cbic.202200703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Structure determination lies at the heart of many biochemical research programs. However, the "giants": X-ray diffraction, electron microscopy, molecular dynamics simulations, and nuclear magnetic resonance, among others, leave quite a few dark spots on the structural pictures drawn of proteins, nucleic acids, membranes, and other biomacromolecules. For example, structural models under physiological conditions or of short-lived intermediates often remain out of reach of the established experimental methods. This account frames the possibility of including hyperpolarized, that is, dramatically signal-enhanced NMR in existing workflows to fill these spots with detailed depictions. We highlight how integrating methods based on dissolution dynamic nuclear polarization can provide valuable complementary information about formerly inaccessible conformational spaces for many systems. A particular focus will be on hyperpolarized buffers to facilitate the NMR structure determination of challenging systems.
Collapse
Affiliation(s)
- Mattia Negroni
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| |
Collapse
|
12
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
13
|
Adelabu I, Chowdhury MRH, Nantogma S, Oladun C, Ahmed F, Stilgenbauer L, Sadagurski M, Theis T, Goodson BM, Chekmenev EY. Efficient SABRE-SHEATH Hyperpolarization of Potent Branched-Chain-Amino-Acid Metabolic Probe [1- 13C]ketoisocaproate. Metabolites 2023; 13:200. [PMID: 36837820 PMCID: PMC9963635 DOI: 10.3390/metabo13020200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Efficient 13C hyperpolarization of ketoisocaproate is demonstrated in natural isotopic abundance and [1-13C]enriched forms via SABRE-SHEATH (Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei). Parahydrogen, as the source of nuclear spin order, and ketoisocaproate undergo simultaneous chemical exchange with an Ir-IMes-based hexacoordinate complex in CD3OD. SABRE-SHEATH enables spontaneous polarization transfer from parahydrogen-derived hydrides to the 13C nucleus of transiently bound ketoisocaproate. 13C polarization values of up to 18% are achieved at the 1-13C site in 1 min in the liquid state at 30 mM substrate concentration. The efficient polarization build-up becomes possible due to favorable relaxation dynamics. Specifically, the exponential build-up time constant (14.3 ± 0.6 s) is substantially lower than the corresponding polarization decay time constant (22.8 ± 1.2 s) at the optimum polarization transfer field (0.4 microtesla) and temperature (10 °C). The experiments with natural abundance ketoisocaproate revealed polarization level on the 13C-2 site of less than 1%-i.e., one order of magnitude lower than that of the 1-13C site-which is only partially due to more-efficient relaxation dynamics in sub-microtesla fields. We rationalize the overall much lower 13C-2 polarization efficiency in part by less favorable catalyst-binding dynamics of the C-2 site. Pilot SABRE experiments at pH 4.0 (acidified sample) versus pH 6.1 (unaltered sodium [1-13C]ketoisocaproate) reveal substantial modulation of SABRE-SHEATH processes by pH, warranting future systematic pH titration studies of ketoisocaproate, as well as other structurally similar ketocarboxylate motifs including pyruvate and alpha-ketoglutarate, with the overarching goal of maximizing 13C polarization levels in these potent molecular probes. Finally, we also report on the pilot post-mortem use of HP [1-13C]ketoisocaproate in a euthanized mouse, demonstrating that SABRE-hyperpolarized 13C contrast agents hold promise for future metabolic studies.
Collapse
Affiliation(s)
- Isaiah Adelabu
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI 48202, USA
| | - Md Raduanul H. Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI 48202, USA
| | - Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI 48202, USA
| | - Clementinah Oladun
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI 48202, USA
| | - Firoz Ahmed
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI 48202, USA
| | - Lukas Stilgenbauer
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI 48202, USA
| | - Marianna Sadagurski
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI 48202, USA
| | - Thomas Theis
- Department of Chemistry, Department of Physics, Joint UNC-CH & NC State Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Boyd M. Goodson
- School of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, 119991 Moscow, Russia
| |
Collapse
|
14
|
Kidd BE, Gemeinhardt ME, Mashni JA, Gesiorski JL, Bales LB, Limbach MN, Shchepin RV, Kovtunov KV, Koptyug IV, Chekmenev EY, Goodson BM. Hyperpolarizing DNA Nucleobases via NMR Signal Amplification by Reversible Exchange. Molecules 2023; 28:1198. [PMID: 36770865 PMCID: PMC9921525 DOI: 10.3390/molecules28031198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
The present work investigates the potential for enhancing the NMR signals of DNA nucleobases by parahydrogen-based hyperpolarization. Signal amplification by reversible exchange (SABRE) and SABRE in Shield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) of selected DNA nucleobases is demonstrated with the enhancement (ε) of 1H, 15N, and/or 13C spins in 3-methyladenine, cytosine, and 6-O-guanine. Solutions of the standard SABRE homogenous catalyst Ir(1,5-cyclooctadeine)(1,3-bis(2,4,6-trimethylphenyl)imidazolium)Cl ("IrIMes") and a given nucleobase in deuterated ethanol/water solutions yielded low 1H ε values (≤10), likely reflecting weak catalyst binding. However, we achieved natural-abundance enhancement of 15N signals for 3-methyladenine of ~3300 and ~1900 for the imidazole ring nitrogen atoms. 1H and 15N 3-methyladenine studies revealed that methylation of adenine affords preferential binding of the imidazole ring over the pyrimidine ring. Interestingly, signal enhancements (ε~240) of both 15N atoms for doubly labelled cytosine reveal the preferential binding of specific tautomer(s), thus giving insight into the matching of polarization-transfer and tautomerization time scales. 13C enhancements of up to nearly 50-fold were also obtained for this cytosine isotopomer. These efforts may enable the future investigation of processes underlying cellular function and/or dysfunction, including how DNA nucleobase tautomerization influences mismatching in base-pairing.
Collapse
Affiliation(s)
- Bryce E. Kidd
- School of Chemical & Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Max E. Gemeinhardt
- School of Chemical & Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Jamil A. Mashni
- School of Chemical & Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Jonathan L. Gesiorski
- School of Chemical & Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Liana B. Bales
- School of Chemical & Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Miranda N. Limbach
- School of Chemical & Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Roman V. Shchepin
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines & Technology, Rapid City, SD 57701, USA
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI) Wayne State University, Detroit, MI 48202, USA
| | - Boyd M. Goodson
- School of Chemical & Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
15
|
Nantogma S, Eriksson SL, Adelabu I, Mandzhieva I, Browning A, TomHon P, Warren WS, Theis T, Goodson BM, Chekmenev EY. Interplay of Near-Zero-Field Dephasing, Rephasing, and Relaxation Dynamics and [1- 13C]Pyruvate Polarization Transfer Efficiency in Pulsed SABRE-SHEATH. J Phys Chem A 2022; 126:9114-9123. [PMID: 36441955 PMCID: PMC9891742 DOI: 10.1021/acs.jpca.2c07150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hyperpolarized [1-13C]pyruvate is a revolutionary molecular probe enabling ultrafast metabolic MRI scans in 1 min. This technology is now under evaluation in over 30 clinical trials, which employ dissolution Dynamic Nuclear Polarization (d-DNP) to prepare a batch of the contrast agent; however, d-DNP technology is slow and expensive. The emerging SABRE-SHEATH hyperpolarization technique enables fast (under 1 min) and robust production of hyperpolarized [1-13C]pyruvate via simultaneous chemical exchange of parahydrogen and pyruvate on IrIMes hexacoordinate complexes. Here, we study the application of microtesla pulses to investigate their effect on C-13 polarization efficiency, compared to that of conventional SABRE-SHEATH employing a static field (∼0.4 μT), to provide the matching conditions of polarization transfer from parahydrogen-derived hydrides to the 13C-1 nucleus. Our results demonstrate that using square-microtesla pulses with optimized parameters can produce 13C-1 polarization levels of up to 14.8% (when detected, averaging over all resonances), corresponding to signal enhancement by over 122,000-fold at the clinically relevant field of 1.4 T. We anticipate that our results can be directly translated to other structurally similar biomolecules such as [1-13C]α-ketoglutarate and [1-13C]α-ketoisocaproate. Moreover, other more advanced pulse shapes can potentially further boost heteronuclear polarization attainable via pulsed SABRE-SHEATH.
Collapse
Affiliation(s)
- Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Shannon L. Eriksson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- School of Medicine, Duke University, Durham, North Carolina 27708, United States
| | - Isaiah Adelabu
- Department of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Iuliia Mandzhieva
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Austin Browning
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Patrick TomHon
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Warren S. Warren
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Biomedical Engineering, and Radiology, Duke University, Durham, North Carolina 27708, United States
- School of Medicine, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Boyd M. Goodson
- School of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
16
|
Schmidt AB, de Maissin H, Adelabu I, Nantogma S, Ettedgui J, TomHon P, Goodson BM, Theis T, Chekmenev EY. Catalyst-Free Aqueous Hyperpolarized [1- 13C]Pyruvate Obtained by Re-Dissolution Signal Amplification by Reversible Exchange. ACS Sens 2022; 7:3430-3439. [PMID: 36379005 PMCID: PMC9983023 DOI: 10.1021/acssensors.2c01715] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite great successes in oncology, patient outcomes are often still discouraging, and hence the diagnostic imaging paradigm is increasingly shifting toward functional imaging of the pathology to better understand individual disease biology and to personalize therapies. The dissolution Dynamic Nuclear Polarization (d-DNP) hyperpolarization method has enabled unprecedented real-time MRI sensing of metabolism and tissue pH using hyperpolarized [1-13C]pyruvate as a biosensor with great potential for diagnosis and monitoring of cancer patients. However, current d-DNP is expensive and suffers from long hyperpolarization times, posing a substantial translational roadblock. Here, we report the development of Re-Dissolution Signal Amplification By Reversible Exchange (Re-D SABRE), which relies on fast and low-cost hyperpolarization of [1-13C]pyruvate by chemical exchange with parahydrogen at microtesla magnetic fields. [1-13C]pyruvate is precipitated from catalyst-containing methanol using ethyl acetate and rapidly reconstituted in aqueous media. 13C polarization of 9 ± 1% is demonstrated after redissolution in water with residual iridium mass fraction of 8.5 ± 1.5 ppm; further improvement is anticipated via process automation. Re-D SABRE makes hyperpolarized [1-13C]pyruvate biosensor available at a fraction of the cost (<$10,000) and production time (≈1 min) of currently used techniques and makes aqueous hyperpolarized [1-13C]pyruvate "ready" for in vivo applications.
Collapse
Affiliation(s)
- Andreas B. Schmidt
- Integrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
| | - Henri de Maissin
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
| | - Isaiah Adelabu
- Integrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
| | - Shiraz Nantogma
- Integrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
| | - Jessica Ettedgui
- Chemistry and Synthesis Center, National Heart, Lung, Blood Institute, 9800 Medical Center Drive, Building B, Room #2034, Rockville, Maryland 20850, United States
| | - Patrick TomHon
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27606, United States
- Vizma Life Sciences LLC, Durham, NC 27707-3669, United States
| | - Boyd M. Goodson
- School of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27606, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, United States
| | - Eduard Y. Chekmenev
- Integrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
- Russian Academy of Sciences (RAS), Leninskiy Prospect, 14, 119991 Moscow, Russia
| |
Collapse
|
17
|
Trepakova AI, Skovpin IV, Chukanov NV, Salnikov OG, Chekmenev EY, Pravdivtsev AN, Hövener JB, Koptyug IV. Subsecond Three-Dimensional Nitrogen-15 Magnetic Resonance Imaging Facilitated by Parahydrogen-Based Hyperpolarization. J Phys Chem Lett 2022; 13:10253-10260. [PMID: 36301252 PMCID: PMC9983028 DOI: 10.1021/acs.jpclett.2c02705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Magnetic resonance imaging (MRI) provides unique information about the internal structure and function of living organisms in a non-invasive way. The use of conventional proton MRI for the observation of real-time metabolism is hampered by the dominant signals of water and fat, which are abundant in living organisms. Heteronuclear MRI in conjunction with the hyperpolarization methods does not encounter this issue. In this work, we polarized 15N nuclei of [15N1]fampridine (a drug used for the treatment of multiple sclerosis) to the level of 4% in nuclear magnetic resonance (NMR) experiments and 0.7% in MRI studies using spin-lock-induced crossing combined with signal amplification by reversible exchange. Consequently, three-dimensional 15N MRI of the hyperpolarized 15N-labeled drug was acquired in 0.1 s with a signal-to-noise ratio of 70. In addition, the NMR signal enhancements for 15N-enriched fampridine and fampridine with a natural abundance of 15N nuclei were compared and an explanation for their difference was proposed.
Collapse
Affiliation(s)
- Alexandra I. Trepakova
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, SB RAS, 10 Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Ivan V. Skovpin
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
| | - Nikita V. Chukanov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Oleg G. Salnikov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, Moscow, 119991, Russia
| | - Andrey N. Pravdivtsev
- Department of Radiology and Neuroradiology Section Biomedical Imaging, MOIN CC, Universitätsklinikum Schleswig-Holstein, Universität Kiel, 14 Am Botanischen Garten, Kiel, 24118, Germany
| | - Jan-Bernd Hövener
- Department of Radiology and Neuroradiology Section Biomedical Imaging, MOIN CC, Universitätsklinikum Schleswig-Holstein, Universität Kiel, 14 Am Botanischen Garten, Kiel, 24118, Germany
| | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
| |
Collapse
|
18
|
Adelabu I, Ettedgui J, Joshi SM, Nantogma S, Chowdhury MRH, McBride S, Theis T, Sabbasani VR, Chandrasekhar M, Sail D, Yamamoto K, Swenson RE, Krishna MC, Goodson BM, Chekmenev EY. Rapid 13C Hyperpolarization of the TCA Cycle Intermediate α-Ketoglutarate via SABRE-SHEATH. Anal Chem 2022; 94:13422-13431. [PMID: 36136056 PMCID: PMC9907724 DOI: 10.1021/acs.analchem.2c02160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
α-Ketoglutarate is a key biomolecule involved in a number of metabolic pathways─most notably the TCA cycle. Abnormal α-ketoglutarate metabolism has also been linked with cancer. Here, isotopic labeling was employed to synthesize [1-13C,5-12C,D4]α-ketoglutarate with the future goal of utilizing its [1-13C]-hyperpolarized state for real-time metabolic imaging of α-ketoglutarate analytes and its downstream metabolites in vivo. The signal amplification by reversible exchange in shield enables alignment transfer to heteronuclei (SABRE-SHEATH) hyperpolarization technique was used to create 9.7% [1-13C] polarization in 1 minute in this isotopologue. The efficient 13C hyperpolarization, which utilizes parahydrogen as the source of nuclear spin order, is also supported by favorable relaxation dynamics at 0.4 μT field (the optimal polarization transfer field): the exponential 13C polarization buildup constant Tb is 11.0 ± 0.4 s whereas the 13C polarization decay constant T1 is 18.5 ± 0.7 s. An even higher 13C polarization value of 17.3% was achieved using natural-abundance α-ketoglutarate disodium salt, with overall similar relaxation dynamics at 0.4 μT field, indicating that substrate deuteration leads only to a slight increase (∼1.2-fold) in the relaxation rates for 13C nuclei separated by three chemical bonds. Instead, the gain in polarization (natural abundance versus [1-13C]-labeled) is rationalized through the smaller heat capacity of the "spin bath" comprising available 13C spins that must be hyperpolarized by the same number of parahydrogen present in each sample, in line with previous 15N SABRE-SHEATH studies. Remarkably, the C-2 carbon was not hyperpolarized in both α-ketoglutarate isotopologues studied; this observation is in sharp contrast with previously reported SABRE-SHEATH pyruvate studies, indicating that the catalyst-binding dynamics of C-2 in α-ketoglutarate differ from that in pyruvate. We also demonstrate that 13C spectroscopic characterization of α-ketoglutarate and pyruvate analytes can be performed at natural 13C abundance with an estimated detection limit of 80 micromolar concentration × *%P13C. All in all, the fundamental studies reported here enable a wide range of research communities with a new hyperpolarized contrast agent potentially useful for metabolic imaging of brain function, cancer, and other metabolically challenging diseases.
Collapse
Affiliation(s)
- Isaiah Adelabu
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Jessica Ettedgui
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Sameer M. Joshi
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Md Raduanul H. Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Stephen McBride
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Venkata R. Sabbasani
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Mushti Chandrasekhar
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Deepak Sail
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland 20892, United States
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Murali C. Krishna
- Center for Cancer Research, National Cancer Institute, Bethesda, 31 Center Drive Maryland 20814, United States
| | - Boyd M. Goodson
- School of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| |
Collapse
|
19
|
Bondar O, Cavallari E, Carrera C, Aime S, Reineri F. Effect of the hydrogenation solvent in the PHIP-SAH hyperpolarization of [1-13C]pyruvate. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Rayner PJ, Fekete M, Gater CA, Ahwal F, Turner N, Kennerley AJ, Duckett SB. Real-Time High-Sensitivity Reaction Monitoring of Important Nitrogen-Cycle Synthons by 15N Hyperpolarized Nuclear Magnetic Resonance. J Am Chem Soc 2022; 144:8756-8769. [PMID: 35508182 PMCID: PMC9121385 DOI: 10.1021/jacs.2c02619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Here, we show how
signal amplification by reversible exchange hyperpolarization
of a range of 15N-containing synthons can be used to enable
studies of their reactivity by 15N nuclear magnetic resonance
(NO2– (28% polarization), ND3 (3%), PhCH2NH2 (5%), NaN3 (3%),
and NO3– (0.1%)). A range of iridium-based
spin-polarization transfer catalysts are used, which for NO2– work optimally as an amino-derived carbene-containing
complex with a DMAP-d2 coligand. We harness
long 15N spin-order lifetimes to probe in situ reactivity
out to 3 × T1. In the case of NO2– (T1 17.7 s
at 9.4 T), we monitor PhNH2 diazotization in acidic solution.
The resulting diazonium salt (15N-T1 38 s) forms within 30 s, and its subsequent reaction with
NaN3 leads to the detection of hyperpolarized PhN3 (T1 192 s) in a second step via the
formation of an identified cyclic pentazole intermediate. The role
of PhN3 and NaN3 in copper-free click chemistry
is exemplified for hyperpolarized triazole (T1 < 10 s) formation when they react with a strained alkyne.
We also demonstrate simple routes to hyperpolarized N2 in
addition to showing how utilization of 15N-polarized PhCH2NH2 enables the probing of amidation, sulfonamidation,
and imine formation. Hyperpolarized ND3 is used to probe
imine and ND4+ (T1 33.6 s) formation. Furthermore, for NO2–, we also demonstrate how the 15N-magnetic resonance imaging
monitoring of biphasic catalysis confirms the successful preparation
of an aqueous bolus of hyperpolarized 15NO2– in seconds with 8% polarization. Hence, we create
a versatile tool to probe organic transformations that has significant
relevance for the synthesis of future hyperpolarized pharmaceuticals.
Collapse
Affiliation(s)
- Peter J Rayner
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Marianna Fekete
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Callum A Gater
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Fadi Ahwal
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Norman Turner
- Department of Engineering and Technology, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire HD1 3DH, U.K
| | - Aneurin J Kennerley
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
21
|
Fear EJ, Kennerley AJ, Rayner PJ, Norcott P, Roy SS, Duckett SB. SABRE hyperpolarized anticancer agents for use in
1
H MRI. Magn Reson Med 2022; 88:11-27. [PMID: 35253267 PMCID: PMC9310590 DOI: 10.1002/mrm.29166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
Purpose Enabling drug tracking (distribution/specific pathways) with magnetic resonance spectroscopy requires manipulation (via hyperpolarization) of spin state populations and targets with sufficiently long magnetic lifetimes to give the largest possible window of observation. Here, we demonstrate how the proton resonances of a group of thienopyridazines (with known anticancer properties), can be amplified using the para‐hydrogen (p‐H2) based signal amplification by reversible exchange (SABRE) hyperpolarization technique. Methods Thienopyridazine isomers, including a 2H version, were synthesized in house. Iridium‐based catalysts dissolved in a methanol‐d4 solvent facilitated polarization transfer from p‐H2 gas to the target thienopyridazines. Subsequent SABRE 1H responses of hyperpolarized thienopyridazines were completed (400 MHz NMR). Pseudo‐singlet state approaches were deployed to extend magnetic state lifetimes. Proof of principle spectral‐spatial images were acquired across a range of field strengths (7T‐9.4T MRI). Results 1H‐NMR signal enhancements of −10,130‐fold at 9.4T (~33% polarization) were achieved on thieno[2,3‐d]pyridazine (T[2,3‐d]P), using SABRE under optimal mixing/field transfer conditions. 1H T1 lifetimes for the thienopyridazines were ~18‐50 s. Long‐lived state approaches extended the magnetic lifetime of target proton sites in T[2,3‐d]P from an average of 25‐40 seconds. Enhanced in vitro imaging (spatial and chemical shift based) of target T[2,3‐d]P was demonstrated. Conclusion Here, we demonstrate the power of SABRE to deliver a fast and cost‐effective route to hyperpolarization of important chemical motifs of anticancer agents. The SABRE approach outlined here lays the foundations for realizing continuous flow, hyperpolarized tracking of drug delivery/pathways.
Collapse
Affiliation(s)
| | - Aneurin J. Kennerley
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) University of York York United Kingdom
| | - Peter J. Rayner
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) University of York York United Kingdom
| | - Philip Norcott
- Research School of Chemistry Australian National University Canberra Australia
| | - Soumya S. Roy
- School of Chemistry University of Southampton Southampton United Kingdom
- Defence Science and Technology Laboratory (DSTL) Salisbury United Kingdom
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance (CHyM) University of York York United Kingdom
| |
Collapse
|
22
|
Barker S, Dagys L, Hale W, Ripka B, Eills J, Sharma M, Levitt MH, Utz M. Direct Production of a Hyperpolarized Metabolite on a Microfluidic Chip. Anal Chem 2022; 94:3260-3267. [PMID: 35147413 PMCID: PMC9096798 DOI: 10.1021/acs.analchem.1c05030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 12/28/2022]
Abstract
Microfluidic systems hold great potential for the study of live microscopic cultures of cells, tissue samples, and small organisms. Integration of hyperpolarization would enable quantitative studies of metabolism in such volume limited systems by high-resolution NMR spectroscopy. We demonstrate, for the first time, the integrated generation and detection of a hyperpolarized metabolite on a microfluidic chip. The metabolite [1-13C]fumarate is produced in a nuclear hyperpolarized form by (i) introducing para-enriched hydrogen into the solution by diffusion through a polymer membrane, (ii) reaction with a substrate in the presence of a ruthenium-based catalyst, and (iii) conversion of the singlet-polarized reaction product into a magnetized form by the application of a radiofrequency pulse sequence, all on the same microfluidic chip. The microfluidic device delivers a continuous flow of hyperpolarized material at the 2.5 μL/min scale, with a polarization level of 4%. We demonstrate two methods for mitigating singlet-triplet mixing effects which otherwise reduce the achieved polarization level.
Collapse
Affiliation(s)
- Sylwia
J. Barker
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Laurynas Dagys
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - William Hale
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Department
of Chemistry, University of Florida, Gainesville 32611, United States
| | - Barbara Ripka
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - James Eills
- Institute
for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany
- GSI
Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany
| | - Manvendra Sharma
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Malcolm H. Levitt
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Marcel Utz
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
23
|
Schmidt AB, Zimmermann M, Berner S, de Maissin H, Müller CA, Ivantaev V, Hennig J, Elverfeldt DV, Hövener JB. Quasi-continuous production of highly hyperpolarized carbon-13 contrast agents every 15 seconds within an MRI system. Commun Chem 2022; 5:21. [PMID: 36697573 PMCID: PMC9814607 DOI: 10.1038/s42004-022-00634-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/25/2022] [Indexed: 01/28/2023] Open
Abstract
Hyperpolarized contrast agents (HyCAs) have enabled unprecedented magnetic resonance imaging (MRI) of metabolism and pH in vivo. Producing HyCAs with currently available methods, however, is typically time and cost intensive. Here, we show virtually-continuous production of HyCAs using parahydrogen-induced polarization (PHIP), without stand-alone polarizer, but using a system integrated in an MRI instead. Polarization of ≈2% for [1-13C]succinate-d2 or ≈19% for hydroxyethyl-[1-13C]propionate-d3 was created every 15 s, for which fast, effective, and well-synchronized cycling of chemicals and reactions in conjunction with efficient spin-order transfer was key. We addressed these challenges using a dedicated, high-pressure, high-temperature reactor with integrated water-based heating and a setup operated via the MRI pulse program. As PHIP of several biologically relevant HyCAs has recently been described, this Rapid-PHIP technique promises fast preclinical studies, repeated administration or continuous infusion within a single lifetime of the agent, as well as a prolonged window for observation with signal averaging and dynamic monitoring of metabolic alterations.
Collapse
Affiliation(s)
- Andreas B Schmidt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany.
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| | - Mirko Zimmermann
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Stephan Berner
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Henri de Maissin
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Christoph A Müller
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Vladislav Ivantaev
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Dominik V Elverfeldt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| |
Collapse
|
24
|
Pravdivtsev AN, Hövener J, Schmidt AB. Frequency-Selective Manipulations of Spins allow Effective and Robust Transfer of Spin Order from Parahydrogen to Heteronuclei in Weakly-Coupled Spin Systems. Chemphyschem 2022; 23:e202100721. [PMID: 34874086 PMCID: PMC9306892 DOI: 10.1002/cphc.202100721] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/04/2021] [Indexed: 01/20/2023]
Abstract
We present a selectively pulsed (SP) generation of sequences to transfer the spin order of parahydrogen (pH2 ) to heteronuclei in weakly coupled spin systems. We analyze and discuss the mechanism and efficiency of SP spin order transfer (SOT) and derive sequence parameters. These new sequences are most promising for the hyperpolarization of molecules at high magnetic fields. SP-SOT is effective and robust despite the symmetry of the 1 H-13 C J-couplings even when precursor molecules are not completely labeled with deuterium. As only one broadband 1 H pulse is needed per sequence, which can be replaced for instance by a frequency-modulated pulse, lower radiofrequency (RF) power is required. This development will be useful to hyperpolarize (new) agents and to perform the hyperpolarization within the bore of an MRI system, where the limited RF power has been a persistent problem.
Collapse
Affiliation(s)
- Andrey N. Pravdivtsev
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center KielKiel University DepartmentAm Botanischen Garten 1424118KielGermany
| | - Jan‐Bernd Hövener
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center KielKiel University DepartmentAm Botanischen Garten 1424118KielGermany
| | - Andreas B. Schmidt
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center KielKiel University DepartmentAm Botanischen Garten 1424118KielGermany
- Department of RadiologyMedical PhysicsUniversity Medical CenterFaculty of MedicineUniversity of FreiburgKillianstr. 5a79106FreiburgGermany
- German Cancer Consortium (DKTK)partner site Freiburg andGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| |
Collapse
|
25
|
Adelabu I, TomHon P, Kabir MSH, Nantogma S, Abdulmojeed M, Mandzhieva I, Ettedgui J, Swenson RE, Krishna MC, Theis T, Goodson BM, Chekmenev EY. Order-Unity 13 C Nuclear Polarization of [1- 13 C]Pyruvate in Seconds and the Interplay of Water and SABRE Enhancement. Chemphyschem 2022; 23:e202100839. [PMID: 34813142 PMCID: PMC8770613 DOI: 10.1002/cphc.202100839] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 01/21/2023]
Abstract
Signal Amplification By Reversible Exchange in SHield Enabled Alignment Transfer (SABRE-SHEATH) is investigated to achieve rapid hyperpolarization of 13 C1 spins of [1-13 C]pyruvate, using parahydrogen as the source of nuclear spin order. Pyruvate exchange with an iridium polarization transfer complex can be modulated via a sensitive interplay between temperature and co-ligation of DMSO and H2 O. Order-unity 13 C (>50 %) polarization of catalyst-bound [1-13 C]pyruvate is achieved in less than 30 s by restricting the chemical exchange of [1-13 C]pyruvate at lower temperatures. On the catalyst bound pyruvate, 39 % polarization is measured using a 1.4 T NMR spectrometer, and extrapolated to >50 % at the end of build-up in situ. The highest measured polarization of a 30-mM pyruvate sample, including free and bound pyruvate is 13 % when using 20 mM DMSO and 0.5 M water in CD3 OD. Efficient 13 C polarization is also enabled by favorable relaxation dynamics in sub-microtesla magnetic fields, as indicated by fast polarization buildup rates compared to the T1 spin-relaxation rates (e. g., ∼0.2 s-1 versus ∼0.1 s-1 , respectively, for a 6 mM catalyst-[1-13 C]pyruvate sample). Finally, the catalyst-bound hyperpolarized [1-13 C]pyruvate can be released rapidly by cycling the temperature and/or by optimizing the amount of water, paving the way to future biomedical applications of hyperpolarized [1-13 C]pyruvate produced via comparatively fast and simple SABRE-SHEATH-based approaches.
Collapse
Affiliation(s)
- Isaiah Adelabu
- Integrative Biosciences, Department of Chemistry Karmanos Cancer Institute, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Patrick TomHon
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Mohammad S H Kabir
- Integrative Biosciences, Department of Chemistry Karmanos Cancer Institute, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Shiraz Nantogma
- Integrative Biosciences, Department of Chemistry Karmanos Cancer Institute, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Mustapha Abdulmojeed
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Iuliia Mandzhieva
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Jessica Ettedgui
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland, 20850, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland, 20850, USA
| | - Murali C Krishna
- Center for Cancer Research, National Cancer Institute, Bethesda, 31 Center Drive, Maryland, 20814, USA
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, USA
| | - Boyd M Goodson
- School of Chemical and Biomolecular Sciences Materials Technology Center, Southern Illinois University, 1245 Lincoln Dr., Carbondale, IL, 62901, USA
| | - Eduard Y Chekmenev
- Integrative Biosciences, Department of Chemistry Karmanos Cancer Institute, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospect, 14, 119991, Moscow, Russia
| |
Collapse
|
26
|
TomHon P, Abdulmojeed M, Adelabu I, Nantogma S, Kabir MSH, Lehmkuhl S, Chekmenev EY, Theis T. Temperature Cycling Enables Efficient 13C SABRE-SHEATH Hyperpolarization and Imaging of [1- 13C]-Pyruvate. J Am Chem Soc 2022; 144:282-287. [PMID: 34939421 PMCID: PMC8785411 DOI: 10.1021/jacs.1c09581] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Molecular metabolic imaging in humans is dominated by positron emission tomography (PET). An emerging nonionizing alternative is hyperpolarized MRI of 13C-pyruvate, which is innocuous and has a central role in metabolism. However, similar to PET, hyperpolarized MRI with dissolution dynamic nuclear polarization (d-DNP) is complex costly, and requires significant infrastructure. In contrast, Signal Amplification By Reversible Exchange (SABRE) is a fast, cheap, and scalable hyperpolarization technique. SABRE in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) can transfer polarization from parahydrogen to 13C in pyruvate; however, polarization levels remained low relative to d-DNP (1.7% with SABRE-SHEATH versus ≈60% with DNP). Here we introduce a temperature cycling method for SABRE-SHEATH that enables >10% polarization on [1-13C]-pyruvate, sufficient for successful in vivo experiments. First, at lower temperatures, ≈20% polarization is accumulated on SABRE catalyst-bound pyruvate, which is released into free pyruvate at elevated temperatures. A kinetic model of differential equations is developed that explains this effect and characterizes critical relaxation and buildup parameters. With the large polarization, we demonstrate the first 13C pyruvate images with a cryogen-free MRI system operated at 1.5 T, illustrating that inexpensive hyperpolarization methods can be combined with low-cost MRI systems to obtain a broadly available, yet highly sensitive metabolic imaging platform.
Collapse
Affiliation(s)
- Patrick TomHon
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, United States
| | - Mustapha Abdulmojeed
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, United States
| | - Isaiah Adelabu
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | - Shiraz Nantogma
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | | | - Sören Lehmkuhl
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
- Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, MI 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, 119991 Moscow, Russia
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, United States
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina 27606, United States
- Department of Physics, North Carolina State University, Raleigh, NC 27606, United States
| |
Collapse
|
27
|
Schmidt AB, Bowers CR, Buckenmaier K, Chekmenev EY, de Maissin H, Eills J, Ellermann F, Glöggler S, Gordon JW, Knecht S, Koptyug IV, Kuhn J, Pravdivtsev AN, Reineri F, Theis T, Them K, Hövener JB. Instrumentation for Hydrogenative Parahydrogen-Based Hyperpolarization Techniques. Anal Chem 2022; 94:479-502. [PMID: 34974698 PMCID: PMC8784962 DOI: 10.1021/acs.analchem.1c04863] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Andreas B. Schmidt
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - C. Russell Bowers
- Department of Chemistry, University of Florida, 2001 Museum Road, Gainesville, Florida 32611, USA
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076, Tübingen, Germany
| | - Eduard Y. Chekmenev
- Intergrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
- Russian Academy of Sciences (RAS), Leninskiy Prospect, 14, 119991 Moscow, Russia
| | - Henri de Maissin
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max Planck Institutefor Biophysical Chemistry Am Fassberg 11, 37077 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A, 37075 Göttingen, Germany
| | - Jeremy W. Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry St., San Francisco, CA, 94158, USA
| | | | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Jule Kuhn
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Francesca Reineri
- Dept. Molecular Biotechnology and Health Sciences, Via Nizza 52, University of Torino, Italy
| | - Thomas Theis
- Departments of Chemistry, Physics and Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|
28
|
Rapid SABRE Catalyst Scavenging Using Functionalized Silicas. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020332. [PMID: 35056646 PMCID: PMC8778821 DOI: 10.3390/molecules27020332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
In recent years the NMR hyperpolarisation method signal amplification by reversible exchange (SABRE) has been applied to multiple substrates of potential interest for in vivo investigation. Unfortunately, SABRE commonly requires an iridium-containing catalyst that is unsuitable for biomedical applications. This report utilizes inductively coupled plasma-optical emission spectroscopy (ICP-OES) to investigate the potential use of metal scavengers to remove the iridium catalytic species from the solution. The most sensitive iridium emission line at 224.268 nm was used in the analysis. We report the effects of varying functionality, chain length, and scavenger support identity on iridium scavenging efficiency. The impact of varying the quantity of scavenger utilized is reported for the three scavengers with the highest iridium removed from initial investigations: 3-aminopropyl (S1), 3-(imidazole-1-yl)propyl (S4), and 2-(2-pyridyl) (S5) functionalized silica gels. Exposure of an activated SABRE sample (1.6 mg mL-1 of iridium catalyst) to 10 mg of the most promising scavenger (S5) resulted in <1 ppm of iridium being detectable by ICP-OES after 2 min of exposure. We propose that combining the approach described herein with other recently reported approaches, such as catalyst separated-SABRE (CASH-SABRE), would enable the rapid preparation of a biocompatible SABRE hyperpolarized bolus.
Collapse
|
29
|
Joalland B, Nantogma S, Chowdhury MRH, Nikolaou P, Chekmenev EY. Magnetic shielding of parahydrogen hyperpolarization experiments for the masses. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1180-1186. [PMID: 33948988 PMCID: PMC8568740 DOI: 10.1002/mrc.5167] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 05/07/2023]
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, USA
| | - Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, USA
| | - Md Raduanul H Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, USA
| | | | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, USA
- Russian Academy of Sciences (RAS), Moscow, Russia
| |
Collapse
|
30
|
Iali W, Moustafa GAI, Dagys L, Roy SS. 15 N hyperpolarisation of the antiprotozoal drug ornidazole by Signal Amplification By Reversible Exchange in aqueous medium. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1199-1207. [PMID: 33656772 DOI: 10.1002/mrc.5144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Signal amplification by reversible exchange (SABRE) offers a cost-effective route to boost nuclear magnetic resonance (NMR) signal by several orders of magnitude by employing readily available para-hydrogen as a source of hyperpolarisation. Although 1 H spins have been the natural choice of SABRE hyperpolarisation since its inception due to its simplicity and accessibility, limited spin lifetimes of 1 H makes it harder to employ them in a range of time-dependent NMR experiments. Heteronuclear spins, for example, 13 C and 15 N, in general have much longer T1 lifetimes and thereby are found to be more suitable for hyperpolarised biological applications as demonstrated previously by para-hydrogen induced polarisation (PHIP) and dynamic nuclear polarisation (DNP). In this study we demonstrate a simple procedure to enhance 15 N signal of an antibiotic drug ornidazole by up to 71,000-folds with net 15 N polarisation reaching ~23%. Further, the effect of co-ligand strategy is studied in conjunction with the optimum field transfer protocols and consequently achieving 15 N hyperpolarised spin lifetime of >3 min at low field. Finally, we present a convenient route to harness the hyperpolarised solution in aqueous medium free from catalyst contamination leading to a strong 15 N signal detection for an extended duration of time.
Collapse
Affiliation(s)
- Wissam Iali
- Department of Chemistry, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Gamal A I Moustafa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
- School of Chemistry, University of Southampton, Southampton, UK
| | - Laurynas Dagys
- School of Chemistry, University of Southampton, Southampton, UK
| | - Soumya S Roy
- School of Chemistry, University of Southampton, Southampton, UK
| |
Collapse
|
31
|
Kiryutin AS, Yurkovskaya AV, Petrov PA, Ivanov KL. Simultaneous 15 N polarization of several biocompatible substrates in ethanol-water mixtures by signal amplification by reversible exchange (SABRE) method. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1216-1224. [PMID: 34085303 DOI: 10.1002/mrc.5184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Signal amplification by reversible exchange (SABRE) is a popular method for generating strong signal enhancements in nuclear magnetic resonance (NMR). In SABRE experiments, the source of polarization is provided by the nonthermal spin order of parahydrogen (pH2 , the H2 molecule in its nuclear singlet spin state). Polarization formation requires that both pH2 and a substrate molecule bind to an Ir-based complex where polarization transfer occurs. Subsequently, the complex dissociates and free polarized substrate molecules are formed. In this work, we present approaches towards biocompatible SABRE, meaning that several small biomolecules are simultaneously polarized by using the SABRE method in water-ethanol solutions at room temperature. We are able to demonstrate significant 15 N-NMR signal enhancements in water-ethanol solutions for biomolecules like nicotinamide, metronidazole, adenosine-5'-monophosphate, and 4-methylimidazole and found that the first three substrates are polarized at the same level as a well-known pyridine. We show that simultaneous polarization of several molecules is indeed feasible when the reactions are carried out at an ultralow field of about 400-500 nT. The achieved enhancements are between 100-fold and 15,000-fold. The resulting 15 N polarization (maximal value about 4% achieved for metronidazole and pyridine at 45°C) strongly depends on the sample temperature, pH2 bubbling pressure, and pH2 flow. One more parameter, which is important for optimizing the enhancement, is the solvent pH. Hence, this study presents a step in developing biocompatible SABRE polarization and gives a clue on how such SABRE experiments should be optimized to achieve the highest NMR signal enhancement.
Collapse
Affiliation(s)
- Alexey S Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Pavel A Petrov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
32
|
Pravdivtsev AN, Buntkowsky G, Duckett SB, Koptyug IV, Hövener J. Parahydrogen-Induced Polarization of Amino Acids. Angew Chem Int Ed Engl 2021; 60:23496-23507. [PMID: 33635601 PMCID: PMC8596608 DOI: 10.1002/anie.202100109] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Indexed: 12/13/2022]
Abstract
Nuclear magnetic resonance (NMR) has become a universal method for biochemical and biomedical studies, including metabolomics, proteomics, and magnetic resonance imaging (MRI). By increasing the signal of selected molecules, the hyperpolarization of nuclear spin has expanded the reach of NMR and MRI even further (e.g. hyperpolarized solid-state NMR and metabolic imaging in vivo). Parahydrogen (pH2 ) offers a fast and cost-efficient way to achieve hyperpolarization, and the last decade has seen extensive advances, including the synthesis of new tracers, catalysts, and transfer methods. The portfolio of hyperpolarized molecules now includes amino acids, which are of great interest for many applications. Here, we provide an overview of the current literature and developments in the hyperpolarization of amino acids and peptides.
Collapse
Affiliation(s)
- Andrey N. Pravdivtsev
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center Schleswig-Holstein (UKSH)Kiel UniversityAm Botanischen Garten 1424118KielGermany
| | - Gerd Buntkowsky
- Technical University DarmstadtEduard-Zintl-Institute for Inorganic and Physical ChemistryAlarich-Weiss-Strasse 864287DarmstadtGermany
| | - Simon B. Duckett
- Department Center for Hyperpolarization in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York, HeslingtonYorkYO10 5NYUK
| | - Igor V. Koptyug
- International Tomography CenterSB RAS3A Institutskaya st.630090NovosibirskRussia
- Novosibirsk State University2 Pirogova st.630090NovosibirskRussia
| | - Jan‐Bernd Hövener
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center Schleswig-Holstein (UKSH)Kiel UniversityAm Botanischen Garten 1424118KielGermany
| |
Collapse
|
33
|
Pravdivtsev AN, Buntkowsky G, Duckett SB, Koptyug IV, Hövener J. Parawasserstoff‐induzierte Polarisation von Aminosäuren. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andrey N. Pravdivtsev
- Section Biomedical Imaging Molecular Imaging North Competence Center (MOIN CC) Department of Radiology and Neuroradiology University Medical Center Schleswig-Holstein (UKSH) Kiel University Am Botanischen Garten 14 24118 Kiel Deutschland
| | - Gerd Buntkowsky
- Technical University Darmstadt Eduard-Zintl-Institute for Inorganic and Physical Chemistry Alarich-Weiss-Straße 8 64287 Darmstadt Deutschland
| | - Simon B. Duckett
- Department Center for Hyperpolarization in Magnetic Resonance (CHyM) Department of Chemistry University of York, Heslington York YO10 5NY Vereinigtes Königreich
| | - Igor V. Koptyug
- International Tomography Center SB RAS 3A Institutskaya st. 630090 Novosibirsk Russland
- Novosibirsk State University 2 Pirogova st. 630090 Novosibirsk Russland
| | - Jan‐Bernd Hövener
- Section Biomedical Imaging Molecular Imaging North Competence Center (MOIN CC) Department of Radiology and Neuroradiology University Medical Center Schleswig-Holstein (UKSH) Kiel University Am Botanischen Garten 14 24118 Kiel Deutschland
| |
Collapse
|
34
|
Kiryutin AS, Yurkovskaya AV, Ivanov KL. 15 N SABRE Hyperpolarization of Metronidazole at Natural Isotope Abundance. Chemphyschem 2021; 22:1470-1477. [PMID: 34009704 DOI: 10.1002/cphc.202100315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/19/2021] [Indexed: 11/06/2022]
Abstract
Signal Amplification By Reversible Exchange (SABRE) is gaining increased attention as a tool to enhance weak Nuclear Magnetic Resonance (NMR) signals. In SABRE, spin order is transferred from parahydrogen (H2 in its nuclear singlet spin state) to a substrate molecule in a transient Ir-based complex. In recent years, SABRE polarization of biologically active substrates has been demonstrated, notably of metronidazole - an antibiotic and antiprotozoal drug. In this work, we study 15 N SABRE polarization of metronidazole at natural isotope abundance. We are able to demonstrate significant 15 N polarization reaching 15 %, which corresponds to a signal enhancement of 46,000 at 9.4 T for the nitrogen atom with lone electron pair. Additionally, the other two N-atoms can be polarized, although less efficiently. We present a detailed study of the field dependence of polarization and explain the maxima in the field dependence using the concept of coherent polarization transfer at level anti-crossings in the SABRE complex. A study of spin relaxation phenomena presented here enables optimization of the magnetic field for efficient storage of non-thermal polarization.
Collapse
Affiliation(s)
- Alexey S Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya str. 3a, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya str. 3a, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Institutskaya str. 3a, Novosibirsk, 630090, Russia.,Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russia
| |
Collapse
|
35
|
Chukanov NV, Shchepin RV, Joshi SM, Kabir MSH, Salnikov OG, Svyatova A, Koptyug IV, Gelovani JG, Chekmenev EY. Synthetic Approaches for 15 N-Labeled Hyperpolarized Heterocyclic Molecular Imaging Agents for 15 N NMR Signal Amplification by Reversible Exchange in Microtesla Magnetic Fields. Chemistry 2021; 27:9727-9736. [PMID: 33856077 PMCID: PMC8273115 DOI: 10.1002/chem.202100212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 12/23/2022]
Abstract
NMR hyperpolarization techniques enhance nuclear spin polarization by several orders of magnitude resulting in corresponding sensitivity gains. This enormous sensitivity gain enables new applications ranging from studies of small molecules by using high-resolution NMR spectroscopy to real-time metabolic imaging in vivo. Several hyperpolarization techniques exist for hyperpolarization of a large repertoire of nuclear spins, although the 13 C and 15 N sites of biocompatible agents are the key targets due to their widespread use in biochemical pathways. Moreover, their long T1 allows hyperpolarized states to be retained for up to tens of minutes. Signal amplification by reversible exchange (SABRE) is a low-cost and ultrafast hyperpolarization technique that has been shown to be versatile for the hyperpolarization of 15 N nuclei. Although large sensitivity gains are enabled by hyperpolarization, 15 N natural abundance is only ∼0.4 %, so isotopic labeling of the molecules to be hyperpolarized is required in order to take full advantage of the hyperpolarized state. Herein, we describe selected advances in the preparation of 15 N-labeled compounds with the primary emphasis on using these compounds for SABRE polarization in microtesla magnetic fields through spontaneous polarization transfer from parahydrogen. Also, these principles can certainly be applied for hyperpolarization of these emerging contrast agents using dynamic nuclear polarization and other techniques.
Collapse
Affiliation(s)
- Nikita V Chukanov
- International Tomography Center, SB RAS, Institutskaya St. 3A, 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Roman V Shchepin
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines & Technology, Rapid City, SD 57701, USA
| | - Sameer M Joshi
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI 48202, USA
| | - Mohammad S H Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI 48202, USA
| | - Oleg G Salnikov
- International Tomography Center, SB RAS, Institutskaya St. 3A, 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, Acad. Lavrentiev Prospekt 5, 630090, Novosibirsk, Russia
| | - Alexandra Svyatova
- International Tomography Center, SB RAS, Institutskaya St. 3A, 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center, SB RAS, Institutskaya St. 3A, 630090, Novosibirsk, Russia
| | - Juri G Gelovani
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI 48202, USA
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI 48202, USA
- Russian Academy of Sciences (RAS), Leninskiy Prospekt 14, 119991, Moscow, Russia
| |
Collapse
|
36
|
Pokochueva EV, Burueva DB, Salnikov OG, Koptyug IV. Heterogeneous Catalysis and Parahydrogen-Induced Polarization. Chemphyschem 2021; 22:1421-1440. [PMID: 33969590 DOI: 10.1002/cphc.202100153] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/05/2021] [Indexed: 01/11/2023]
Abstract
Parahydrogen-induced polarization with heterogeneous catalysts (HET-PHIP) has been a subject of extensive research in the last decade since its first observation in 2007. While NMR signal enhancements obtained with such catalysts are currently below those achieved with transition metal complexes in homogeneous hydrogenations in solution, this relatively new field demonstrates major prospects for a broad range of advanced fundamental and practical applications, from providing catalyst-free hyperpolarized fluids for biomedical magnetic resonance imaging (MRI) to exploring mechanisms of industrially important heterogeneous catalytic processes. This review covers the evolution of the heterogeneous catalysts used for PHIP observation, from metal complexes immobilized on solid supports to bulk metals and single-atom catalysts and discusses the general visions for maximizing the obtained NMR signal enhancements using HET-PHIP. Various practical applications of HET-PHIP, both for catalytic studies and for potential production of hyperpolarized contrast agents for MRI, are described.
Collapse
Affiliation(s)
- Ekaterina V Pokochueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Dudari B Burueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia.,Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia
| |
Collapse
|
37
|
Kondo Y, Nonaka H, Takakusagi Y, Sando S. Entwicklung molekularer Sonden für die hyperpolarisierte NMR‐Bildgebung im biologischen Bereich. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201915718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoichi Takakusagi
- Institute of Quantum Life Science National Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa, Inage Chiba-city 263-8555 Japan
- National Institute of Radiological Sciences National Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa, Inage Chiba-city 263-8555 Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Bioengineering Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
38
|
Chekmenev EY, Goodson BM, Bukhtiyarov VI, Koptyug IV. Bridging the Gap: From Homogeneous to Heterogeneous Parahydrogen-induced Hyperpolarization and Beyond. Chemphyschem 2021; 22:710-715. [PMID: 33825286 PMCID: PMC8357055 DOI: 10.1002/cphc.202001031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/19/2021] [Indexed: 11/11/2022]
Abstract
Demonstration of parahydrogen-induced polarization effects in hydrogenations catalyzed by heterogeneous catalysts instead of metal complexes in a homogeneous solution has opened an entirely new dimension for parahydrogen-based research, demonstrating its applicability not only for the production of catalyst-free hyperpolarized liquids and gases and long-lived non-equilibrium spin states for potential biomedical applications, but also for addressing challenges of modern fundamental and industrial catalysis including advanced mechanistic studies of catalytic reactions and operando NMR and MRI of reactors. This essay summarizes the progress achieved in this field by highlighting the research contributed to it by our colleague and friend Kirill V. Kovtunov whose scientific career ended unexpectedly and tragically at the age of 37. His role in this research was certainly crucial, further enhanced by a vast network of his contacts and collaborations at the national and international level.
Collapse
Affiliation(s)
- Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University Karmanos Cancer Institute (KCI), Detroit, MI 48202, USA
- Russian Academy of Sciences, 14 Leninskiy prospect, Moscow, 119991, Russia
| | - Boyd M Goodson
- Southern Illinois University Department of Chemistry and Biochemistry Materials Technology Center, Carbondale, IL 62901, USA
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis, SB RAS, 5 Acad. Lavrentiev pr., Novosibirsk, 630090, Russia
| | - Igor V Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk, 630090, Russia
| |
Collapse
|
39
|
Chukanov NV, Salnikov OG, Trofimov IA, Kabir MSH, Kovtunov KV, Koptyug IV, Chekmenev EY. Synthesis and 15 N NMR Signal Amplification by Reversible Exchange of [ 15 N]Dalfampridine at Microtesla Magnetic Fields. Chemphyschem 2021; 22:960-967. [PMID: 33738893 DOI: 10.1002/cphc.202100109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/18/2021] [Indexed: 01/10/2023]
Abstract
Signal Amplification by Reversible Exchange (SABRE) technique enables nuclear spin hyperpolarization of wide range of compounds using parahydrogen. Here we present the synthetic approach to prepare 15 N-labeled [15 N]dalfampridine (4-amino[15 N]pyridine) utilized as a drug to reduce the symptoms of multiple sclerosis. The synthesized compound was hyperpolarized using SABRE at microtesla magnetic fields (SABRE-SHEATH technique) with up to 2.0 % 15 N polarization. The 7-hour-long activation of SABRE pre-catalyst [Ir(IMes)(COD)Cl] in the presence of [15 N]dalfampridine can be remedied by the use of pyridine co-ligand for catalyst activation while retaining the 15 N polarization levels of [15 N]dalfampridine. The effects of experimental conditions such as polarization transfer magnetic field, temperature, concentration, parahydrogen flow rate and pressure on 15 N polarization levels of free and equatorial catalyst-bound [15 N]dalfampridine were investigated. Moreover, we studied 15 N polarization build-up and decay at magnetic field of less than 0.04 μT as well as 15 N polarization decay at the Earth's magnetic field and at 1.4 T.
Collapse
Affiliation(s)
- Nikita V Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia.,Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
| | - Ivan A Trofimov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Mohammad S H Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States.,Russian Academy of Sciences, 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
40
|
Burueva D, Stakheev A, Koptyug I. Pd-based bimetallic catalysts for parahydrogen-induced polarization in heterogeneous hydrogenations. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:93-103. [PMID: 37904757 PMCID: PMC10539775 DOI: 10.5194/mr-2-93-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/19/2021] [Indexed: 11/01/2023]
Abstract
Production of hyperpolarized catalyst-free gases and liquids by heterogeneous hydrogenation with parahydrogen can be useful for various technical as well as biomedical applications, including in vivo studies, investigations of mechanisms of industrially important catalytic processes, enrichment of nuclear spin isomers of polyatomic gases, and more. In this regard, the wide systematic search for heterogeneous catalysts effective in pairwise H 2 addition required for the observation of parahydrogen-induced polarization (PHIP) effects is crucial. Here in this work we demonstrate the competitive advantage of Pd-based bimetallic catalysts for PHIP in heterogeneous hydrogenations (HET-PHIP). The dilution of catalytically active Pd with less active Ag or In atoms provides the formation of atomically dispersed Pd 1 sites on the surface of Pd-based bimetallic catalysts, which are significantly more selective toward pairwise H 2 addition compared to the monometallic Pd. Furthermore, the choice of the dilution metal (Ag or In) has a pronounced effect on the efficiency of bimetallic catalysts in HET-PHIP, as revealed by comparing Pd-Ag and Pd-In bimetallic catalysts.
Collapse
Affiliation(s)
- Dudari B. Burueva
- Laboratory of Magnetic Resonance Microimaging, International
Tomography Center, SB RAS, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | | | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging, International
Tomography Center, SB RAS, Novosibirsk, 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
41
|
Rapid hyperpolarization and purification of the metabolite fumarate in aqueous solution. Proc Natl Acad Sci U S A 2021; 118:2025383118. [PMID: 33753510 PMCID: PMC8020773 DOI: 10.1073/pnas.2025383118] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Magnetic resonance imaging is hindered by inherently low sensitivity, which limits the method for the most part to observing water molecules in the body. Hyperpolarized molecules exhibit strongly enhanced MRI signals which opens the door for imaging low-concentration species in vivo. Biomolecules can be hyperpolarized and injected into a patient allowing for metabolism to be tracked in real time, greatly expanding the information available to the radiologist. Parahydrogen-induced polarization (PHIP) is a hyperpolarization method renowned for its low cost and accessibility, but is generally limited by low polarization levels, modest molecular concentrations, and contamination by polarization reagents. In this work we overcome these drawbacks in the production of PHIP-polarized [1-13C]fumarate, a biomarker of cell necrosis in metabolic 13C MRI. Hyperpolarized fumarate is a promising biosensor for carbon-13 magnetic resonance metabolic imaging. Such molecular imaging applications require nuclear hyperpolarization to attain sufficient signal strength. Dissolution dynamic nuclear polarization is the current state-of-the-art methodology for hyperpolarizing fumarate, but this is expensive and relatively slow. Alternatively, this important biomolecule can be hyperpolarized in a cheap and convenient manner using parahydrogen-induced polarization. However, this process requires a chemical reaction, and the resulting solutions are contaminated with the catalyst, unreacted reagents, and reaction side-product molecules, and are hence unsuitable for use in vivo. In this work we show that the hyperpolarized fumarate can be purified from these contaminants by acid precipitation as a pure solid, and later redissolved to a desired concentration in a clean aqueous solvent. Significant advances in the reaction conditions and reactor equipment allow for formation of hyperpolarized fumarate at 13C polarization levels of 30–45%.
Collapse
|
42
|
Kondo Y, Nonaka H, Takakusagi Y, Sando S. Design of Nuclear Magnetic Resonance Molecular Probes for Hyperpolarized Bioimaging. Angew Chem Int Ed Engl 2021; 60:14779-14799. [PMID: 32372551 DOI: 10.1002/anie.201915718] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Nuclear hyperpolarization has emerged as a method to dramatically enhance the sensitivity of NMR spectroscopy. By application of this powerful tool, small molecules with stable isotopes have been used for highly sensitive biomedical molecular imaging. The recent development of molecular probes for hyperpolarized in vivo analysis has demonstrated the ability of this technique to provide unique metabolic and physiological information. This review presents a brief introduction of hyperpolarization technology, approaches to the rational design of molecular probes for hyperpolarized analysis, and examples of molecules that have met with success in vitro or in vivo.
Collapse
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoichi Takakusagi
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city, 263-8555, Japan.,National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city, 263-8555, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
43
|
Salnikov OG, Chukanov NV, Svyatova A, Trofimov IA, Kabir MSH, Gelovani JG, Kovtunov KV, Koptyug IV, Chekmenev EY. 15 N NMR Hyperpolarization of Radiosensitizing Antibiotic Nimorazole by Reversible Parahydrogen Exchange in Microtesla Magnetic Fields. Angew Chem Int Ed Engl 2021; 60:2406-2413. [PMID: 33063407 PMCID: PMC7855180 DOI: 10.1002/anie.202011698] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 02/03/2023]
Abstract
Nimorazole belongs to the imidazole-based family of antibiotics to fight against anaerobic bacteria. Moreover, nimorazole is now in Phase 3 clinical trial in Europe for potential use as a hypoxia radiosensitizer for treatment of head and neck cancers. We envision the use of [15 N3 ]nimorazole as a theragnostic hypoxia contrast agent that can be potentially deployed in the next-generation MRI-LINAC systems. Herein, we report the first steps to create long-lasting (for tens of minutes) hyperpolarized state on three 15 N sites of [15 N3 ]nimorazole with T1 of up to ca. 6 minutes. The nuclear spin polarization was boosted by ca. 67000-fold at 1.4 T (corresponding to P15N of 3.2 %) by 15 N-15 N spin-relayed SABRE-SHEATH hyperpolarization technique, relying on simultaneous exchange of [15 N3 ]nimorazole and parahydrogen on polarization transfer Ir-IMes catalyst. The presented results pave the way to efficient spin-relayed SABRE-SHEATH hyperpolarization of a wide range of imidazole-based antibiotics and chemotherapeutics.
Collapse
Affiliation(s)
- Oleg G Salnikov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Alexandra Svyatova
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Ivan A Trofimov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Mohammad S H Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
| | - Juri G Gelovani
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
44
|
Reineri F, Cavallari E, Carrera C, Aime S. Hydrogenative-PHIP polarized metabolites for biological studies. MAGMA (NEW YORK, N.Y.) 2021; 34:25-47. [PMID: 33527252 PMCID: PMC7910253 DOI: 10.1007/s10334-020-00904-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
ParaHydrogen induced polarization (PHIP) is an efficient and cost-effective hyperpolarization method, but its application to biological investigations has been hampered, so far, due to chemical challenges. PHIP is obtained by means of the addition of hydrogen, enriched in the para-spin isomer, to an unsaturated substrate. Both hydrogen atoms must be transferred to the same substrate, in a pairwise manner, by a suitable hydrogenation catalyst; therefore, a de-hydrogenated precursor of the target molecule is necessary. This has strongly limited the number of parahydrogen polarized substrates. The non-hydrogenative approach brilliantly circumvents this central issue, but has not been translated to in-vivo yet. Recent advancements in hydrogenative PHIP (h-PHIP) considerably widened the possibility to hyperpolarize metabolites and, in this review, we will focus on substrates that have been obtained by means of this method and used in vivo. Attention will also be paid to the requirements that must be met and on the issues that have still to be tackled to obtain further improvements and to push PHIP substrates in biological applications.
Collapse
Affiliation(s)
- Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy.
| | - Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy
| | - Carla Carrera
- Institute of Biostructures and Bioimaging, National Research Council, Via Nizza 52, Turin, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy
| |
Collapse
|
45
|
Muhammad SR, Greer RB, Ramirez SB, Goodson BM, Fout AR. Cobalt-Catalyzed Hyperpolarization of Structurally Intact Olefins. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Safiyah R. Muhammad
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Rianna B. Greer
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Steven B. Ramirez
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Alison R. Fout
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
46
|
Salnikov OG, Chukanov NV, Svyatova A, Trofimov IA, Kabir MSH, Gelovani JG, Kovtunov KV, Koptyug IV, Chekmenev EY. 15
N NMR Hyperpolarization of Radiosensitizing Antibiotic Nimorazole by Reversible Parahydrogen Exchange in Microtesla Magnetic Fields. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Oleg G. Salnikov
- Boreskov Institute of Catalysis SB RAS 5 Acad. Lavrentiev Pr. 630090 Novosibirsk Russia
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Alexandra Svyatova
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Ivan A. Trofimov
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Mohammad S. H. Kabir
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
| | - Juri G. Gelovani
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
- College of Medicine and Health Sciences United Arab Emirates University Al Ain United Arab Emirates
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS 3A Institutskaya St. 630090 Novosibirsk Russia
- Department of Natural Sciences Novosibirsk State University 2 Pirogova St. 630090 Novosibirsk Russia
| | - Eduard Y. Chekmenev
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
- Russian Academy of Sciences (RAS) 14 Leninskiy Prospekt 119991 Moscow Russia
| |
Collapse
|
47
|
Tennant T, Hulme MC, Robertson TBR, Sutcliffe OB, Mewis RE. Benchtop NMR analysis of piperazine-based drugs hyperpolarised by SABRE. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:1151-1159. [PMID: 31945193 DOI: 10.1002/mrc.4999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Piperazine-based drugs, such as N-benzylpiperazine (BZP), became attractive in the 2000s due to possessing effects similar to amphetamines. Herein, BZP, in addition to its pyridyl analogues, 2-, 3-, and 4-pyridylmethylpiperidine (2-PMP, 3-PMP, and 4-PMP respectively) was subjected to the hyperpolarisation technique Signal Amplification By Reversible Exchange (SABRE) in order to demonstrate the use of this technique to detect these piperazine-based drugs. Although BZP was not hyperpolarised via SABRE, 2-PMP, 3-PMP, and 4-PMP were, with the ortho- and meta-pyridyl protons of 4-PMP showing the largest enhancement of 313-fold and 267-fold, respectively, in a 1.4-T detection field, following polarisation transfer at Earth's magnetic field. In addition to the freebase, 4-PMP.3HCl was also appraised by SABRE and was found not to polarise, however, the addition of increasing equivalents of triethylamine (TEA) produced the freebase, with a maximum enhancement observed upon the addition of 3 equivalents of TEA. Further addition of TEA led to a reduction in the observed enhancement. SABRE was also employed to polarise 4-PMP.3HCl (~20% w/w) in a simulated tablet to demonstrate the forensic application of the technique (138-fold enhancement for the ortho-pyridyl protons). The amount of 4-PMP.3HCl present in the simulated tablet was quantified via NMR using D2 O as a solvent and compared well to complimentary gas chromatography-mass spectrometry data. Exchanging D2 O for CD3 OD as the solvent utilised for analysis resulted in a significantly lower amount of 4-PMP.3HCl being determined, thus highlighting safeguarding issues linked to drug abuse in relation to determining the amount of active pharmaceutical ingredient present.
Collapse
Affiliation(s)
- Thomas Tennant
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
- MANchester DRug Analysis and Knowledge Exchange, Manchester Metropolitan University, Manchester, UK
| | - Matthew C Hulme
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
- MANchester DRug Analysis and Knowledge Exchange, Manchester Metropolitan University, Manchester, UK
| | - Thomas B R Robertson
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Oliver B Sutcliffe
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
- MANchester DRug Analysis and Knowledge Exchange, Manchester Metropolitan University, Manchester, UK
| | - Ryan E Mewis
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
48
|
Birchall JR, Coffey AM, Goodson BM, Chekmenev EY. High-Pressure Clinical-Scale 87% Parahydrogen Generator. Anal Chem 2020; 92:15280-15284. [DOI: 10.1021/acs.analchem.0c03358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jonathan R. Birchall
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Aaron M. Coffey
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, Tennessee 37232, United States
| | | | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
49
|
Jeong HJ, Min S, Jeong K. Analysis of 1-aminoisoquinoline using the signal amplification by reversible exchange hyperpolarization technique. Analyst 2020; 145:6478-6484. [PMID: 32744263 DOI: 10.1039/d0an00967a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Signal amplification by reversible exchange (SABRE), a parahydrogen-based hyperpolarization technique, is valuable in detecting low concentrations of chemical compounds, which facilitates the understanding of their functions at the molecular level as well as their applicability in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). SABRE of 1-aminoisoquinoline (1-AIQ) is significant because isoquinoline derivatives are the fundamental structures in compounds with notable biological activity and are basic organic building blocks. Through this study, we explain how SABRE is applied to hyperpolarize 1-AIQ for diverse solvent systems such as deuterated and non-deuterated solvents. We observed the amplification of individual protons of 1-AIQ at various magnetic fields. Further, we describe the polarization transfer mechanism of 1-AIQ compared to pyridine using density functional theory (DFT) calculations. This hyperpolarization technique, including the polarization transfer mechanism investigation on 1-AIQ, will provide a firm basis for the future application of the hyperpolarization study on various bio-friendly materials.
Collapse
Affiliation(s)
- Hye Jin Jeong
- Department of Chemistry, Korea Military Academy, Seoul 01805, South Korea.
| | - Sein Min
- Department of Chemistry, Seoul Women's University, Seoul 01797, South Korea
| | - Keunhong Jeong
- Department of Chemistry, Korea Military Academy, Seoul 01805, South Korea.
| |
Collapse
|
50
|
Birchall JR, Kabir MSH, Salnikov OG, Chukanov NV, Svyatova A, Kovtunov KV, Koptyug IV, Gelovani JG, Goodson BM, Pham W, Chekmenev EY. Quantifying the effects of quadrupolar sinks via 15N relaxation dynamics in metronidazoles hyperpolarized via SABRE-SHEATH. Chem Commun (Camb) 2020; 56:9098-9101. [PMID: 32661534 PMCID: PMC7441520 DOI: 10.1039/d0cc03994b] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
15N spin-lattice relaxation dynamics in metronidazole-15N3 and metronidazole-15N2 isotopologues are studied for rational design of 15N-enriched biomolecules for signal amplification by reversible exchange in microtesla fields. 15N relaxation dynamics mapping reveals the deleterious effects of interactions with the polarization transfer catalyst and a quadrupolar 14N nucleus within the spin-relayed 15N-15N network.
Collapse
Affiliation(s)
- Jonathan R Birchall
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|