1
|
Ryan PT, Sombut P, Rafsanjani-Abbasi A, Wang C, Eratam F, Goto F, Franchini C, Diebold U, Meier M, Duncan DA, Parkinson GS. Quantitative Measurement of Cooperative Binding in Partially Dissociated Water Dimers at the Hematite "R-Cut" Surface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:16977-16985. [PMID: 39416807 PMCID: PMC11481491 DOI: 10.1021/acs.jpcc.4c04537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024]
Abstract
Water-solid interfaces pervade the natural environment and modern technology. On some surfaces, water-water interactions induce the formation of partially dissociated interfacial layers; understanding why is important to model processes in catalysis or mineralogy. The complexity of the partially dissociated structures often makes it difficult to probe them quantitatively. Here, we utilize normal incidence X-ray standing waves (NIXSW) to study the structure of partially dissociated water dimers (H2O-OH) at the α-Fe2O3(012) surface (also called the (11̅02) or "R-cut" surface): a system simple enough to be tractable yet complex enough to capture the essential physics. We find the H2O and terminal OH groups to be the same height above the surface within experimental error (1.45 ± 0.04 and 1.47 ± 0.02 Å, respectively), in line with DFT-based calculations that predict comparable Fe-O bond lengths for both water and OH species. This result is understood in the context of cooperative binding, where the formation of the H-bond between adsorbed H2O and OH induces the H2O to bind more strongly and the OH to bind more weakly compared to when these species are isolated on the surface. The surface OH formed by the liberated proton is found to be in plane with a bulk truncated (012) surface (-0.01 ± 0.02 Å). DFT calculations based on various functionals correctly model the cooperative effect but overestimate the water-surface interaction.
Collapse
Affiliation(s)
- Paul T.
P. Ryan
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | - Panukorn Sombut
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | | | - Chunlei Wang
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | - Fulden Eratam
- Diamond
Light Source, Harwell Science and Innovation Campus, OX11 0QX Didcot, U.K.
| | - Francesco Goto
- Diamond
Light Source, Harwell Science and Innovation Campus, OX11 0QX Didcot, U.K.
- Politecnico
di Milano, Piazza Leonardo da Vinci, 20133 Milano MI, Italy
| | - Cesare Franchini
- Faculty
of Physics and Center for Computational Materials Science, University of Vienna, 1040 Vienna, Austria
| | - Ulrike Diebold
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| | - Matthias Meier
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
- Faculty
of Physics and Center for Computational Materials Science, University of Vienna, 1040 Vienna, Austria
| | - David A. Duncan
- Diamond
Light Source, Harwell Science and Innovation Campus, OX11 0QX Didcot, U.K.
| | - Gareth S. Parkinson
- Institute
of Applied Physics, Technische Universität
Wien, 1040 Vienna, Austria
| |
Collapse
|
2
|
Ding L, Dong S, Yu Y, Li X, An L. Bionic Surfaces for Fog Collection: A Comprehensive Review of Natural Organisms and Bioinspired Strategies. ACS APPLIED BIO MATERIALS 2023; 6:5193-5209. [PMID: 38104272 DOI: 10.1021/acsabm.3c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Water scarcity has become a critical global threat, particularly in arid and underdeveloped regions. However, certain insects and plants have evolved the capability to obtain water from fog under these arid conditions. Bionic fog collection, characterized by passive harvesting, minimal energy requirements, and low maintenance costs, has proven to be an efficient method for water harvesting, offering a sustainable water source. This review introduces two superwettable surfaces, namely, superhydrophilic and superhydrophobic surfaces, detailing their preparation methods and applications in fog collection. The fog collection mechanisms of three typical natural organisms, Namib Desert beetles, spider silk, and cactus, along with their bionic surfaces for fog collection devices, are discussed. Additionally, other biological surfaces exhibiting fog transport properties are presented. The main challenges regarding the fabrication and application of bionic fog collection are summarized. Furthermore, we firmly believe that environmentally friendly, low-cost, and stable fog collection materials or devices hold promising prospects for future applications.
Collapse
Affiliation(s)
- Lan Ding
- College of Mechanical Engineering, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| | - Shuliang Dong
- College of Mechanical Engineering, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| | - Yifan Yu
- College of Mechanical Engineering, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| | - Xianzhun Li
- College of Mechanical Engineering, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| | - Libao An
- College of Mechanical Engineering, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, China
| |
Collapse
|
4
|
Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chem Rev 2022; 122:6117-6321. [PMID: 35133808 DOI: 10.1021/acs.chemrev.1c00331] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Zhifei Yan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mariel Tader
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hanguang Zhang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ellen Murray
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linxi Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colin Bundschu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Aileen Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Danielle Markovich
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng He
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bryan S Pivovar
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Tomás Arias
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel D Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Center for Alkaline Based Energy Solutions (CABES), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
5
|
Wu X, Wang C, Hao P, He F, Yao Z, Zhang X. Adsorption properties of albumin and fibrinogen on hydrophilic/hydrophobic TiO 2 surfaces: A molecular dynamics study. Colloids Surf B Biointerfaces 2021; 207:111994. [PMID: 34303996 DOI: 10.1016/j.colsurfb.2021.111994] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023]
Abstract
In serval experimental researches, UV-induced hydrophilicity enabled better hemocompatibility in the TiO2 surface, which was considered to be caused by the removal of the carboxylic acid contamination from the surface. In this paper, we altered the surface wetting property by applying the formate contamination on the rutile (110) surface, and systematically investigated the adsorption properties of albumin and fibrinogen on hydrophilic/hydrophobic TiO2 surface. Unique contacts were found between the charged residues and the hydrophilic surface, anchoring the protein on the surface. The small size and the heart shape of albumin make it easy to cross the stable water layers near the surface. Besides, albumin has a higher proportion of charged residues, so it can form more unique contacts on the hydrophilic surface. Therefore, the albumin tends to adsorb on the hydrophilic surface. For the hydrophobic surface, the water layers near the surface are weakened, which helps the fibrinogen diffusing to the surface and adjusting its orientation. Although the hydrophobic surface cannot form the unique contacts, the larger size of fibrinogen can provide more residues to form enough ordinary contacts after adjusting, and then achieves stable adsorption. Therefore, fibrinogen tends to adsorb on the hydrophobic surface.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Chenyang Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Pengfei Hao
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Feng He
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Zhaohui Yao
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiwen Zhang
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Li J, Joseph T, Ghorbani-Asl M, Kolekar S, Krasheninnikov AV, Batzill M. Mirror twin boundaries in MoSe 2 monolayers as one dimensional nanotemplates for selective water adsorption. NANOSCALE 2021; 13:1038-1047. [PMID: 33393546 DOI: 10.1039/d0nr08345c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Water adsorption on transition metal dichalcogenides and other 2D materials is generally governed by weak van der Waals interactions. This results in a hydrophobic character of the basal planes, and defects may play a significant role in water adsorption and water cluster nucleation. However, there is a lack of detailed experimental investigations on water adsorption on defective 2D materials. Here, by combining low-temperature scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations, we study in that context the well-defined mirror twin boundary (MTB) networks separating mirror-grains in 2D MoSe2. These MTBs are dangling bond-free extended crystal modifications with metallic electronic states embedded in the 2D semiconducting matrix of MoSe2. Our DFT calculations indicate that molecular water also interacts similarly weak with these MTBs as with the defect-free basal plane of MoSe2. However, in low temperature STM experiments, nanoscopic water structures are observed that selectively decorate the MTB network. This localized adsorption of water is facilitated by functionalization of the MTBs by hydroxyls formed by dissociated water. Hydroxyls may form by dissociating of water at undercoordinated defects or adsorbing of radicals from the gas phase in the UHV chamber. Our DFT analysis indicates that the metallic MTBs adsorb these radicals much stronger than on the basal plane due to charge transfer from the metallic states into the molecular orbitals of the OH groups. Once the MTBs are functionalized with hydroxyls, molecular water can attach to them, forming water channels along the MTBs. This study demonstrates the role metallic defect states play in the adsorption of water even in the absence of unsaturated bonds that have been so far considered to be crucial for adsorption of hydroxyls or water.
Collapse
Affiliation(s)
- Jingfeng Li
- Department of Physics, University of South Florida, Tampa, FL 33647, USA.
| | - Thomas Joseph
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany
| | - Mahdi Ghorbani-Asl
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany
| | - Sadhu Kolekar
- Department of Physics, University of South Florida, Tampa, FL 33647, USA.
| | - Arkady V Krasheninnikov
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany and Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
| | - Matthias Batzill
- Department of Physics, University of South Florida, Tampa, FL 33647, USA.
| |
Collapse
|
8
|
Hussain H, Ahmed MHM, Torrelles X, Grinter DC, Cabailh G, Bikondoa O, Nicklin C, Aschauer U, Lindsay R, Thornton G. Water-Induced Reversal of the TiO 2(011)-(2 × 1) Surface Reconstruction: Observed with in Situ Surface X-ray Diffraction. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:13545-13550. [PMID: 31205578 PMCID: PMC6559052 DOI: 10.1021/acs.jpcc.9b04383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/12/2019] [Indexed: 06/09/2023]
Abstract
The (011) termination of rutile TiO2 is reported to be particularly effective for photocatalysis. Here, the structure of the interface formed between this substrate and water is revealed using surface X-ray diffraction. While the TiO2(011) surface exhibits a (2 × 1) reconstruction in ultra-high vacuum (UHV), this is lifted in the presence of a multilayer of water at room temperature. This change is driven by the formation of Ti-OH at the interface, which has a bond distance of 1.93 ± 0.02 Å. The experimental solution is in good agreement with density functional theory and first-principles molecular dynamics calculations. These results point to the important differences that can arise between the structure of oxide surfaces in UHV and technical environments and will ultimately lead to an atomistic understanding of the photocatalytic process of water splitting on TiO2 surfaces.
Collapse
Affiliation(s)
- Hadeel Hussain
- Corrosion
and Protection Centre, School of Materials, The University of Manchester, Sackville Street, M13 9PL Manchester, U.K.
- Photon
Science Institute, The University of Manchester, M13 9PL Manchester, U.K.
| | - Mahmoud H. M. Ahmed
- Corrosion
and Protection Centre, School of Materials, The University of Manchester, Sackville Street, M13 9PL Manchester, U.K.
- Photon
Science Institute, The University of Manchester, M13 9PL Manchester, U.K.
| | - Xavier Torrelles
- Institut
de Ciència de Materials de Barcelona (CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - David C. Grinter
- London
Centre for Nanotechnology and Department of Chemistry, University College London, 20 Gordon Street, WC1H OAJ London, U.K.
| | - Gregory Cabailh
- Sorbonne
Université, UMR CNRS 7588, Institut des NanoSciences de Paris, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Oier Bikondoa
- XMaS, The
UK-CRG Beamline. ESRF, The European Synchrotron, 71, Avenue des Martyrs, CS40220, F-38043 Grenoble cedex 09, France
- Department
of Physics, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K.
| | - Christopher Nicklin
- Diamond
Light Source Limited, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Ulrich Aschauer
- Department
of Chemistry and Biochemistry, University
of Bern, Freiestrasse
3, 3012 Bern, Switzerland
| | - Robert Lindsay
- Corrosion
and Protection Centre, School of Materials, The University of Manchester, Sackville Street, M13 9PL Manchester, U.K.
- Photon
Science Institute, The University of Manchester, M13 9PL Manchester, U.K.
| | - Geoff Thornton
- London
Centre for Nanotechnology and Department of Chemistry, University College London, 20 Gordon Street, WC1H OAJ London, U.K.
| |
Collapse
|