1
|
Arango JC, Pintro CJ, Singh A, Claridge SA. Inkjet Printing of Nanoscale Functional Patterns on 2D Crystalline Materials and Transfer to Soft Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8055-8065. [PMID: 38300756 PMCID: PMC10875643 DOI: 10.1021/acsami.3c16687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Nanometer-scale control over surface functionality is important in applications ranging from nanoscale electronics to regenerative medicine. However, approaches that provide precise control over surface chemistry at the nanometer scale are often challenging to use with higher throughput and in more heterogeneous environments (e.g., complex solutions, porous interfaces) common for many applications. Here, we demonstrate a scalable inkjet-based method to generate 1 nm-wide functional patterns on 2D materials such as graphite, which can then be transferred to soft materials such as hydrogels. We examine fluid dynamics associated with the inkjet printing process for low-viscosity amphiphile inks designed to maximize ordering with limited residue and show that microscale droplet fluid dynamics influence nanoscale molecular ordering. Additionally, we show that scalable patterns generated in this way can be transferred to hydrogel materials and used to create surface chemical patterns that induce adsorption of charged particles, with effects strong enough to overcome electrostatic repulsion between a charged hydrogel and a like-charged nanoparticle.
Collapse
Affiliation(s)
- Juan C. Arango
- Department
of Chemistry, Purdue University, West Lafayette 47907, Indiana
| | - Chris J. Pintro
- Department
of Chemistry, Purdue University, West Lafayette 47907, Indiana
| | - Anamika Singh
- Department
of Chemistry, Purdue University, West Lafayette 47907, Indiana
| | - Shelley A. Claridge
- Department
of Chemistry, Purdue University, West Lafayette 47907, Indiana
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette 47907, Indiana
| |
Collapse
|
2
|
Speer D, Salvador-Castell M, Huang Y, Liu GY, Sinha SK, Parikh AN. Surfactant-Mediated Structural Modulations to Planar, Amphiphilic Multilamellar Stacks. J Phys Chem B 2023; 127:7497-7508. [PMID: 37584633 PMCID: PMC10476200 DOI: 10.1021/acs.jpcb.3c01654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/01/2023] [Indexed: 08/17/2023]
Abstract
The hydrophobic effect, a ubiquitous process in biology, is a primary thermodynamic driver of amphiphilic self-assembly. It leads to the formation of unique morphologies including two highly important classes of lamellar and micellar mesophases. The interactions between these two types of structures and their involved components have garnered significant interest because of their importance in key biochemical technologies related to the isolation, purification, and reconstitution of membrane proteins. This work investigates the structural organization of mixtures of the lamellar-forming phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and two zwitterionic micelle-forming surfactants, being n-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (Zwittergent 3-12 or DDAPS) and 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine (O-Lyso-PC), when assembled by water vapor hydration with X-ray diffraction measurements, brightfield optical microscopy, wide-field fluorescence microscopy, and atomic force microscopy. The results reveal that multilamellar mesophases of these mixtures can be assembled across a wide range of POPC to surfactant (POPC:surfactant) concentration ratios, including ratios far surpassing the classical detergent-saturation limit of POPC bilayers without significant morphological disruptions to the lamellar motif. The mixed mesophases generally decreased in lamellar spacing (D) and headgroup-to-headgroup distance (Dhh) with a higher concentration of the doped surfactant, but trends in water layer thickness (Dw) between each bilayer in the stack are highly variable. Further structural characteristics including mesophase topography, bilayer thickness, and lamellar rupture force were revealed by atomic force microscopy (AFM), exhibiting homogeneous multilamellar stacks with no significant physical differences with changes in the surfactant concentration within the mesophases. Taken together, the outcomes present the assembly of unanticipated and highly unique mixed mesophases with varied structural trends from the involved surfactant and lipidic components. Modulations in their structural properties can be attributed to the surfactant's chemical specificity in relation to POPC, such as the headgroup hydration and the hydrophobic chain tail mismatch. Taken together, our results illustrate how specific chemical complexities of surfactant-lipid interactions can alter the morphologies of mixed mesophases and thereby alter the kinetic pathways by which surfactants dissolve lipid mesophases in bulk aqueous solutions.
Collapse
Affiliation(s)
- Daniel
J. Speer
- Chemistry
Graduate Group, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Marta Salvador-Castell
- Department
of Physics, University of California, San
Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yuqi Huang
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Gang-Yu Liu
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Sunil K. Sinha
- Department
of Physics, University of California, San
Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Atul N. Parikh
- Chemistry
Graduate Group, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
- Department
of Biomedical Engineering, University of
California, Davis, One
Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
3
|
Huang Y, Karsai A, Sambre PD, Su WC, Faller R, Parikh AN, Liu GY. Production of Lipid Constructs by Design via Three-Dimensional Nanoprinting. MICROMACHINES 2023; 14:372. [PMID: 36838072 PMCID: PMC9963025 DOI: 10.3390/mi14020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Atomic force microscopy (AFM) in conjunction with microfluidic delivery was utilized to produce three-dimensional (3D) lipid structures following a custom design. While AFM is well-known for its spatial precision in imaging and 2D nanolithography, the development of AFM-based nanotechnology into 3D nanoprinting requires overcoming the technical challenges of controlling material delivery and interlayer registry. This work demonstrates the concept of 3D nanoprinting of amphiphilic molecules such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Various formulations of POPC solutions were tested to achieve point, line, and layer-by-layer material delivery. The produced structures include nanometer-thick disks, long linear spherical caps, stacking grids, and organizational chiral architectures. The POPC molecules formed stacking bilayers in these constructions, as revealed by high-resolution structural characterizations. The 3D printing reached nanometer spatial precision over a range of 0.5 mm. The outcomes reveal the promising potential of our designed technology and methodology in the production of 3D structures from nanometer to continuum, opening opportunities in biomaterial sciences and engineering, such as in the production of 3D nanodevices, chiral nanosensors, and scaffolds for tissue engineering and regeneration.
Collapse
Affiliation(s)
- Yuqi Huang
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Arpad Karsai
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Pallavi D. Sambre
- Department of Materials Science and Engineering, University of California, Davis, CA 95616, USA
| | - Wan-Chih Su
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Roland Faller
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA
| | - Atul N. Parikh
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, CA 95616, USA
| |
Collapse
|
4
|
Xia F, Youcef-Toumi K. Review: Advanced Atomic Force Microscopy Modes for Biomedical Research. BIOSENSORS 2022; 12:1116. [PMID: 36551083 PMCID: PMC9775674 DOI: 10.3390/bios12121116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Visualization of biomedical samples in their native environments at the microscopic scale is crucial for studying fundamental principles and discovering biomedical systems with complex interaction. The study of dynamic biological processes requires a microscope system with multiple modalities, high spatial/temporal resolution, large imaging ranges, versatile imaging environments and ideally in-situ manipulation capabilities. Recent development of new Atomic Force Microscopy (AFM) capabilities has made it such a powerful tool for biological and biomedical research. This review introduces novel AFM functionalities including high-speed imaging for dynamic process visualization, mechanobiology with force spectroscopy, molecular species characterization, and AFM nano-manipulation. These capabilities enable many new possibilities for novel scientific research and allow scientists to observe and explore processes at the nanoscale like never before. Selected application examples from recent studies are provided to demonstrate the effectiveness of these AFM techniques.
Collapse
|
5
|
Harris B, Huang Y, Karsai A, Su WC, Sambre PD, Parikh AN, Liu GY, Faller R. Impact of Surface Polarity on Lipid Assembly under Spatial Confinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7545-7557. [PMID: 35671406 PMCID: PMC9219405 DOI: 10.1021/acs.langmuir.2c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Molecular dynamics (MD) simulations in the MARTINI model are used to study the assembly of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) molecules under spatial confinement, such as during solvent evaporation from ultrasmall (femtoliter quantity) droplets. The impact of surface polarity on molecular assembly is discussed in detail. To the best of our knowledge, this work represents the first of its kind. Our results reveal that solvent evaporation gives rise to the formation of well-defined stacks of lipid bilayers in a smectic alignment. These smectic mesophases form on both polar and nonpolar surfaces but with a notable distinction. On polar surfaces, the director of the stack is oriented perpendicular to the support surface. By contrast, the stacks orient at an angle on the nonpolar surfaces. The packing of head groups on surfaces and lipid molecular mobility exhibits significant differences as surface polarity changes. The role of glycerol in the assembly and stability is also revealed. The insights revealed from the simulation have a significant impact on additive manufacturing, biomaterials, model membranes, and engineering protocells. For example, POPC assemblies via evaporation of ultrasmall droplets were produced and characterized. The trends compare well with the bilayer stack models. The surface polarity influences the local morphology and structures at the interfaces, which could be rationalized via the molecule-surface interactions observed from simulations.
Collapse
Affiliation(s)
- Bradley
S. Harris
- Department
of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yuqi Huang
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Arpad Karsai
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Wan-Chih Su
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
| | - Pallavi D. Sambre
- Department
of Materials Science & Engineering, University of California, Davis, California 95616, United States
| | - Atul N. Parikh
- Department
of Biomedical Engineering, University of
California, Davis, California 95616, United States
| | - Gang-yu Liu
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Roland Faller
- Department
of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
6
|
Malle MG, Löffler PMG, Bohr SSR, Sletfjerding MB, Risgaard NA, Jensen SB, Zhang M, Hedegård P, Vogel S, Hatzakis NS. Single-particle combinatorial multiplexed liposome fusion mediated by DNA. Nat Chem 2022; 14:558-565. [PMID: 35379901 DOI: 10.1038/s41557-022-00912-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/17/2022] [Indexed: 12/22/2022]
Abstract
Combinatorial high-throughput methodologies are central for both screening and discovery in synthetic biochemistry and biomedical sciences. They are, however, often reliant on large-scale analyses and thus limited by a long running time and excessive materials cost. We here present a single-particle combinatorial multiplexed liposome fusion mediated by DNA for parallelized multistep and non-deterministic fusion of individual subattolitre nanocontainers. We observed directly the efficient (>93%) and leakage free stochastic fusion sequences for arrays of surface-tethered target liposomes with six freely diffusing populations of cargo liposomes, each functionalized with individual lipidated single-stranded DNA and fluorescently barcoded by a distinct ratio of chromophores. The stochastic fusion resulted in a distinct permutation of fusion sequences for each autonomous nanocontainer. Real-time total internal reflection imaging allowed the direct observation of >16,000 fusions and 566 distinct fusion sequences accurately classified using machine learning. The high-density arrays of surface-tethered target nanocontainers (~42,000 containers per mm2) offers entire combinatorial multiplex screens using only picograms of material.
Collapse
Affiliation(s)
- Mette Galsgaard Malle
- Department of Chemistry & Nanoscience Centre, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Philipp M G Löffler
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Søren S-R Bohr
- Department of Chemistry & Nanoscience Centre, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Berg Sletfjerding
- Department of Chemistry & Nanoscience Centre, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Simon Bo Jensen
- Department of Chemistry & Nanoscience Centre, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Min Zhang
- Department of Chemistry & Nanoscience Centre, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Hedegård
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Vogel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark.
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of Copenhagen, Copenhagen, Denmark. .,Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|