• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643668)   Today's Articles (355)   Subscriber (50597)
For: Grambow C, Pattanaik L, Green WH. Deep Learning of Activation Energies. J Phys Chem Lett 2020;11:2992-2997. [PMID: 32216310 PMCID: PMC7311089 DOI: 10.1021/acs.jpclett.0c00500] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/27/2020] [Indexed: 05/27/2023]
Number Cited by Other Article(s)
1
Li Y, Ma F, Wang Z, Chen X. Transferable and Interpretable Prediction of Site-Specific Dehydrogenation Reaction Rate Constants with NMR Spectra. J Phys Chem Lett 2024:11282-11290. [PMID: 39495481 DOI: 10.1021/acs.jpclett.4c02647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
2
Liu Y, Mo Y, Cheng Y. Uncertainty Qualification for Deep Learning-Based Elementary Reaction Property Prediction. J Chem Inf Model 2024. [PMID: 39441973 DOI: 10.1021/acs.jcim.4c01358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
3
Stuyver T. TS-tools: Rapid and automated localization of transition states based on a textual reaction SMILES input. J Comput Chem 2024;45:2308-2317. [PMID: 38850166 DOI: 10.1002/jcc.27374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 06/10/2024]
4
Chen LY, Li YP. Machine learning-guided strategies for reaction conditions design and optimization. Beilstein J Org Chem 2024;20:2476-2492. [PMID: 39376489 PMCID: PMC11457048 DOI: 10.3762/bjoc.20.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]  Open
5
Li SC, Wu H, Menon A, Spiekermann KA, Li YP, Green WH. When Do Quantum Mechanical Descriptors Help Graph Neural Networks to Predict Chemical Properties? J Am Chem Soc 2024;146:23103-23120. [PMID: 39106041 DOI: 10.1021/jacs.4c04670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
6
van Gerwen P, Briling KR, Bunne C, Somnath VR, Laplaza R, Krause A, Corminboeuf C. 3DReact: Geometric Deep Learning for Chemical Reactions. J Chem Inf Model 2024;64:5771-5785. [PMID: 39007724 PMCID: PMC11323278 DOI: 10.1021/acs.jcim.4c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
7
Lalith N, Singh AR, Gauthier JA. The Importance of Reaction Energy in Predicting Chemical Reaction Barriers with Machine Learning Models. Chemphyschem 2024;25:e202300933. [PMID: 38517585 DOI: 10.1002/cphc.202300933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
8
van Gerwen P, Briling KR, Calvino Alonso Y, Franke M, Corminboeuf C. Benchmarking machine-readable vectors of chemical reactions on computed activation barriers. DIGITAL DISCOVERY 2024;3:932-943. [PMID: 38756222 PMCID: PMC11094696 DOI: 10.1039/d3dd00175j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/28/2024] [Indexed: 05/18/2024]
9
Kishimoto A, Wu D, O'Shea DF. Forecasting vaping health risks through neural network model prediction of flavour pyrolysis reactions. Sci Rep 2024;14:9591. [PMID: 38719814 PMCID: PMC11079048 DOI: 10.1038/s41598-024-59619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024]  Open
10
Zhao XG, Yang Q, Xu Y, Liu QY, Li ZY, Liu XX, Zhao YX, He SG. Machine Learning for Experimental Reactivity of a Set of Metal Clusters toward C-H Activation. J Am Chem Soc 2024;146:12485-12495. [PMID: 38651836 DOI: 10.1021/jacs.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
11
Ding Y, Qiang B, Chen Q, Liu Y, Zhang L, Liu Z. Exploring Chemical Reaction Space with Machine Learning Models: Representation and Feature Perspective. J Chem Inf Model 2024;64:2955-2970. [PMID: 38489239 DOI: 10.1021/acs.jcim.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
12
Yao S, Song J, Jia L, Cheng L, Zhong Z, Song M, Feng Z. Fast and effective molecular property prediction with transferability map. Commun Chem 2024;7:85. [PMID: 38632308 PMCID: PMC11024153 DOI: 10.1038/s42004-024-01169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024]  Open
13
Vadaddi SM, Zhao Q, Savoie BM. Graph to Activation Energy Models Easily Reach Irreducible Errors but Show Limited Transferability. J Phys Chem A 2024;128:2543-2555. [PMID: 38517281 DOI: 10.1021/acs.jpca.3c07240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
14
Allen AEA, Csányi G. Toward transferable empirical valence bonds: Making classical force fields reactive. J Chem Phys 2024;160:124108. [PMID: 38526105 DOI: 10.1063/5.0196952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]  Open
15
Vijay S, Venetos MC, Spotte-Smith EWC, Kaplan AD, Wen M, Persson KA. CoeffNet: predicting activation barriers through a chemically-interpretable, equivariant and physically constrained graph neural network. Chem Sci 2024;15:2923-2936. [PMID: 38404391 PMCID: PMC10882514 DOI: 10.1039/d3sc04411d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/05/2024] [Indexed: 02/27/2024]  Open
16
Chung Y, Green WH. Machine learning from quantum chemistry to predict experimental solvent effects on reaction rates. Chem Sci 2024;15:2410-2424. [PMID: 38362410 PMCID: PMC10866337 DOI: 10.1039/d3sc05353a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024]  Open
17
Kirkland JK, Kumawat J, Shaban Tameh M, Tolman T, Lambert AC, Lief GR, Yang Q, Ess DH. Machine Learning Models for Predicting Zirconocene Properties and Barriers. J Chem Inf Model 2024;64:775-784. [PMID: 38259142 DOI: 10.1021/acs.jcim.3c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
18
Adebar N, Keupp J, Emenike VN, Kühlborn J, Vom Dahl L, Möckel R, Smiatek J. Scientific Deep Machine Learning Concepts for the Prediction of Concentration Profiles and Chemical Reaction Kinetics: Consideration of Reaction Conditions. J Phys Chem A 2024;128:929-944. [PMID: 38271617 DOI: 10.1021/acs.jpca.3c06265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
19
Kim S, Woo J, Kim WY. Diffusion-based generative AI for exploring transition states from 2D molecular graphs. Nat Commun 2024;15:341. [PMID: 38184661 PMCID: PMC10771475 DOI: 10.1038/s41467-023-44629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]  Open
20
Duan C, Du Y, Jia H, Kulik HJ. Accurate transition state generation with an object-aware equivariant elementary reaction diffusion model. NATURE COMPUTATIONAL SCIENCE 2023;3:1045-1055. [PMID: 38177724 DOI: 10.1038/s43588-023-00563-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/03/2023] [Indexed: 01/06/2024]
21
Pattanaik L, Menon A, Settels V, Spiekermann KA, Tan Z, Vermeire FH, Sandfort F, Eiden P, Green WH. ConfSolv: Prediction of Solute Conformer-Free Energies across a Range of Solvents. J Phys Chem B 2023;127:10151-10170. [PMID: 37966798 DOI: 10.1021/acs.jpcb.3c05904] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
22
Zhao Q, Anstine DM, Isayev O, Savoie BM. Δ2 machine learning for reaction property prediction. Chem Sci 2023;14:13392-13401. [PMID: 38033903 PMCID: PMC10686042 DOI: 10.1039/d3sc02408c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/11/2023] [Indexed: 12/02/2023]  Open
23
Casetti N, Alfonso-Ramos JE, Coley CW, Stuyver T. Combining Molecular Quantum Mechanical Modeling and Machine Learning for Accelerated Reaction Screening and Discovery. Chemistry 2023;29:e202301957. [PMID: 37526059 DOI: 10.1002/chem.202301957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
24
Lewis-Atwell T, Beechey D, Şimşek Ö, Grayson MN. Reformulating Reactivity Design for Data-Efficient Machine Learning. ACS Catal 2023;13:13506-13515. [PMID: 37881791 PMCID: PMC10594582 DOI: 10.1021/acscatal.3c02513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/24/2023] [Indexed: 10/27/2023]
25
Zankov D, Madzhidov T, Baskin I, Varnek A. Conjugated quantitative structure-property relationship models: Prediction of kinetic characteristics linked by the Arrhenius equation. Mol Inform 2023;42:e2200275. [PMID: 37488968 DOI: 10.1002/minf.202200275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
26
Zhang P, Yang W. Toward a general neural network force field for protein simulations: Refining the intramolecular interaction in protein. J Chem Phys 2023;159:024118. [PMID: 37431910 PMCID: PMC10481389 DOI: 10.1063/5.0142280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]  Open
27
Xu R, Meisner J, Chang AM, Thompson KC, Martínez TJ. First principles reaction discovery: from the Schrodinger equation to experimental prediction for methane pyrolysis. Chem Sci 2023;14:7447-7464. [PMID: 37449065 PMCID: PMC10337770 DOI: 10.1039/d3sc01202f] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023]  Open
28
Heid E, McGill CJ, Vermeire FH, Green WH. Characterizing Uncertainty in Machine Learning for Chemistry. J Chem Inf Model 2023;63:4012-4029. [PMID: 37338239 PMCID: PMC10336963 DOI: 10.1021/acs.jcim.3c00373] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 06/21/2023]
29
Liu Q, Tang K, Zhang L, Du J, Meng Q. Computer‐assisted synthetic planning considering reaction kinetics based on transition state automated generation method. AIChE J 2023. [DOI: 10.1002/aic.18092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
30
Zhao Q, Vaddadi SM, Woulfe M, Ogunfowora LA, Garimella SS, Isayev O, Savoie BM. Comprehensive exploration of graphically defined reaction spaces. Sci Data 2023;10:145. [PMID: 36935430 PMCID: PMC10025260 DOI: 10.1038/s41597-023-02043-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2023]  Open
31
Kjeldal FØ, Eriksen JJ. Decomposing Chemical Space: Applications to the Machine Learning of Atomic Energies. J Chem Theory Comput 2023;19:2029-2038. [PMID: 36926874 DOI: 10.1021/acs.jctc.2c01290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
32
García-Andrade X, García Tahoces P, Pérez-Ríos J, Martínez Núñez E. Barrier Height Prediction by Machine Learning Correction of Semiempirical Calculations. J Phys Chem A 2023;127:2274-2283. [PMID: 36877614 PMCID: PMC10845151 DOI: 10.1021/acs.jpca.2c08340] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/19/2023] [Indexed: 03/07/2023]
33
Marques E, de Gendt S, Pourtois G, van Setten MJ. Improving Accuracy and Transferability of Machine Learning Chemical Activation Energies by Adding Electronic Structure Information. J Chem Inf Model 2023;63:1454-1461. [PMID: 36864757 DOI: 10.1021/acs.jcim.2c01502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
34
Chen Y, Ou Y, Zheng P, Huang Y, Ge F, Dral PO. Benchmark of general-purpose machine learning-based quantum mechanical method AIQM1 on reaction barrier heights. J Chem Phys 2023;158:074103. [PMID: 36813722 DOI: 10.1063/5.0137101] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]  Open
35
Tu Z, Stuyver T, Coley CW. Predictive chemistry: machine learning for reaction deployment, reaction development, and reaction discovery. Chem Sci 2023;14:226-244. [PMID: 36743887 PMCID: PMC9811563 DOI: 10.1039/d2sc05089g] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]  Open
36
Wen M, Spotte-Smith EWC, Blau SM, McDermott MJ, Krishnapriyan AS, Persson KA. Chemical reaction networks and opportunities for machine learning. NATURE COMPUTATIONAL SCIENCE 2023;3:12-24. [PMID: 38177958 DOI: 10.1038/s43588-022-00369-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2024]
37
Reiser P, Neubert M, Eberhard A, Torresi L, Zhou C, Shao C, Metni H, van Hoesel C, Schopmans H, Sommer T, Friederich P. Graph neural networks for materials science and chemistry. COMMUNICATIONS MATERIALS 2022;3:93. [PMID: 36468086 PMCID: PMC9702700 DOI: 10.1038/s43246-022-00315-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/07/2022] [Indexed: 05/14/2023]
38
Yang L, Chen P, He K, Wang R, Chen G, Shan G, Zhu L. Predicting bioconcentration factor and estrogen receptor bioactivity of bisphenol a and its analogues in adult zebrafish by directed message passing neural networks. ENVIRONMENT INTERNATIONAL 2022;169:107536. [PMID: 36152365 DOI: 10.1016/j.envint.2022.107536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
39
Yarish D, Garkot S, Grygorenko OO, Radchenko DS, Moroz YS, Gurbych O. Advancing molecular graphs with descriptors for the prediction of chemical reaction yields. J Comput Chem 2022;44:76-92. [PMID: 36264601 DOI: 10.1002/jcc.27016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022]
40
Ismail I, Chantreau Majerus R, Habershon S. Graph-Driven Reaction Discovery: Progress, Challenges, and Future Opportunities. J Phys Chem A 2022;126:7051-7069. [PMID: 36190262 PMCID: PMC9574932 DOI: 10.1021/acs.jpca.2c06408] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/22/2022] [Indexed: 11/29/2022]
41
Johnson MS, Dong X, Grinberg Dana A, Chung Y, Farina D, Gillis RJ, Liu M, Yee NW, Blondal K, Mazeau E, Grambow CA, Payne AM, Spiekermann KA, Pang HW, Goldsmith CF, West RH, Green WH. RMG Database for Chemical Property Prediction. J Chem Inf Model 2022;62:4906-4915. [PMID: 36222558 DOI: 10.1021/acs.jcim.2c00965] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
42
Shmilovich K, Willmott D, Batalov I, Kornbluth M, Mailoa J, Kolter JZ. Orbital Mixer: Using Atomic Orbital Features for Basis-Dependent Prediction of Molecular Wavefunctions. J Chem Theory Comput 2022;18:6021-6030. [PMID: 36122312 DOI: 10.1021/acs.jctc.2c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
43
Houston PL, Nandi A, Bowman JM. A Machine Learning Approach for Rate Constants. III. Application to the Cl(2P) + CH4 → CH3 + HCl Reaction. J Phys Chem A 2022;126:5672-5679. [PMID: 35960874 DOI: 10.1021/acs.jpca.2c04376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
44
Zhu LT, Chen XZ, Ouyang B, Yan WC, Lei H, Chen Z, Luo ZH. Review of Machine Learning for Hydrodynamics, Transport, and Reactions in Multiphase Flows and Reactors. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
45
Spiekermann K, Pattanaik L, Green WH. High accuracy barrier heights, enthalpies, and rate coefficients for chemical reactions. Sci Data 2022;9:417. [PMID: 35851390 PMCID: PMC9293986 DOI: 10.1038/s41597-022-01529-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]  Open
46
Komp E, Valleau S. Low-cost prediction of molecular and transition state partition functions via machine learning. Chem Sci 2022;13:7900-7906. [PMID: 35865893 PMCID: PMC9258343 DOI: 10.1039/d2sc01334g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022]  Open
47
Lewis‐Atwell T, Townsend PA, Grayson MN. Machine learning activation energies of chemical reactions. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1593] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
48
Spiekermann KA, Pattanaik L, Green WH. Fast Predictions of Reaction Barrier Heights: Toward Coupled-Cluster Accuracy. J Phys Chem A 2022;126:3976-3986. [PMID: 35727075 DOI: 10.1021/acs.jpca.2c02614] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
49
Farrar EHE, Grayson MN. Machine learning and semi-empirical calculations: a synergistic approach to rapid, accurate, and mechanism-based reaction barrier prediction. Chem Sci 2022;13:7594-7603. [PMID: 35872815 PMCID: PMC9242013 DOI: 10.1039/d2sc02925a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022]  Open
50
Lustosa DM, Milo A. Mechanistic Inference from Statistical Models at Different Data-Size Regimes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA