1
|
Kaushal A, Shoval S, Binks BP, Bormashenko E. Universality of Scaling Laws Governing Contact and Spreading Time Spans of Bouncing Liquid Marbles and its Physical Origin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12488-12496. [PMID: 37604671 DOI: 10.1021/acs.langmuir.3c01710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The impact of liquid marbles coated with a diversity of hydrophobic powders with various solid substrates, including hydrophobic, hydrophilic, and superhydrophobic ones, was investigated. The contact time of the bouncing marbles was studied. Universal scaling behavior of the contact time tc as a function of the Weber number (We) was established; the scaling law tc = tc(We) was independent of the kind of powder and the type of solid substrate. The total contact time consists of spreading time and retraction time. It is weakly dependent on We and this is true for all kinds of studied powders and substrates. This observation hints to the surface tension/inertia spring model governing the impact. By contrast, the spreading time ts scales as [Formula: see text], n = 0.28 - 0.30 ± 0.002. We relate the origin of this scaling law to the viscous dissipation occurring within the spreading marbles. The retraction time tr grows weakly with the Weber number. The scaling law was changed at threshold values of We ≅ 15-20. It is reasonable to explain this change with the breaking of the Leidenfrost regime of spreading under high values of We.
Collapse
Affiliation(s)
- Abhishek Kaushal
- Chemical Engineering Department, Engineering Faculty, Ariel University, P.O.B. 3, 407000 Ariel, Israel
- Department of Industrial Engineering and Management, Faculty of Engineering, Ariel University, P.O.B. 3, Ariel 407000, Israel
| | - Shraga Shoval
- Department of Industrial Engineering and Management, Faculty of Engineering, Ariel University, P.O.B. 3, Ariel 407000, Israel
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, U.K
| | - Edward Bormashenko
- Chemical Engineering Department, Engineering Faculty, Ariel University, P.O.B. 3, 407000 Ariel, Israel
| |
Collapse
|
2
|
Lathia R, Dey Modak C, Sen P. Suppression of droplet pinch-off by early onset of interfacial instability. J Colloid Interface Sci 2023; 646:606-615. [PMID: 37210908 DOI: 10.1016/j.jcis.2023.05.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
HYPOTHESIS Interfacial instabilities cause undesirable droplet breakage during impact. Such breakage affects many applications, such as printing, spraying, etc. Particle coating over a droplet can significantly change the impact process and stabilize it against breakage. This work investigates the impact dynamics of particle-coated droplets, which mostly remains unexplored. EXPERIMENTS Particle-coated droplets of different mass loading were formed using volume addition. The prepared droplets were impacted on superhydrophobic surfaces, and their dynamics were recorded using a high-speed camera. FINDINGS We report an intriguing phenomenon where an interfacial fingering instability helps suppress pinch-off in particle-coated droplets. This island of breakage suppression, where the droplet maintains its intactness upon impact, appears in a regime of Weber numbers where bare droplet breakage is inevitable. The onset of fingering instability in particle-coated droplets is observed at much lower impact energy, around two times less than the bare droplet. The instability is characterized and explained using the rim Bond number. The instability suppresses pinch-off because of the higher losses associated with the formation of stable fingers. Such instability can also be seen in dust/pollen-covered surfaces, making it useful in many applications related to cooling, self-cleaning, anti-icing etc.
Collapse
Affiliation(s)
- Rutvik Lathia
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Chandantaru Dey Modak
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Prosenjit Sen
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
3
|
Roy PK, Shoval S, Fujii S, Bormashenko E. Interfacial crystallization in the polyhedral liquid marbles. J Colloid Interface Sci 2023; 630:685-694. [DOI: 10.1016/j.jcis.2022.10.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
|
4
|
Roy PK, Binks BP, Shoval S, Dombrovsky LA, Bormashenko E. Levitating clusters of fluorinated fumed silica nanoparticles enable manufacture of liquid marbles: Co-occurrence of interfacial, thermal and electrostatic events. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Osumi T, Seike M, Oyama K, Higashimoto S, Hirai T, Nakamura Y, Fujii S. Synthesis of dioctyl sulfosuccinate‐doped polypyrrole grains by aqueous chemical oxidative polymerization and their use as light‐responsive liquid marble stabilizer. J Appl Polym Sci 2021. [DOI: 10.1002/app.51009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tomoki Osumi
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology Osaka Japan
| | - Musashi Seike
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering Osaka Institute of Technology Osaka Japan
| | - Keigo Oyama
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering Osaka Institute of Technology Osaka Japan
| | - Shinya Higashimoto
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology Osaka Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology Osaka Japan
- Nanomaterials Microdevices Research Center Osaka Institute of Technology Osaka Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology Osaka Japan
- Nanomaterials Microdevices Research Center Osaka Institute of Technology Osaka Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology Osaka Japan
- Nanomaterials Microdevices Research Center Osaka Institute of Technology Osaka Japan
| |
Collapse
|
6
|
Fujiwara J, Yokoyama A, Seike M, Vogel N, Rey M, Oyama K, Hirai T, Nakamura Y, Fujii S. Boxes fabricated from plate-stabilized liquid marbles. MATERIALS ADVANCES 2021; 2:4604-4609. [PMID: 34355189 PMCID: PMC8290327 DOI: 10.1039/d1ma00398d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Polyhedral liquid marbles were fabricated using hydrophobic polymer plates in the shape of a circle, a heart and a star as a stabilizer and water as an inner liquid phase. Boxes could be fabricated by the evaporation of the inner water from the liquid marbles. The fabrication efficiency and stability of these boxes as a function of the plate shape were investigated. Functional materials such as polymers and colloidal particles were successfully introduced into the boxes.
Collapse
Affiliation(s)
- Junya Fujiwara
- Division of Applied Chemistry, Graduate School of Engineering Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Ai Yokoyama
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Musashi Seike
- Division of Applied Chemistry, Graduate School of Engineering Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg Cauerstrasse 4 Erlangen 91058 Germany
| | - Marcel Rey
- Department of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road Edinburgh EH9 3FD UK
| | - Keigo Oyama
- Division of Applied Chemistry, Graduate School of Engineering Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585 Japan
| |
Collapse
|
7
|
Kumar Roy P, Legchenkova I, Shoval S, Dombrovsky LA, Bormashenko E. Osmotic evolution of composite liquid marbles. J Colloid Interface Sci 2021; 592:167-173. [PMID: 33662822 DOI: 10.1016/j.jcis.2021.02.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
HYPOTHESIS We hypothesized that the reported evolution (growth) of composite water marbles filled with saline water and coated with lycopodium dispersed in a thin layer of silicone oil is due to the osmotic mass transfer. The hypothesis is supported by the semi-empirical model of osmotic growth of small liquid marbles floating on distilled water. EXPERIMENTS Saline composite, silicone oil-coated marbles floating on distilled water grew with time; whereas, composite marbles filled with distilled water floating on aqueous solutions of NaCl lost mass with time and shrunk. However, composite liquid marbles filled with saline water and floating on aqueous solutions of NaCl remained stable during 25 h of the laboratory experiment. FINDINGS The reported findings are reasonably attributed to osmotic mass transport through the thin silicon layer filled with lycopodium particles coating the marbles, acting as an osmotic membrane. This is supported by the suggested model for the osmotic growth of marbles.
Collapse
Affiliation(s)
- Pritam Kumar Roy
- Chemical Engineering Department, Faculty of Engineering, Ariel University, P.O.B. 3, 407000 Ariel, Israel
| | - Irina Legchenkova
- Chemical Engineering Department, Faculty of Engineering, Ariel University, P.O.B. 3, 407000 Ariel, Israel
| | - Shraga Shoval
- Department of Industrial Engineering and Management, Faculty of Engineering, Ariel University, P.O.B. 3, 407000 Ariel, Israel
| | - Leonid A Dombrovsky
- X-BIO Institute, University of Tyumen, 6 Volodarskogo St, Tyumen 625003, Russia; Heat Transfer Department, Joint Institute for High Temperatures, 17A Krasnokazarmennaya St, Moscow 111116, Russia
| | - Edward Bormashenko
- Chemical Engineering Department, Faculty of Engineering, Ariel University, P.O.B. 3, 407000 Ariel, Israel.
| |
Collapse
|
8
|
Uda M, Kawashima H, Mayama H, Hirai T, Nakamura Y, Fujii S. Locomotion of a Nonaqueous Liquid Marble Induced by Near-Infrared-Light Irradiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4172-4182. [PMID: 33788574 DOI: 10.1021/acs.langmuir.1c00041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Micrometer-sized hydrophobic polyaniline (PANI) grains were synthesized via an aqueous chemical oxidative polymerization protocol in the presence of dopant carrying perfluoroalkyl or alkyl groups. The critical surface tensions of the PANIs synthesized in the presence of heptadecafluorooctanesulfonic acid and sodium dodecyl sulfate dopants were lower than that of PANI synthesized in the absence of dopant, indicating the presence of hydrophobic dopant on the grain surfaces. The PANI grains could adsorb to air-liquid interfaces, and aqueous and nonaqueous liquid marbles (LMs) were successfully fabricated using liquids with surface tensions ranging between 72.8 and 42.9 mN/m. Thermography studies confirmed that the surface temperature of the LMs increased by near-infrared light irradiation thanks to the photothermal property of the PANI, and the maximum temperatures measured for nonaqueous LMs were higher than that measured for aqueous LM. We demonstrated that transport of the LMs on a planar water surface can be achieved via Marangoni flow generated by the near-infrared light-induced temperature gradient. Numerical analyses indicated that the LMs containing liquids with lower specific heat and thermal conductivity and higher density showed longer path length per one light irradiation shot and longer decay time. This is because generated heat could efficiently transfer from the LMs to the water surface and larger inertial force could work on the LMs. The LMs could also move over the solid substrate thanks to their near-spherical shapes. Furthermore, it was also demonstrated that the inner liquids of the LMs could be released on site by an external stimulus.
Collapse
Affiliation(s)
- Makoto Uda
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Hisato Kawashima
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Hiroyuki Mayama
- Department of Chemistry, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
9
|
Bormashenko E, Fedorets AA, Dombrovsky LA, Nosonovsky M. Survival of Virus Particles in Water Droplets: Hydrophobic Forces and Landauer's Principle. ENTROPY 2021; 23:e23020181. [PMID: 33573357 PMCID: PMC7912349 DOI: 10.3390/e23020181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022]
Abstract
Many small biological objects, such as viruses, survive in a water environment and cannot remain active in dry air without condensation of water vapor. From a physical point of view, these objects belong to the mesoscale, where small thermal fluctuations with the characteristic kinetic energy of kBT (where kB is the Boltzmann’s constant and T is the absolute temperature) play a significant role. The self-assembly of viruses, including protein folding and the formation of a protein capsid and lipid bilayer membrane, is controlled by hydrophobic forces (i.e., the repulsing forces between hydrophobic particles and regions of molecules) in a water environment. Hydrophobic forces are entropic, and they are driven by a system’s tendency to attain the maximum disordered state. On the other hand, in information systems, entropic forces are responsible for erasing information, if the energy barrier between two states of a switch is on the order of kBT, which is referred to as Landauer’s principle. We treated hydrophobic interactions responsible for the self-assembly of viruses as an information-processing mechanism. We further showed a similarity of these submicron-scale processes with the self-assembly in colloidal crystals, droplet clusters, and liquid marbles.
Collapse
Affiliation(s)
- Edward Bormashenko
- Department of Chemical Engineering, Biotechnology and Materials, Engineering Science Faculty, Ariel University, Ariel 40700, Israel;
| | - Alexander A. Fedorets
- X-BIO Institute, University of Tyumen, 6 Volodarskogo St, 625003 Tyumen, Russia; (A.A.F.); (L.A.D.)
| | - Leonid A. Dombrovsky
- X-BIO Institute, University of Tyumen, 6 Volodarskogo St, 625003 Tyumen, Russia; (A.A.F.); (L.A.D.)
- Joint Institute for High Temperatures, 17A Krasnokazarmennaya St, 111116 Moscow, Russia
| | - Michael Nosonovsky
- X-BIO Institute, University of Tyumen, 6 Volodarskogo St, 625003 Tyumen, Russia; (A.A.F.); (L.A.D.)
- Department of Mechanical Engineering, University of Wisconsin–Milwaukee, 3200 North Cramer St, Milwaukee, WI 53211, USA
- Correspondence: ; Tel.: +1-414-229-2816
| |
Collapse
|