1
|
Emsley L. Spiers Memorial Lecture: NMR crystallography. Faraday Discuss 2025; 255:9-45. [PMID: 39405130 PMCID: PMC11477664 DOI: 10.1039/d4fd00151f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
Chemical function is directly related to the spatial arrangement of atoms. Consequently, the determination of atomic-level three-dimensional structures has transformed molecular and materials science over the past 60 years. In this context, solid-state NMR has emerged to become the method of choice for atomic-level characterization of complex materials in powder form. In the following we present an overview of current methods for chemical shift driven NMR crystallography, illustrated with applications to complex materials.
Collapse
Affiliation(s)
- Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
2
|
Trébosc J, Lafon O, Amoureux JP. High-resolution indirect detection of spin-3/2 quadrupolar nuclei in solids using multiple-quantum-filtered through-space D-HMQC experiments. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 134:101971. [PMID: 39357421 DOI: 10.1016/j.ssnmr.2024.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Through-space heteronuclear correlation experiments under magic-angle spinning (MAS) conditions can provide unique insights into inter-atomic proximities. In particular, it has been shown that experiments based on two consecutive coherence transfers, 1H → I → 1H, like D-HMQC (dipolar-mediated heteronuclear multiple-quantum correlation), are usually more sensitive for the indirect detection via protons of spin-3/2 quadrupolar nuclei with low gyromagnetic ratio. Nevertheless, the resolution is often decreased by the second-order quadrupolar broadening along the indirect dimension. To circumvent this issue, we incorporate an MQMAS (multiple-quantum MAS) quadrupolar filter into the t1 evolution period of the D-HMQC sequence, which results in a novel pulse sequence called D-HMQC-MQ. The triple-quantum coherences evolving during this filter are excited and reconverted using cosine-modulated long-pulses synchronized with the sample rotation to avoid spinning sidebands in the indirect dimension. The desired coherence transfer pathways during this sequence are selected using two nested cogwheel phase cycles with 56 steps. This high-resolution heteronuclear correlation technique is demonstrated experimentally for the indirect detection via 1H of spin-3/2 isotopes, such as 11B, 23Na and 35Cl, in zinc borate hydrate, NaH2PO4 and l-histidine hydrochloride, respectively. We show that this experiment can be applied at high magnetic fields up to 28.2 T for protons subject to chemical shift anisotropies larger than 20 ppm, provided the MAS frequency is sufficiently stable since the D-HMQC-MQ experiment, like the parent D-HMQC, is sensitive to MAS fluctuations, which can produce t1-noise.
Collapse
Affiliation(s)
- Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, FR 2638, Federation Chevreul, F-59000, Lille, France.
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS- Unité de Catalyse et de Chimie Du Solide, F-59000, Lille, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS- Unité de Catalyse et de Chimie Du Solide, F-59000, Lille, France.
| |
Collapse
|
3
|
Pandey MK, Nishiyama Y. High-resolution heteronuclear correlations between spin-1/2 and half-integer quadrupolar nuclei under fast MAS solid-state NMR. Biophys Chem 2024; 310:107254. [PMID: 38728809 DOI: 10.1016/j.bpc.2024.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
High isotropic resolution is essential for the structural elucidation of samples with multiple sites. In this study, utilizing the benefits of TRAPDOR-based heteronuclear multiple quantum coherence (T-HMQC) and a pair of one rotor period long cosine amplitude modulated low-power (cos-lp) pulse-based symmetric-split-t1 multiple-quantum magic angle spinning (MQMAS) methods, we have developed a proton-detected 2D 35Cl/1H T-HMQC-MQMAS pulse sequence under fast MAS (70 kHz) to achieve high-resolution in the indirect dimension of the spin-3/2 (35Cl) nuclei connected via protons. As T-HMQC polarizes not only single-quantum central transition (SQCT) but also triple-quantum (TQ) coherences, the proposed 2D pulse sequence is implemented via selection of two coherence pathways (SQCT→TQ →SQCT and TQ → SQCT→TQ) resulting in the 35Cl isotropic dimension and is superior to the existing double-quantum satellite-transition (DQST) T-HMQC in terms of resolution.
Collapse
|
4
|
Yan Z, Zhao P, Yan X, Zhang R. Using Abundant 1H Polarization to Enhance the Sensitivity of Solid-State NMR Spectroscopy. J Phys Chem Lett 2024; 15:1866-1878. [PMID: 38343090 DOI: 10.1021/acs.jpclett.3c03532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Solid-state NMR spectroscopy has been playing a significant role in elucidating the structures and dynamics of materials and proteins at the atomic level for decades. As an extremely abundant nucleus with a very high gyromagnetic ratio, protons are widely present in most organic/inorganic materials. Thus, this Perspective highlights the advantages of proton detection at fast magic-angle spinning (MAS) and presents strategies to utilize and exhaust 1H polarization to achieve signal sensitivity enhancement of solid-state NMR spectroscopy, enabling substantial time savings and extraction of more structural and dynamics information per unit time. Those strategies include developing sensitivity-enhanced single-channel 1H multidimensional NMR spectroscopy, implementing multiple polarization transfer steps in each scan to enhance low-γ nuclei signals, and making full use of 1H polarization to obtain homonuclear and heteronuclear chemical shift correlation spectra in a single experiment. Finally, outlooks and perspectives are provided regarding the challenges and future for the further development of sensitivity-enhanced proton-based solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Zhiwei Yan
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
| | - Peizhi Zhao
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaojing Yan
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
5
|
Hung I, Gan Z. Pushing the limit of MQMAS for low-γ quadrupolar nuclei in pharmaceutical hydrochlorides. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 350:107423. [PMID: 36966726 DOI: 10.1016/j.jmr.2023.107423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 05/10/2023]
Abstract
Solid-state NMR of quadrupolar nuclei such as 35Cl has become a useful tool to characterize polymorphism in pharmaceutical hydrochlorides. The two-dimensional multiple-quantum magic-angle spinning (MQMAS) experiment can achieve isotropic resolution, and separate quadrupolar line shapes for samples with multiple sites but the pulse sequence efficiency is often low, limiting applications due to the intrinsically low NMR signals and rf field from the low gyromagnetic ratios γ. The use of cosine low-power MQMAS pulse sequences and high magnetic fields is presented to push the limit of MQMAS for insensitive low-γ quadrupolar nuclei. The improved efficiency and fields up to 35.2 T enable the acquisition of MQMAS spectra for pharmaceutical samples with multiple 35Cl sites, large quadrupolar couplings and/or in diluted dosage forms.
Collapse
Affiliation(s)
- Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.
| |
Collapse
|
6
|
Tatman BP, Modha H, Brown SP. Comparison of methods for 14N- 1H recoupling in 14N- 1H HMQC MAS NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107459. [PMID: 37148711 DOI: 10.1016/j.jmr.2023.107459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/08/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
1H-detected 14N heteronuclear multiple-quantum coherence (HMQC) magic-angle-spinning (MAS) NMR experiments performed at fast magic-angle spinning (≥50 kHz) are finding increasing application, e.g., to pharmaceuticals. Of importance to the efficacy of these techniques is the recoupling technique applied to reintroduce the 1H-14N dipolar coupling. In this paper, we compare, by experiment and 2-spin density matrix simulations, two classes of recoupling scheme: first, those based on n = 2 rotary resonance, namely R3 and spin-polarisation inversion SPI-R3, and the symmetry based SR412 method and, second, the TRAPDOR method. Both classes require optimisation depending on the magnitude of the quadrupolar interaction, and thus there is a compromise choice for samples with more than one nitrogen site, as is the case for the studied dipeptide β-AspAla that contains two nitrogen sites with a small and large quadrupolar coupling constant. Considering this, we observe better sensitivity for the TRAPDOR method, though noting the marked sensitivity of TRAPDOR to the 14N transmitter offset, with both SPI-R3 and SR412 giving similar recoupling performance.
Collapse
Affiliation(s)
- Ben P Tatman
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK; Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Haritosh Modha
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
7
|
Hung I, Gan Z. Satellite-transition double cross-polarization HETCOR under fast MAS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 348:107380. [PMID: 36736242 DOI: 10.1016/j.jmr.2023.107380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Double-cross polarization to the satellite-transitions (STs) of half-integer quadrupolar nuclei is demonstrated using proton-detected heteronuclear correlation (HETCOR) under fast magic-angle spinning (MAS). By placing the rf frequency away from the central-transition (CT) and selective to the STs, average Hamiltonian theory shows a scaled effective rf field with a phase equal to the complex ST spinning sideband being irradiated. Such an effective rf field can excite and spinlock STs but the phase spread usually leads to signal cancellation in one-step excitation or cross polarization experiments. The cancellation does not occur for two-step double cross-polarization (DCP) HETCOR experiments, therefore high efficiencies can be obtained. With careful magic-angle calibration, ST and double-quantum ST (DQST) HETCOR experiments are demonstrated with the 35Cl nuclei in histidine·HCl·H2O. These experiments provide additional information over the commonly observed CT spectra and near isotropic resolution in the case of DQST of spin S = 3/2 quadrupolar nuclei.
Collapse
Affiliation(s)
- Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.
| |
Collapse
|
8
|
Ogaeri Y, Suzuki N, Fukami T, Nishiyama Y. Internuclear distance measurements between 1H and 14N in multi-component rigid solids at fast MAS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 348:107378. [PMID: 36702044 DOI: 10.1016/j.jmr.2023.107378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
1H-14N internuclear distances are readily and accurately measured using the symmetry-based phase-modulated resonance-echo saturation-pulse double-resonance (PM-S-RESPDOR) method in rigid solids. The fraction curve, (S0 - S')/S0, is represented by a single variable of a 1H-14N heteronuclear dipolar coupling, where S0 and S' are the PM-S-RESPDOR signal intensity with and without 14N PM saturation pulse, respectively. Analytical equation of the fraction curve easily provides 1H-14N couplings. This treatment is only applicable when NH proton resonance is well separated from the other proton peaks. With the limited 1H resolution even at fast MAS > 60 kHz, unfortunately, this condition is not necessarily satisfied especially in multi-component systems which often appear in pharmaceutical applications. To overcome this problem, T-HMQC filtering is applied to suppress the 1H signals other than NH proton prior to the PM-S-RESPDOR experiments. The method is well demonstrated on two components acetaminophen-oxalic acid (APAP-OXA) systems. Further analysis of orientation dependence of T-HMQC and PM-S-RESPDOR shows that the analytical equation can be safely applied in the analysis of T-HMQC filtered PM-S-RESPDOR experiments.
Collapse
Affiliation(s)
- Yutaro Ogaeri
- JEOL Ltd., Akishima, Tokyo 196-8558, Japan; RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Naoto Suzuki
- Laboratory of Pharmaceutics, School of Pharmacy, Nihon University, Chiba, Japan
| | - Toshiro Fukami
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo 196-8558, Japan; RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
9
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem Rev 2023; 123:918-988. [PMID: 36542732 PMCID: PMC10319395 DOI: 10.1021/acs.chemrev.2c00197] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo196-8558, Japan
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa230-0045, Japan
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad500 046, India
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan41809-1055, United States
| |
Collapse
|
10
|
Bayzou R, Trébosc J, Hung I, Gan Z, Rankin A, Lafon O, Amoureux JP. Improved resolution for spin-3/2 isotopes in solids via the indirect NMR detection of triple-quantum coherences using the T-HMQC sequence. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101835. [PMID: 36308816 DOI: 10.1016/j.ssnmr.2022.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The indirect NMR detection of quadrupolar nuclei in solids under magic-angle spinning (MAS) is possible with the through-space HMQC (heteronuclear multiple-quantum coherence) scheme incorporating the TRAPDOR (transfer of population in double-resonance) dipolar recoupling. This sequence, called T-HMQC, exhibits limited t1-noise. In this contribution, with the help of numerical simulations of spin dynamics, we show that most of the time, the fastest coherence transfer in the T-HMQC scheme is achieved when TRAPDOR recoupling employs the highest radiofrequency (rf) field compatible with the probe specifications. We also demonstrate how the indirect detection of the triple-quantum (3Q) coherences of spin-3/2 quadrupolar nuclei in solids improves the spectral resolution for these isotopes. The sequence is then called T-HMQC3. We demonstrate the gain in resolution provided by this sequence for the indirect proton detection of 35Cl nuclei in l-histidine∙HCl and l-cysteine∙HCl, as well as that of 23Na isotope in NaH2PO4. These experiments indicate that the gain in resolution depends on the relative values of the chemical and quadrupolar-induced shifts (QIS) for the different spin-3/2 species. In the case of NaH2PO4, we show that the transfer efficiency of the T-HMQC3 sequence employing an rf-field of 80 kHz with a MAS frequency of 62.5 kHz reaches 75% of that of the t1-noise eliminated (TONE) dipolar-mediated HMQC (D-HMQC) scheme.
Collapse
Affiliation(s)
- Racha Bayzou
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie, du Solide, 59000, Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie, du Solide, 59000, Lille, France; Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Fédération Chevreul, 59000, Lille, France
| | - Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL, 32310, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL, 32310, USA
| | - Andrew Rankin
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie, du Solide, 59000, Lille, France; Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Fédération Chevreul, 59000, Lille, France
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie, du Solide, 59000, Lille, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie, du Solide, 59000, Lille, France; Bruker Biospin, 34 rue de l'industrie, 67166, Wissembourg, France.
| |
Collapse
|
11
|
Sajith SV, Jayanthi S, Lupulescu A. Effective Hamiltonian and spin dynamics in fast MAS TRAPDOR-HMQC experiments involving spin-3/2 quadrupolar nuclei. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101821. [PMID: 36191580 DOI: 10.1016/j.ssnmr.2022.101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
We present a theoretical and numerical description of the spin dynamics associated with TRAPDOR-HMQC (T-HMQC) experiment for a 1H (I) - 35Cl (S) spin system under fast magic angle spinning (MAS). Towards this an exact effective Hamiltonian describing the system is numerically evaluated with matrix logarithm approach. The different magnitudes of the heteronuclear and pure S terms in the effective Hamiltonian allow us to suggest a truncation approximation, which is shown to be in excellent agreement with the exact time evolution. Limitations of this approximation, especially at the rotary resonance condition, are discussed. The truncated effective Hamiltonian is further employed to monitor the buildup of various coherences during TRAPDOR irradiation. We observe and explain a functional resemblance between the magnitude of different terms in the truncated effective Hamiltonian and the amplitudes of various coherences during TRAPDOR irradiation, as function of crystallite orientation. Subsequently, the dependence of the sign (phase) of the T-HMQC signal on the coherence type generated is investigated numerically and analytically. We examine the continuous creation and evolution of various coherences at arbitrary times, i.e., at and between avoided level crossings. Behavior between consecutive crossings is described analytically and reveals 'quadrature' evolution of pairs of coherences and coherence interconversions. The adiabatic, sudden, and intermediate regimes for T-HMQC experiments are discussed within the approach established by A. J. Vega. Equations as well as numerical simulations suggest the existence of a driving coherence which builds up between consecutive crossings and then gets distributed at crossings among other coherences. In the intermediate regime, redistribution of the driving coherence to other coherences is almost uniform such that coherences involving S-spin double-quantum terms may be efficiently produced.
Collapse
Affiliation(s)
- Sadasivan V Sajith
- Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, 695 547, Kerala, India
| | - Sundaresan Jayanthi
- Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, 695 547, Kerala, India.
| | - Adonis Lupulescu
- Extreme Light Infrastructure-Nuclear Physics ELI-NP, Laser Gamma Experiments Department (LGED), "Horia Hulubei" National Institute for Physics and Nuclear Engineering IFIN-HH, 30 Reactorului Street, 077125, Bucharest, Măgurele, Romania.
| |
Collapse
|
12
|
Sasaki A, Trébosc J, Nagashima H, Amoureux JP. Practical considerations on the use of low RF-fields and cosine modulation in high-resolution NMR of I = 3/2 spin quadrupolar nuclei in solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 345:107324. [PMID: 36370548 DOI: 10.1016/j.jmr.2022.107324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Despite its ease in experimental set up, the low sensitivity of MQMAS experiments is often a limiting factor in many practical applications. This is mainly due to the large radiofrequency (RF) field requirement of the two short hard-pulses often used for the optimum MQ excitation and conversion steps. Very recently, two novel MQMAS experiments have been proposed for I = 3/2 nuclei, namely lp-MQMAS and coslp-MQMAS, enabling an efficient MQ excitation/conversion with a reduced RF requirement, by utilizing two long pulses lasting one rotor period each, with or without cosine modulation. In this study, we focus on the practical considerations of these new methods and discuss their pros and cons to elucidate their appropriate use under both moderate and fast spinning conditions. Using four I = 3/2 (87Rb, 71Ga, 35Cl and 23Na) nuclei at a moderate magnetic field (B0 = 14.1 T), we show the superior use of these experiments, especially for samples with large CQ values and/or low-gamma nuclei. Compared to all other existing sequences, the coslp-MQMAS method with initial WURST signal enhancement is the most robust, efficient and resolved high-resolution 2D method for spin 3/2 nuclei. Furthermore, using {23Na}-1H spin systems, we demonstrate the sensitivity advantage of the WURST coslp-MQ-HETCOR acquisition upon 1H detection and fast MAS conditions.
Collapse
Affiliation(s)
- Akiko Sasaki
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Bruker Japan K.K., 3-9, Moriya-cho, Kanagawa-ku, Yokohama-shi, Kanagawa 221-0022, Japan
| | - Julien Trébosc
- Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, F-59000 Lille, France
| | - Hiroki Nagashima
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Jean-Paul Amoureux
- Bruker Biospin, 34 rue de l'industrie, F-67166 Wissembourg, France; Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| |
Collapse
|
13
|
Perras FA, Goh TW, Huang W. t 1-noise elimination by continuous chemical shift anisotropy refocusing. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 120:101807. [PMID: 35709566 DOI: 10.1016/j.ssnmr.2022.101807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Due to their high gyromagnetic ratio, there is considerable interest in measuring distances and correlations involving protons, but such measurements are compounded by the simultaneous recoupling of chemical shift anisotropy (CSA). This secondary recoupling adds additional modulations to the signal intensities that ultimately lead to t1-noise and signal decay. Recently, Venkatesh et al. demonstrated that the addition of CSA refocusing periods during 1H-X dipolar recoupling led to sequences with far higher stability and performance. Herein, we describe a related effort and develop a symmetry-based recoupling sequence that continually refocuses the 1H CSA. This sequence shows superior performance to the regular and t1-noise eliminated D-HMQC sequences in the case of spin-1/2 nuclei and comparable performance to the later for half-integer quadrupoles.
Collapse
Affiliation(s)
| | - Tian Wei Goh
- US DOE, Ames Laboratory, Ames, IA, 50011, USA; Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Wenyu Huang
- US DOE, Ames Laboratory, Ames, IA, 50011, USA; Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
14
|
Raval P, Trébosc J, Pawlak T, Nishiyama Y, Brown SP, Manjunatha Reddy GN. Combining heteronuclear correlation NMR with spin-diffusion to detect relayed Cl-H-H and N-H-H proximities in molecular solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 120:101808. [PMID: 35780556 DOI: 10.1016/j.ssnmr.2022.101808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Analysis of short-to-intermediate range intermolecular interactions offers a great way of characterizing the solid-state organization of small molecules and materials. This can be achieved by two-dimensional (2D) homo- and heteronuclear correlation NMR spectroscopy, for example, by carrying out experiments at high magnetic fields in conjunction with fast magic-angle spinning (MAS) techniques. But, detecting 2D peaks for heteronuclear dipolar coupled spin pairs separated by greater than 3 Å is not always straightforward, particularly when low-gamma quadrupolar nuclei are involved. Here, we present a 2D correlation NMR experiment that combines the advantages of heteronuclear-multiple quantum coherence (HMQC) and proton-based spin-diffusion (SD) pulse sequences using radio-frequency-driven-recouping (RFDR) to probe inter and intramolecular 1H-X (X = 14N, 35Cl) interactions. This experiment can be used to acquire 2D 1H{X}-HMQC filtered 1H-1H correlation as well as 2D 1H-X HMQC spectra. Powder forms of dopamine·HCl and l-histidine·HCl·H2O are characterized at high fields (21.1 T and 18.8 T) with fast MAS (60 kHz) using the 2D HMQC-SD-RFDR approach. Solid-state NMR results are complemented with NMR crystallography analyses using the gauge-including projector augmented wave (GIPAW) approach. For histidine·HCl·H2O, 2D peaks associated with 14N-1H-1H and 35Cl-1H-1H distances of up to 4.4 and 3.9 Å have been detected. This is further corroborated by the observation of 2D peaks corresponding to 14N-1H-1H and 35Cl-1H-1H distances of up to 4.2 and 3.7 Å in dopamine·HCl, indicating the suitability of the HMQC-SD-RFDR experiments for detecting medium-range proximities in molecular solids.
Collapse
Affiliation(s)
- Parth Raval
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie du Solide, F, 59000, Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, F, 59000, Lille, France
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Centre, RIKEN, Yokohama Campus, Yokohama, Kanagawa, 230-0045, Japan; JEOL RESONANCE Inc., Akishima, Tokyo, 196-8558, Japan
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie du Solide, F, 59000, Lille, France.
| |
Collapse
|
15
|
Duong NT, Nishiyama Y. Detection of remote proton-nitrogen correlations by 1H-detected 14N overtone solid-state NMR at fast MAS. Phys Chem Chem Phys 2022; 24:10717-10726. [PMID: 35315474 DOI: 10.1039/d2cp00155a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Detecting proton and nitrogen correlations in solid-state nuclear magnetic resonance (NMR) is important for the structural determination of biological and chemical systems. Recent advances in proton detection-based approaches under fast magic-angle spinning have facilitated the detection of 1H-14N correlations by solid-state NMR. However, observing remote 1H-14N correlations by these approaches is still a challenge, especially for 14N sites having large quadrupolar couplings. To address this issue, we introduce the 1H-14N overtone continuous wave rotational-echo saturation-pulse double-resonance (1H-14N OT CW-RESPDOR) sequence. Unlike regular 2D correlation experiments where the indirect dimension is recorded in the time domain, the 1H-14N OT CW-RESPDOR experiment is directly observed in the frequency domain. A set of 1H-14N OT CW-RESPDOR filtered 1H spectra is recorded at varying 14N OT frequencies. Thanks to the selective nature of the 14N OT pulse, the filtered 1H spectra appear only if the 14N OT frequency hits the positions of the 14N OT central band or one of the spinning sidebands. This set of filtered 1H spectra represents a 2D 1H-14N OT correlation map. We have also investigated the optimizable parameters for CW-RESPDOR and figured out that these parameters are not strictly needed for our working magnetic field of 14.1 T. Hence, the experiment is easy to set up and requires almost no optimization. We have demonstrated the experimental feasibility of 1H-14N OT CW-RESPDOR on monoclinic L-histidine and L-alanyl L-alanine. The remote 1H-14N correlations have been efficiently detected, no matter how large the 14N quadrupolar interaction is, and agree with the crystal structures. In addition, based on the remote 1H-14N correlations from the non-protonated 14N site of L-histidine, we can unambiguously distinguish the orthorhombic and monoclinic forms.
Collapse
Affiliation(s)
- Nghia Tuan Duong
- Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan.
| | - Yusuke Nishiyama
- Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan. .,JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan
| |
Collapse
|
16
|
Atterberry BA, Carnahan SL, Chen Y, Venkatesh A, Rossini AJ. Double echo symmetry-based REDOR and RESPDOR pulse sequences for proton detected measurements of heteronuclear dipolar coupling constants. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107147. [PMID: 35149335 DOI: 10.1016/j.jmr.2022.107147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
1H{X} symmetry-based rotational echo double resonance pulse sequences (S-REDOR) and symmetry-based rotational echo saturation pulse double resonance (S-RESPDOR) solid-state NMR experiments have found widespread application for 1H detected measurements of difference NMR spectra, dipolar coupling constants, and internuclear distances under conditions of fast magic angle spinning (MAS). In these experiments the supercycled R412 (SR412) symmetry-based recoupling pulse sequence is typically applied to the 1H spins to reintroduce heteronuclear dipolar couplings. However, the timing of SR412 and other symmetry-based pulse sequences must be precisely synchronized with the rotation of the sample, otherwise, the evolution of 1H CSA and other interactions will not be properly refocused. For this reason, significant distortions are often observed in experimental dipolar dephasing difference curves obtained with S-REDOR or S-RESPDOR pulse sequences. Here we introduce a family of double echo (DE) S-REDOR/S-RESPDOR pulse sequences that function in an analogous manner to the recently introduced t1-noise eliminated (TONE) family of dipolar heteronuclear multiple quantum coherence (D-HMQC) pulse sequences. Through numerical simulations and experiments the DE S-REDOR/S-RESPDOR sequences are shown to provide dephasing difference curves similar to those obtained with S-REDOR/S-RESPDOR. However, the DE sequences are more robust to the deviations of the MAS frequency from the ideal value that occurs during typical solid-state NMR experiments. The DE sequences are shown to provide more reliable 1H detected dipolar dephasing difference curves for nuclei such as 15N (with isotopic labelling), 183W and 35Cl. The double echo sequences are therefore recommended to be used in place of conventional S-REDOR/S-RESPDOR sequences for measurement of weak dipolar coupling constants and long-range distances.
Collapse
Affiliation(s)
- Benjamin A Atterberry
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Scott L Carnahan
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Yunhua Chen
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Amrit Venkatesh
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Aaron J Rossini
- US DOE Ames Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA.
| |
Collapse
|
17
|
Bayzou R, Trébosc J, Hung I, Gan Z, Lafon O, Amoureux JP. Indirect NMR detection via proton of nuclei subject to large anisotropic interactions, such as 14N, 195Pt, and 35Cl, using the T-HMQC sequence. J Chem Phys 2022; 156:064202. [DOI: 10.1063/5.0082700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Racha Bayzou
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide, 59000 Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638–IMEC–Fédération Chevreul, 59000 Lille, France
| | - Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide, 59000 Lille, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide, 59000 Lille, France
- Riken NMR Science and Development Division, Yokohama-shi 230-0045, Kanagawa, Japan
- Bruker Biospin, 34 rue de l’industrie, 67166 Wissembourg, France
| |
Collapse
|
18
|
Duong NT, Agarwal V, Nishiyama Y. Separating an overlapped 1H peak and identifying its 1H- 1H correlations with the use of single-channel 1H solid-state NMR at fast MAS. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 117:101774. [PMID: 35051807 DOI: 10.1016/j.ssnmr.2022.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Fast magic-angle spinning (≥60 kHz) technique has enabled the acquisition of high-resolution 1H NMR spectra of solid materials. However, the spectral interpretation is still difficult because the 1H peaks are overlapped due to the narrow chemical shift range and broad linewidths. An additional 13C or 14N or 1H dimension possibly addresses the issues of overlapped proton resonances, but it leads to the elongated experimental time. Herein, we introduce a single-channel 1H experiment to separate the overlapped 1H peak and identify its spatially proximal 1H-1H correlations. This sequence combines selective excitation, selective 1H-1H polarization transfer by selective recoupling of protons (SERP), and broadband 1H recoupling by back-to-back (BABA) recoupling sequences. The concept for 1H separation is based on (i) the selective excitation of a well-resolved 1H peak and (ii) the selective dipolar polarization transfer from this isolated 1H peak to one of the 1H peaks in the overlapped/poor resolution region by SERP and (iii) the detection of 1H-1H correlations from these two 1H peaks to other neighboring 1Hs by BABA. We demonstrated the applicability of this approach to identify overlapped peaks on two molecules, β-L-aspartyl-l-alanine and Pioglitazone.HCl. The sequence allows the clear observation of 1H-1H correlations from an overlapped 1H peak without an additional heteronuclear dimension and ensures efficient polarization transfers that leads to twelve fold reduction in experimental time compared to 14N edited experiments. The limitation and the conditions of applicability for this approach are discussed in detail.
Collapse
Affiliation(s)
- Nghia Tuan Duong
- Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa, 230-0045, Japan
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, Sy. No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad, 500 107, India
| | - Yusuke Nishiyama
- Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa, 230-0045, Japan; JEOL RESONANCE Inc., Akishima, Tokyo, 196-8558, Japan.
| |
Collapse
|
19
|
Simultaneous determination of multiple coupling networks by high-resolution 2D J-edited NMR spectroscopy. Anal Chim Acta 2021; 1185:339055. [PMID: 34711310 DOI: 10.1016/j.aca.2021.339055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/24/2022]
Abstract
J coupling constitutes an important NMR parameter for molecular-level composition analysis and conformation elucidation. Dozens of J-based approaches have been exploited for J coupling measurement and coupling network determination, however, they are generally imposed to insufficient spectral resolution to resolve crowded NMR resonances and low measurement efficiency that a single experiment records one J coupling network. Herein, we propose a general NMR method to collect high-resolution 2D J-edited NMR spectra, which are characterized with advantages of pure absorptive lineshapes, decoupled chemical shift dimension, as well as eliminated axial peaks, thus facilitating J coupling partner assignments and J coupling constant measurements. More meaningfully, this protocol allows simultaneous determination of multiple coupling networks for highly efficient multiplet analyses via addressing multiple protons within one single experiment. Additionally, another variant is proposed for high-resolution applications under adverse magnetic field conditions. Therefore, this study provides a useful NMR protocol for configurational and structural studies with extensive applications in chemistry, biology, and material science.
Collapse
|
20
|
Iuga D, Corlett EK, Brown SP. 35 Cl- 1 H Heteronuclear correlation magic-angle spinning nuclear magnetic resonance experiments for probing pharmaceutical salts. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1089-1100. [PMID: 34196042 DOI: 10.1002/mrc.5188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Heteronuclear multiple-quantum coherence (HMQC) pulse sequences for establishing heteronuclear correlation in solid-state nuclear magnetic resonance (NMR) between 35 Cl and 1 H nuclei in chloride salts under fast (60 kHz) magic-angle spinning (MAS) and at high magnetic field (a 1 H Larmor frequency of 850 MHz) are investigated. Specifically, recoupling of the 35 Cl-1 H dipolar interaction using rotary resonance recoupling with phase inversion every rotor period or the symmetry-based SR42 1 pulse sequences are compared. In our implementation of the population transfer (PT) dipolar (D) HMQC experiment, the satellite transitions of the 35 Cl nuclei are saturated with an off-resonance WURST sweep, at a low nutation frequency, over the second spinning sideband, whereby the WURST pulse must be of the same duration as the recoupling time. Numerical simulations of the 35 Cl-1 H MAS D-HMQC experiment performed separately for each crystallite orientation in a powder provide insight into the orientation dependence of changes in the second-order quadrupolar-broadened 35 Cl MAS NMR lineshape under the application of dipolar recoupling. Two-dimensional 35 Cl-1 H PT-D-HMQC MAS NMR spectra are presented for the amino acids glycine·HCl and l-tyrosine·HCl and the pharmaceuticals cimetidine·HCl, amitriptyline·HCl and lidocaine·HCl·H2 O. Experimentally observed 35 Cl lineshapes are compared with those simulated for 35 Cl chemical shift and quadrupolar parameters as calculated using the gauge-including projector-augmented wave (GIPAW) method: the calculated quadrupolar product (PQ ) values exceed those measured experimentally by a factor of between 1.3 and 1.9.
Collapse
Affiliation(s)
- Dinu Iuga
- Department of Physics, University of Warwick, Coventry, UK
| | | | - Steven P Brown
- Department of Physics, University of Warwick, Coventry, UK
| |
Collapse
|
21
|
Hung I, Gan Z. Isotropic solid-state MQMAS NMR spectra for large quadrupolar interactions using satellite-transition selective inversion pulses and low rf fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 324:106913. [PMID: 33545533 DOI: 10.1016/j.jmr.2021.106913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Multiple-quantum magic-angle spinning (MQMAS) pulse sequences are presented that are capable of obtaining isotropic NMR spectra for large quadrupolar interactions using lower rf fields. These experiments rely on rotor period long pulses applied at a large offset from the central-transition, making them selective to the satellite-transitions. Each such pulse gives rise to an anisotropic phase, which can be cancelled to obtain coherent signal evolution if a pair of pulses are applied in a symmetric manner. Thus, efficient excitation and conversion of triple-quantum coherences from and to the central-transition is achieved for MQMAS even for large quadrupolar couplings, by selective inversion of the satellite-transitions using such low-power pulses. Low-power multiple-quantum magic-angle spinning (lpMQMAS) pulse sequences are demonstrated on a model compound, RbNO3, and also applied on β-Ga2O3, a sample with the largest quadrupolar interactions for which isotropic NMR spectra have been obtained to date.
Collapse
Affiliation(s)
- Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| |
Collapse
|
22
|
Zhan H, Huang Y, Wang X, Shih TM, Chen Z. Highly Efficient Determination of Complex NMR Multiplet Structures in Inhomogeneous Magnetic Fields. Anal Chem 2021; 93:2419-2423. [PMID: 33395270 DOI: 10.1021/acs.analchem.0c04365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proton-proton scalar (J) coupling plays an important role in disentangling molecular structures and spatial conformations. But it is challenging to extract J coupling networks from congested 1H NMR spectra, especially in inhomogeneous magnetic fields. Herein, we propose a general liquid NMR protocol, named HR-G-SERF, to implement highly efficient determination of individual J couplings and corresponding coupling networks via simultaneously suppressing effects of spectral congestions and magnetic field inhomogeneity. This method records full-resolved 2D absorption-mode spectra to deliver great convenience for multipet analyses on complex samples. More meaningfully, it is capable of disentangling multiplet structures of biological samples, that is, grape sarcocarp, despite of its heterogeneous semisolid state and extensive compositions. In addition, a modification, named AH-G-SERF, is developed to compress experimental acquisition and subsequently improve unit-time SNR, while maintaining satisfactory spectral performance. This accelerated variant may further boost the applicability for rapid NMR detections and afford the possibility of adopting hyperpolarized substances to enhance the overall sensitivity. Therefore, this study provides a promising tool for molecular structure elucidations and composition analyses in chemistry, biochemistry, and metabonomics among others.
Collapse
Affiliation(s)
- Haolin Zhan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China
| | - Yuqing Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China
| | - Xinchang Wang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China
| | - Tien-Mo Shih
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen, China
| |
Collapse
|
23
|
Venkatesh A, Luan X, Perras FA, Hung I, Huang W, Rossini AJ. t1-Noise eliminated dipolar heteronuclear multiple-quantum coherence solid-state NMR spectroscopy. Phys Chem Chem Phys 2020; 22:20815-20828. [DOI: 10.1039/d0cp03511d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
t1-Noise eliminated (TONE) heteronuclear multiple quantum correlation (HMQC) solid-state nuclear magnetic resonance pulse sequences improve the sensitivity of 2D 1H{X} heteronuclear correlation experiments with X = 17O, 25Mg, 27Al and 35Cl.
Collapse
Affiliation(s)
- Amrit Venkatesh
- Department of Chemistry
- Iowa State University
- Ames
- USA
- US DOE Ames Laboratory
| | - Xuechen Luan
- Department of Chemistry
- Iowa State University
- Ames
- USA
| | | | - Ivan Hung
- National High Magnetic Field Laboratory (NHMFL)
- Tallahassee
- USA
| | - Wenyu Huang
- Department of Chemistry
- Iowa State University
- Ames
- USA
- US DOE Ames Laboratory
| | - Aaron J. Rossini
- Department of Chemistry
- Iowa State University
- Ames
- USA
- US DOE Ames Laboratory
| |
Collapse
|
24
|
Hung I, Gan Z. Low-power STMAS - breaking through the limit of large quadrupolar interactions in high-resolution solid-state NMR spectroscopy. Phys Chem Chem Phys 2020; 22:21119-21123. [PMID: 32954398 DOI: 10.1039/d0cp04274a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An STMAS NMR experiment requiring significantly lower rf fields is presented, allowing acquisition of high-resolution spectra for half-integer spins regardless of the magnitude of their quadrupolar interaction. The experiment relies on frequency crossings induced by sample spinning during 'long' rf pulses to coherently cover the satellite-transitions efficiently.
Collapse
Affiliation(s)
- Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.
| | | |
Collapse
|