1
|
Busch H, Yasir Ateeque M, Taube F, Wiegand T, Corzilius B, Künze G. Probing Biomolecular Interactions with Paramagnetic Nuclear Magnetic Resonance Spectroscopy. Chembiochem 2025; 26:e202400903. [PMID: 39803829 PMCID: PMC11907393 DOI: 10.1002/cbic.202400903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Indexed: 03/15/2025]
Abstract
Recent advances in computational methods like AlphaFold have transformed structural biology, enabling accurate modeling of protein complexes and driving applications in drug discovery and protein engineering. However, predicting the structure of systems involving weak, transient, or dynamic interactions, or of complexes with disordered regions, remains challenging. Nuclear Magnetic Resonance (NMR) spectroscopy offers atomic-level insights into biomolecular complexes, even in weakly interacting and dynamic systems. Paramagnetic NMR, in particular, provides long-range structural restraints, easily exceeding distances over 25 Å, making it ideal for studying large protein complexes. Advances in chemical tools for introducing paramagnetic tags into proteins, combined with progress in electron paramagnetic resonance (EPR) spectroscopy, have enhanced the method's utility. This perspective article discusses paramagnetic NMR approaches for analyzing biomolecular complexes in solution and in the solid state, emphasizing quantities like pseudocontact shifts, residual dipolar couplings, and paramagnetic relaxation enhancements. Additionally, dynamic nuclear polarization offers a promising method to amplify NMR signals of large complexes, even in complex environments. The integration of AlphaFold protein structure prediction with paramagnetic NMR holds great potential for advancing our understanding of biomolecular interactions.
Collapse
Affiliation(s)
- Hannah Busch
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Muhammad Yasir Ateeque
- Institute for Drug Discovery, University of Leipzig, Brüderstr. 34, 04103, Leipzig, Germany
| | - Florian Taube
- Institute of Chemistry, Department Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 27, 18059, Rostock, Germany
| | - Thomas Wiegand
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mühlheim/Ruhr, Germany
| | - Björn Corzilius
- Institute of Chemistry, Department Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 27, 18059, Rostock, Germany
| | - Georg Künze
- Institute for Drug Discovery, University of Leipzig, Brüderstr. 34, 04103, Leipzig, Germany
| |
Collapse
|
2
|
Moroz IB, Jardón-Álvarez D, Leskes M. The role of spin diffusion in endogenous metal ions DNP. J Chem Phys 2025; 162:024201. [PMID: 39783972 DOI: 10.1063/5.0238111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
The sensitivity of solid state nuclear magnetic resonance spectroscopy can be enhanced via dynamic nuclear polarization (DNP) using unpaired electrons as polarizing agents. In metal ions based (MI)-DNP, paramagnetic metal ions are introduced as dopants into inorganic materials serving as endogenous polarizing agents. Having polarizing agents as part of the structure enables signal enhancements within the bulk of the material. Nuclear spins can be hyperpolarized either directly through their coupling to the polarizing agent or via homonuclear spin diffusion. In this work, we addressed what are the factors determining the relative sizes of the spin pools polarized by each of these two mechanisms and how changing their contribution to the polarization process affects the experimental outcome. Experimentally, we adjusted the spin diffusion rate through modifying the isotope ratio 6Li/7Li in otherwise identical samples, Li4Ti5O12 doped with paramagnetic Fe(III). DNP experiments on samples with typical content of polarizing agents for MI-DNP, corroborated by simulations, evidenced that while the efficiency of spin diffusion has large effects on the polarization buildup times, the enhancements remain largely unaffected.
Collapse
Affiliation(s)
- Ilia B Moroz
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniel Jardón-Álvarez
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michal Leskes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
3
|
Cheney DJ, Cerreia Vioglio P, Brookfield A, Blanc F. Optimisation of dynamic nuclear polarisation using "off-the-shelf" Gd(III)-based polarising agents. Phys Chem Chem Phys 2024; 26:24395-24406. [PMID: 39258402 DOI: 10.1039/d4cp02924k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Complexes of paramagnetic metal ions, in particular Gd3+, have been demonstrated as efficient polarising agents for magic-angle spinning (MAS) dynamic nuclear polarisation (DNP). We recently demonstrated that commercially available and inexpensive Gd(NO3)3 is suitable for use as an "off-the-shelf" MAS DNP polarising agent, providing promising sensitivity enhancements to 1H, 13C, and 15N NMR signals. Here we expand upon this approach by investigating the impact of the Gd(NO3)3 concentration and by exploring a larger range of readily available Gd3+ sources. We found that a Gd(NO3)3 concentration of 20 mM in the case of 1H and 13C, and 40 mM in the case of 15N, offers optimum signal enhancements and is rationalised as a trade-off between DNP enhancements, polarisation build-up times, and electron paramagnetic resonance (EPR) spin-spin relaxation times. We determined that a range of different gadolinium compounds (GdCl3, Gd2(SO4)3, GdBr3, and Gd(OAc)3) are also suitable for use as polarising agents and yield 1H, 13C, and 15N signal enhancements of variable values. Gd(OAc)3 yields lower signal enhancements, which is proposed to be the result of greater local asymmetry at the Gd3+ centre leading to EPR line broadening, and the methyl group in the acetate ion acting as a relaxation sink and limiting the nuclear polarisation available.
Collapse
Affiliation(s)
- Daniel J Cheney
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK.
| | - Paolo Cerreia Vioglio
- DNP MAS NMR Facility, Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Adam Brookfield
- Department of Chemistry and Photon Science Institute, University of Manchester, Manchester M13 9PL, UK
| | - Frédéric Blanc
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK.
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory, University of Liverpool, Liverpool, L69 7ZD, UK
- Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 7ZF, UK
| |
Collapse
|
4
|
Steinberg Y, Sebti E, Moroz IB, Zohar A, Jardón-Álvarez D, Bendikov T, Maity A, Carmieli R, Clément RJ, Leskes M. Composition and Structure of the solid electrolyte interphase on Na-Ion Anodes Revealed by Exo- and Endogenous Dynamic Nuclear Polarization─NMR Spectroscopy. J Am Chem Soc 2024; 146:24476-24492. [PMID: 39169891 PMCID: PMC11378293 DOI: 10.1021/jacs.4c06823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Sodium ion batteries (SIB) are among the most promising devices for large scale energy storage. Their stable and long-term performance depends on the formation of the solid electrolyte interphase (SEI), a nanosized, heterogeneous and disordered layer, formed due to degradation of the electrolyte at the anode surface. The chemical and structural properties of the SEI control the charge transfer process at the electrode-electrolyte interface, thus, there is great interest in determining these properties for understanding, and ultimately controlling, SEI functionality. However, the study of the SEI is notoriously challenging due to its heterogeneous nature and minute quantity. In this work, we present a powerful approach for probing the SEI based on solid state NMR spectroscopy with increased sensitivity from dynamic nuclear polarization (DNP). Utilizing exogenous (organic radicals) and endogenous (paramagnetic metal ion dopants) DNP sources, we obtain not only a detailed compositional map of the SEI but also, for the first time for the native SEI, determine the spatial distribution of its constituent phases. Using this approach, we perform a thorough investigation of the SEI formed on Li4Ti5O12 used as a SIB anode. We identify a compositional gradient, from organic phases at the electrolyte interface to inorganic phases toward the anode surface. We find that the use of fluoroethylene carbonate as an electrolyte additive leads to performance degradation which can be attributed to formation of a thicker SEI, rich in NaF and carbonates. We expect that this methodology can be extended to examine other titanate anodes and new electrolyte compositions, offering a unique tool for SEI investigations to enable the development of effective and long-lasting SIBs.
Collapse
Affiliation(s)
- Yuval Steinberg
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Elias Sebti
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Ilia B Moroz
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Arava Zohar
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Daniel Jardón-Álvarez
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Tatyana Bendikov
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Ayan Maity
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Raphaële J Clément
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Michal Leskes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| |
Collapse
|
5
|
Moroz IB, Feldman Y, Carmieli R, Liu X, Leskes M. Endogenous metal-ion dynamic nuclear polarization for NMR signal enhancement in metal organic frameworks. Chem Sci 2023; 15:336-348. [PMID: 38131097 PMCID: PMC10731914 DOI: 10.1039/d3sc03456a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Rational design of metal-organic framework (MOF)-based materials for catalysis, gas capture and storage, requires deep understanding of the host-guest interactions between the MOF and the adsorbed molecules. Solid-State NMR spectroscopy is an established tool for obtaining such structural information, however its low sensitivity limits its application. This limitation can be overcome with dynamic nuclear polarization (DNP) which is based on polarization transfer from unpaired electrons to the nuclei of interest and, as a result, enhancement of the NMR signal. Typically, DNP is achieved by impregnating or wetting the MOF material with a solution of nitroxide biradicals, which prevents or interferes with the study of host-guest interactions. Here we demonstrate how Gd(iii) ions doped into the MOF structure, LaBTB (BTB = 4,4',4''-benzene-1,3,5-triyl-trisbenzoate), can be employed as an efficient polarization agent, yielding up to 30-fold 13C signal enhancement for the MOF linkers, while leaving the pores empty for potential guests. Furthermore, we demonstrate that ethylene glycol, loaded into the MOF as a guest, can also be polarized using our approach. We identify specific challenges in DNP studies of MOFs, associated with residual oxygen trapped within the MOF pores and the dynamics of the framework and its guests, even at cryogenic temperatures. To address these, we describe optimal conditions for carrying out and maximizing the enhancement achieved in DNP-NMR experiments. The approach presented here can be expanded to other porous materials which are currently the state-of-the-art in energy and sustainability research.
Collapse
Affiliation(s)
- Ilia B Moroz
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| | - Yishay Feldman
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot 76100 Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot 76100 Israel
| | - Xinyu Liu
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Michal Leskes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
6
|
Hope MA, Zhang Y, Venkatesh A, Emsley L. Dynamic nuclear polarisation of 1H in Gd-doped In(OH) 3. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107509. [PMID: 37331306 DOI: 10.1016/j.jmr.2023.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
Dynamic nuclear polarisation (DNP) of solids doped with high-spin metal ions, such as Gd3+, is a useful strategy to enhance the nuclear magnetic resonance (NMR) sensitivity for these samples. Spin diffusion can relay polarisation throughout a sample, which is most effective for dense 1H networks, while the efficiency of DNP using Gd3+ depends on the symmetry of the metal site. Here, we investigate cubic In(OH)3 as a high-symmetry, proton-containing material for endogenous Gd DNP. A 1H enhancement of up to 9 is demonstrated and harnessed to measure the 17O spectrum at natural abundance. The enhancement is interpreted in terms of clustering of the Gd3+ dopants and the local reduction in symmetry of the metal site induced by proton disorder, as demonstrated by quadrupolar 115In NMR. This is the first example of 1H DNP using Gd3+ dopants in an inorganic solid.
Collapse
Affiliation(s)
- Michael A Hope
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Yuxuan Zhang
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Amrit Venkatesh
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
7
|
von Witte G, Ernst M, Kozerke S. Modelling and correcting the impact of RF pulses for continuous monitoring of hyperpolarized NMR. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:175-186. [PMID: 37904858 PMCID: PMC10583294 DOI: 10.5194/mr-4-175-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 11/01/2023]
Abstract
Monitoring the build-up or decay of hyperpolarization in nuclear magnetic resonance requires radio-frequency (RF) pulses to generate observable nuclear magnetization. However, the pulses also lead to a depletion of the polarization and, thus, alter the spin dynamics. To simulate the effects of RF pulses on the polarization build-up and decay, we propose a first-order rate-equation model describing the dynamics of the hyperpolarization process through a single source and a relaxation term. The model offers a direct interpretation of the measured steady-state polarization and build-up time constant. Furthermore, the rate-equation model is used to study three different methods to correct the errors introduced by RF pulses: (i) a 1 / cos n - 1 θ correction (θ denoting the RF pulse flip angle), which is only applicable to decays; (ii) an analytical model introduced previously in the literature; and (iii) an iterative correction approach proposed here. The three correction methods are compared using simulated data for a range of RF flip angles and RF repetition times. The correction methods are also tested on experimental data obtained with dynamic nuclear polarization (DNP) using 4-oxo-TEMPO in 1 H glassy matrices. It is demonstrated that the analytical and iterative corrections allow us to obtain accurate build-up times and steady-state polarizations (enhancements) for RF flip angles of up to 25∘ during the polarization build-up process within ± 10 % error when compared to data acquired with small RF flip angles (< 3 ∘ ). For polarization decay experiments, corrections are shown to be accurate for RF flip angles of up to 12∘ . In conclusion, the proposed iterative correction allows us to compensate for the impact of RF pulses offering an accurate estimation of polarization levels, build-up and decay time constants in hyperpolarization experiments.
Collapse
Affiliation(s)
- Gevin von Witte
- Institute for Biomedical Engineering, University and ETH Zurich, 8092 Zurich, Switzerland
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Matthias Ernst
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
8
|
Mishra A, Hope MA, Stevanato G, Kubicki DJ, Emsley L. Dynamic Nuclear Polarization of Inorganic Halide Perovskites. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:11094-11102. [PMID: 37342202 PMCID: PMC10278140 DOI: 10.1021/acs.jpcc.3c01527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/23/2023] [Indexed: 06/22/2023]
Abstract
The intrinsic low sensitivity of nuclear magnetic resonance (NMR) experiments limits their utility for structure determination of materials. Dynamic nuclear polarization (DNP) under magic angle spinning (MAS) has shown tremendous potential to overcome this key limitation, enabling the acquisition of highly selective and sensitive NMR spectra. However, so far, DNP methods have not been explored in the context of inorganic lead halide perovskites, which are a leading class of semiconductor materials for optoelectronic applications. In this work, we study cesium lead chloride and quantitatively compare DNP methods based on impregnation with a solution of organic biradicals with doping of high-spin metal ions (Mn2+) into the perovskite structure. We find that metal-ion DNP provides the highest bulk sensitivity in this case, while highly surface-selective NMR spectra can be acquired using impregnation DNP. The performance of both methods is explained in terms of the relaxation times, particle size, dopant concentration, and surface wettability. We envisage the future use of DNP NMR approaches in establishing structure-activity relationships in inorganic perovskites, especially for mass-limited samples such as thin films.
Collapse
|
9
|
Menzildjian G, Schlagnitweit J, Casano G, Ouari O, Gajan D, Lesage A. Polarizing agents for efficient high field DNP solid-state NMR spectroscopy under magic-angle spinning: from design principles to formulation strategies. Chem Sci 2023; 14:6120-6148. [PMID: 37325158 PMCID: PMC10266460 DOI: 10.1039/d3sc01079a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Dynamic Nuclear Polarization (DNP) has recently emerged as a cornerstone approach to enhance the sensitivity of solid-state NMR spectroscopy under Magic Angle Spinning (MAS), opening unprecedented analytical opportunities in chemistry and biology. DNP relies on a polarization transfer from unpaired electrons (present in endogenous or exogenous polarizing agents) to nearby nuclei. Developing and designing new polarizing sources for DNP solid-state NMR spectroscopy is currently an extremely active research field per se, that has recently led to significant breakthroughs and key achievements, in particular at high magnetic fields. This review describes recent developments in this area, highlighting key design principles that have been established over time and led to the introduction of increasingly more efficient polarizing sources. After a short introduction, Section 2 presents a brief history of solid-state DNP, highlighting the main polarization transfer schemes. The third section is devoted to the development of dinitroxide radicals, discussing the guidelines that were progressively established to design the fine-tuned molecular structures in use today. In Section 4, we describe recent efforts in developing hybrid radicals composed of a narrow EPR line radical covalently linked to a nitroxide, highlighting the parameters that modulate the DNP efficiency of these mixed structures. Section 5 reviews recent advances in the design of metal complexes suitable for DNP MAS NMR as exogenous electron sources. In parallel, current strategies that exploit metal ions as endogenous polarization sources are discussed. Section 6 briefly describes the recent introduction of mixed-valence radicals. In the last part, experimental aspects regarding sample formulation are reviewed to make best use of these polarizing agents in a broad panel of application fields.
Collapse
Affiliation(s)
- Georges Menzildjian
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Judith Schlagnitweit
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Gilles Casano
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273 Marseille France
| | - Olivier Ouari
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273 Marseille France
| | - David Gajan
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Anne Lesage
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| |
Collapse
|
10
|
Thomas B, Jardón-Álvarez D, Carmieli R, van Tol J, Leskes M. The Effect of Disorder on Endogenous MAS-DNP: Study of Silicate Glasses and Crystals. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:4759-4772. [PMID: 36925559 PMCID: PMC10009812 DOI: 10.1021/acs.jpcc.2c08849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/05/2023] [Indexed: 06/18/2023]
Abstract
In dynamic nuclear polarization nuclear magnetic resonance (DNP-NMR) experiments, the large Boltzmann polarization of unpaired electrons is transferred to surrounding nuclei, leading to a significant increase in the sensitivity of the NMR signal. In order to obtain large polarization gains in the bulk of inorganic samples, paramagnetic metal ions are introduced as minor dopants acting as polarizing agents. While this approach has been shown to be very efficient in crystalline inorganic oxides, significantly lower enhancements have been reported when applying this approach to oxide glasses. In order to rationalize the origin of the difference in the efficiency of DNP in amorphous and crystalline inorganic matrices, we performed a detailed comparison in terms of their magnetic resonance properties. To diminish differences in the DNP performance arising from distinct nuclear interactions, glass and crystal systems of similar compositions were chosen, Li2OCaO·2SiO2 and Li2CaSiO4, respectively. Using Gd(III) as polarizing agent, DNP provided signal enhancements in the range of 100 for the crystalline sample, while only up to around factor 5 in the glass, for both 6Li and 29Si nuclei. We find that the drop in enhancement in glasses can be attributed to three main factors: shorter nuclear and electron relaxation times as well as the dielectric properties of glass and crystal. The amorphous nature of the glass sample is responsible for a high dielectric loss, leading to efficient microwave absorption and consequently lower effective microwave power and an increase in sample temperature which leads to further reduction of the electron relaxation time. These results help rationalize the observed sensitivity enhancements and provide guidance in identifying materials that could benefit from the DNP approach.
Collapse
Affiliation(s)
- Brijith Thomas
- Department
of Molecular Chemistry & Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniel Jardón-Álvarez
- Department
of Molecular Chemistry & Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Johan van Tol
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Michal Leskes
- Department
of Molecular Chemistry & Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
11
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
12
|
Rao Y, Palumbo CT, Venkatesh A, Keener M, Stevanato G, Chauvin AS, Menzildjian G, Kuzin S, Yulikov M, Jeschke G, Lesage A, Mazzanti M, Emsley L. Design Principles for the Development of Gd(III) Polarizing Agents for Magic Angle Spinning Dynamic Nuclear Polarization. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:11310-11317. [PMID: 35865791 PMCID: PMC9289950 DOI: 10.1021/acs.jpcc.2c01721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nuclear magnetic resonance suffers from an intrinsically low sensitivity, which can be overcome by dynamic nuclear polarization (DNP). Gd(III) complexes are attractive exogenous polarizing agents for magic angle spinning (MAS) DNP due to their high chemical stability in contrast to nitroxide-based radicals. However, even the state-of-the-art Gd(III) complexes have so far provided relatively low DNP signal enhancements of ca. 36 in comparison to standard DNP biradicals, which show enhancements of over 200. Here, we report a series of new Gd(III) complexes for DNP and show that the observed DNP enhancements of the new and existing Gd(III) complexes are inversely proportional to the square of the zero-field splitting (ZFS) parameter D, which is in turn determined by the ligand-type and the local coordination environment. The experimental DNP enhancements at 9.4 T and the ZFS parameters measured with pulsed electron paramagnetic resonance (EPR) spectroscopy agree with the above model, paving the way for the development of more efficient Gd(III) polarizing agents.
Collapse
Affiliation(s)
- Yu Rao
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Chad T. Palumbo
- Group
of Coordination Chemistry, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL, CH-1015 Lausanne, Switzerland
| | - Amrit Venkatesh
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Megan Keener
- Group
of Coordination Chemistry, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL, CH-1015 Lausanne, Switzerland
| | - Gabriele Stevanato
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Anne-Sophie Chauvin
- Group
of Coordination Chemistry, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL, CH-1015 Lausanne, Switzerland
| | - Georges Menzildjian
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sergei Kuzin
- Laboratory
of Physical Chemistry, Department of Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Maxim Yulikov
- Laboratory
of Physical Chemistry, Department of Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Gunnar Jeschke
- Laboratory
of Physical Chemistry, Department of Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Anne Lesage
- Centre
de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Marinella Mazzanti
- Group
of Coordination Chemistry, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL, CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Laboratory
of Magnetic Resonance, Institut des Sciences et Ingénierie
Chimiques, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Carnahan SL, Chen Y, Wishart JF, Lubach JW, Rossini AJ. Magic angle spinning dynamic nuclear polarization solid-state NMR spectroscopy of γ-irradiated molecular organic solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 119:101785. [PMID: 35405629 DOI: 10.1016/j.ssnmr.2022.101785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In the past 15 years, magic angle spinning (MAS) dynamic nuclear polarization (DNP) has emerged as a method to increase the sensitivity of high-resolution solid-state NMR spectroscopy experiments. Recently, γ-irradiation has been used to generate significant concentrations of homogeneously distributed free radicals in a variety of solids, including quartz, glucose, and cellulose. Both γ-irradiated quartz and glucose previously showed significant MAS DNP enhancements. Here, γ-irradiation is applied to twelve small organic molecules to test the applicability of γ-irradiation as a general method of creating stable free radicals for MAS DNP experiments on organic solids and pharmaceuticals. Radical concentrations in the range of 0.25 mM-10 mM were observed in irradiated glucose, histidine, malic acid, and malonic acid, and significant 1H DNP enhancements of 32, 130, 19, and 11 were obtained, respectively, as measured by 1H→13C CPMAS experiments. However, concentrations of free radicals below 0.05 mM were generally observed in organic molecules containing aromatic rings, preventing sizeable DNP enhancements. DNP sensitivity gains for several of the irradiated compounds exceed that which can be obtained with the relayed DNP approach that uses exogeneous polarizing agent solutions and impregnation procedures. In several cases, significant 1H DNP enhancements were realized at room temperature. This study demonstrates that in many cases γ-irradiation is a viable alternative to addition of stable exogenous radicals for DNP experiments on organic solids.
Collapse
Affiliation(s)
- Scott L Carnahan
- US DOE Ames Laboratory, Ames, IA, 50011, USA; Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Yunhua Chen
- US DOE Ames Laboratory, Ames, IA, 50011, USA; Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - James F Wishart
- Brookhaven National Laboratory, Chemistry Division, Upton, NY, 11973, United States
| | - Joseph W Lubach
- Genentech Inc., South San Francisco, CA, 94080, United States
| | - Aaron J Rossini
- US DOE Ames Laboratory, Ames, IA, 50011, USA; Iowa State University, Department of Chemistry, Ames, IA, 50011, USA.
| |
Collapse
|
14
|
Jardón-Álvarez D, Malka T, van Tol J, Feldman Y, Carmieli R, Leskes M. Monitoring electron spin fluctuations with paramagnetic relaxation enhancement. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107143. [PMID: 35085928 DOI: 10.1016/j.jmr.2022.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The magnetic interactions between the spin of an unpaired electron and the surrounding nuclear spins can be exploited to gain structural information, to reduce nuclear relaxation times as well as to create nuclear hyperpolarization via dynamic nuclear polarization (DNP). A central aspect that determines how these interactions manifest from the point of view of NMR is the timescale of the fluctuations of the magnetic moment of the electron spins. These fluctuations, however, are elusive, particularly when electron relaxation times are short or interactions among electronic spins are strong. Here we map the fluctuations by analyzing the ratio between longitudinal and transverse nuclear relaxation times T1/T2, a quantity which depends uniquely on the rate of the electron fluctuations and the Larmor frequency of the involved nuclei. This analysis enables rationalizing the evolution of NMR lineshapes, signal quenching as well as DNP enhancements as a function of the concentration of the paramagnetic species and the temperature, demonstrated here for LiMg1-xMnxPO4 and Fe(III) doped Li4Ti5O12, respectively. For the latter, we observe a linear dependence of the DNP enhancement and the electron relaxation time within a temperature range between 100 and 300 K.
Collapse
Affiliation(s)
- Daniel Jardón-Álvarez
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tahel Malka
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Johan van Tol
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL 32310, United States
| | - Yishay Feldman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michal Leskes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
15
|
Haber S, Leskes M. Dynamic Nuclear Polarization in battery materials. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 117:101763. [PMID: 34890977 DOI: 10.1016/j.ssnmr.2021.101763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
The increasing need for portable and large-scale energy storage systems requires development of new, long lasting and highly efficient battery systems. Solid state NMR spectroscopy has emerged as an excellent method for characterizing battery materials. Yet, it is limited when it comes to probing thin interfacial layers which play a central role in the performance and lifetime of battery cells. Here we review how Dynamic Nuclear Polarization (DNP) can lift the sensitivity limitation and enable detection of the electrode-electrolyte interface, as well as the bulk of some electrode and electrolyte systems. We describe the current challenges from the point of view of materials development; considering how the unique electronic, magnetic and chemical properties differentiate battery materials from other applications of DNP in materials science. We review the current applications of exogenous and endogenous DNP from radicals, conduction electrons and paramagnetic metal ions. Finally, we provide our perspective on the opportunities and directions where battery materials can benefit from current DNP methodologies as well as project on future developments that will enable NMR investigation of battery materials with sensitivity and selectivity under ambient conditions.
Collapse
Affiliation(s)
- Shira Haber
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Leskes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
16
|
Mentink-Vigier F. Numerical recipes for faster MAS-DNP simulations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107106. [PMID: 34837803 PMCID: PMC8639796 DOI: 10.1016/j.jmr.2021.107106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 05/11/2023]
Abstract
Numerical simulations of Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP) have transformed the way the DNP process is understood in rotating samples. In 2012, two methods were concomitantly developed to simulate small spin systems (< 4 spin-1/2). The development of new polarizing agents, including those containing metal centers with S > 1/2, makes it necessary to further expand the numerical tools with minimal approximations that will help rationalize the experimental observations and build approximate models. In this paper, three strategies developed in the past five years are presented: an adaptive integration scheme, a hybrid Hilbert/Liouville formalism, and a method to truncate the Liouville space basis for periodic Hamiltonian. Each of these methods enable time savings ranging from a factor of 3 to > 100. We illustrate the code performance by reporting for the first time the MAS-DNP field profiles for "AMUPol", in which the couplings to the nitrogen nuclei are explicitly considered, as well as Cross-Effect MAS-DNP field profiles with two electrons spin 5/2 interacting with a nuclear spin 1/2.
Collapse
Affiliation(s)
- Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, FL 32310, USA.
| |
Collapse
|
17
|
Kobayashi T, Pruski M. Indirectly Detected DNP-Enhanced 17 O NMR Spectroscopy: Observation of Non-Protonated Near-Surface Oxygen at Naturally Abundant Silica and Silica-Alumina. Chemphyschem 2021; 22:1441-1445. [PMID: 34019318 DOI: 10.1002/cphc.202100290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Indexed: 11/07/2022]
Abstract
Recent studies have shown that dynamic nuclear polarization (DNP) can be used to detect 17 O solid-state NMR spectra of naturally abundant samples within a reasonable experimental time. Observations using indirect DNP, which relies on 1 H mediation in transferring electron hyperpolarization to 17 O, are currently limited mostly to hydroxyls. Direct DNP schemes can hyperpolarize non-protonated oxygen near the radicals; however, they generally offer much lower signal enhancements. In this study, we demonstrate the detection of signals from non-protonated 17 O in materials containing silicon. The sensitivity boost that made the experiment possible originates from three sources: indirect DNP excitation of 29 Si via protons, indirect detection of 17 O through 29 Si nuclei using two-dimensional 29 Si{17 O} D-HMQC, and Carr-Purcell-Meiboom-Gill refocusing of 29 Si magnetization during acquisition. This 29 Si-detected scheme enabled, for the first time, 2D 17 O-29 Si heteronuclear correlation spectroscopy in mesoporous silica and silica-alumina surfaces at natural abundance. In contrast to the silanols showing motion-averaged 17 O signals, the framework oxygens exhibit unperturbed powder patterns as unambiguous fingerprints of surface sites. Along with hydroxyl oxygens, detection of these moieties will help in gaining more atomistic-scale insights into surface chemistry.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa 50011-3020, United States
| | - Marek Pruski
- U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa 50011-3020, United States
| |
Collapse
|
18
|
Pell AJ. A method to calculate the NMR spectra of paramagnetic species using thermalized electronic relaxation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 326:106939. [PMID: 33744830 DOI: 10.1016/j.jmr.2021.106939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
For paramagnetic species, it has been long understood that the hyperfine interaction between the unpaired electrons and the nucleus results in a nuclear magnetic resonance (NMR) peak that is shifted by a paramagnetic shift, rather than split by the coupling, due to an averaging of the electronic magnetic moment caused by electronic relaxation that is fast in comparison to the hyperfine coupling constant. However, although this feature of paramagnetic NMR has formed the basis of all theories of the paramagnetic shift, the precise theory and mechanism of the electronic relaxation required to predict this result has never been discussed, nor has the assertion been tested. In this paper, we show that the standard semi-classical Redfield theory of relaxation fails to predict a paramagnetic shift, as does any attempt to correct for the semi-classical theory using modifications such as the inhomogeneous master equation or Levitt-di Bari thermalization. In fact, only the recently-introduced Lindbladian theory of relaxation in magnetic resonance [J.Magn.Reson., 310, 106645 (2019)] is able to correctly predict the paramagnetic shift tensor and relaxation-induced linewidth in pNMR. Furthermore, this new formalism is able to predict the NMR spectra of paramagnetic species outside the high-temperature and weak-order limits, and is therefore also applicable to dynamic nuclear polarization. The formalism is tested by simulations of five case studies, which include Fermi-contact and spin-dipolar hyperfine couplings, g-anisotropy, zero-field splitting, high and low temperatures, and fast and slow electronic relaxation.
Collapse
Affiliation(s)
- Andrew J Pell
- Department of Materials and Environmental Chemistry, Stockholm University, Svänte Arrhenius väg 16 C, 106 91 Stockholm, Sweden; Centre de RMN Trés Hauts Champs de Lyon (UMR5082 CNRS/ENS-Lyon/Université Claude Bernard Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
19
|
Haber S, Rosy, Saha A, Brontvein O, Carmieli R, Zohar A, Noked M, Leskes M. Structure and Functionality of an Alkylated Li xSi yO z Interphase for High-Energy Cathodes from DNP-ssNMR Spectroscopy. J Am Chem Soc 2021; 143:4694-4704. [PMID: 33751895 PMCID: PMC8017524 DOI: 10.1021/jacs.1c00215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Degradation processes
at the cathode–electrolyte interface
are a major limitation in the development of high-energy lithium-ion
rechargeable batteries. Deposition of protective thin coating layers
on the surface of high-energy cathodes is a promising approach to
control interfacial reactions. However, rational design of effective
protection layers is limited by the scarcity of analytical tools that
can probe thin, disordered, and heterogeneous phases. Here we propose
a new structural approach based on solid-state nuclear magnetic resonance
spectroscopy coupled with dynamic nuclear polarization (DNP) for characterizing
thin coating layers. We demonstrate the approach on an efficient alkylated
LixSiyOz coating layer. By utilizing different sources
for DNP, exogenous from nitroxide biradicals and endogenous from paramagnetic
metal ion dopants, we reveal the outer and inner surface layers of
the deposited artificial interphase and construct a structural model
for the coating. In addition, lithium isotope exchange experiments
provide direct evidence for the function of the surface layer, shedding
light on its role in the enhanced rate performance of coated cathodes.
The presented methodology and results advance us in identifying the
key properties of effective coatings and may enable rational design
of protective and ion-conducting surface layers.
Collapse
Affiliation(s)
- Shira Haber
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel 7610001
| | - Rosy
- Department of Chemistry, Indian Institute of Technology BHU, Varanasi, India 221005
| | - Arka Saha
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel.,Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat Gan, Israel
| | - Olga Brontvein
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel 7610001
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel 7610001
| | - Arava Zohar
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel 7610001
| | - Malachi Noked
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel.,Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat Gan, Israel
| | - Michal Leskes
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel 7610001
| |
Collapse
|
20
|
Jardón-Álvarez D, Kahn N, Houben L, Leskes M. Oxygen Vacancy Distribution in Yttrium-Doped Ceria from 89Y- 89Y Correlations via Dynamic Nuclear Polarization Solid-State NMR. J Phys Chem Lett 2021; 12:2964-2969. [PMID: 33730494 PMCID: PMC8006133 DOI: 10.1021/acs.jpclett.1c00221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/12/2021] [Indexed: 05/25/2023]
Abstract
Comprehending the oxygen vacancy distribution in oxide ion conductors requires structural insights over various length scales: from the local coordination preferences to the possible formation of agglomerates comprising a large number of vacancies. In Y-doped ceria, 89Y NMR enables differentiation of yttrium sites by quantification of the oxygen vacancies in their first coordination sphere. Because of the extremely low sensitivity of 89Y, longer-range information was so far not available from NMR. Herein, we utilize metal ion-based dynamic nuclear polarization, where polarization from Gd(III) dopants provides large sensitivity enhancements homogeneously throughout the bulk of the sample. This enables following 89Y-89Y homonuclear dipolar correlations and probing the local distribution of yttrium sites, which show no evidence of the formation of oxygen vacancy rich regions. The presented approach can provide valuable structural insights for designing oxide ion conductors.
Collapse
Affiliation(s)
- Daniel Jardón-Álvarez
- Department
of Materials and Interfaces, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Nitzan Kahn
- Department
of Materials and Interfaces, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Lothar Houben
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Michal Leskes
- Department
of Materials and Interfaces, Weizmann Institute
of Science, Rehovot 76100, Israel
| |
Collapse
|
21
|
Carnevale D, Mouchaham G, Wang S, Baudin M, Serre C, Bodenhausen G, Abergel D. Natural abundance oxygen-17 solid-state NMR of metal organic frameworks enhanced by dynamic nuclear polarization. Phys Chem Chem Phys 2021; 23:2245-2251. [PMID: 33443274 DOI: 10.1039/d0cp06064j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 17O resonances of zirconium-oxo clusters that can be found in porous Zr carboxylate metal-organic frameworks (MOFs) have been investigated by magic-angle spinning (MAS) NMR spectroscopy enhanced by dynamic nuclear polarization (DNP). High-resolution 17O spectra at 0.037% natural abundance could be obtained in 48 hours, thanks to DNP enhancement of the 1H polarization by factors ε(1H) = Swith/Swithout = 28, followed by 1H → 17O cross-polarization, allowing a saving in experimental time by a factor of ca. 800. The distinct 17O sites from the oxo-clusters can be resolved at 18.8 T. Their assignment is supported by density functional theory (DFT) calculations of chemical shifts and quadrupolar parameters. Protonation of 17O sites seems to be leading to large characteristic shifts. Hence, natural abundance 17O NMR spectra of diamagnetic MOFs can thus be used to probe and characterize the local environment of different 17O sites on an atomic scale.
Collapse
Affiliation(s)
- Diego Carnevale
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Hope MA, Björgvinsdóttir S, Grey CP, Emsley L. A Magic Angle Spinning Activated 17O DNP Raser. J Phys Chem Lett 2021; 12:345-349. [PMID: 33355469 DOI: 10.1021/acs.jpclett.0c03457] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the raser effect, a sample spontaneously emits continuous radiofrequency radiation, allowing exceptionally narrow NMR line widths to be recorded without applying pulses. To achieve this phenomenon, a large negative magnetization must be induced, which we show here can be achieved for the 17O magnetization of isotopically labeled Gd-doped CeO2 using solid effect dynamic nuclear polarization (DNP), at high field and 110 K. This allows a 2 mHz line width to be measured, which is limited only by the magnetic field stability. The raser effect can be reversibly activated and deactivated by magic angle spinning (MAS), which modulates the nuclear spin coherence lifetime. The use of MAS DNP to enable the raser effect should be further applicable to other systems and nuclei.
Collapse
Affiliation(s)
- Michael A Hope
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Snædís Björgvinsdóttir
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Clare P Grey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
23
|
de Oliveira M, Herr K, Brodrecht M, Haro-Mares NB, Wissel T, Klimavicius V, Breitzke H, Gutmann T, Buntkowsky G. Solvent-free dynamic nuclear polarization enhancements in organically modified mesoporous silica. Phys Chem Chem Phys 2021; 23:12559-12568. [PMID: 34027938 DOI: 10.1039/d1cp00985k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High-field dynamic nuclear polarization is a powerful tool for the structural characterization of species on the surface of porous materials or nanoparticles. For these studies the main source of polarization are radical-containing solutions which are added by post-synthesis impregnation of the sample. Although this strategy is very efficient for a wide variety of materials, the presence of the solvent may influence the chemistry of functional species of interest. Here we address the development of a comprehensive strategy for solvent-free DNP enhanced NMR characterization of functional (target) species on the surface of mesoporous silica (SBA-15). The strategy includes the partial functionalization of the silica surface with Carboxy-Proxyl nitroxide radicals and target Fmoc-Glycine functional groups. As a proof of principle, we have observed for the first time DNP signal enhancements, using the solvent-free approach, for 13C{1H} CPMAS signals corresponding to organic functionalities on the silica surface. DNP enhancements of up to 3.4 were observed for 13C{1H} CPMAS, corresponding to an experimental time save of about 12 times. This observation opens the possibility for the DNP-NMR study of surface functional groups without the need of a solvent, allowing, for example, the characterization of catalytic reactions occurring on the surface of mesoporous systems of interest. For 29Si with direct polarization NMR, up to 8-fold DNP enhancements were obtained. This 29Si signal enhancement is considerably higher than the obtained with similar approaches reported in literature. Finally, from DNP enhancement profiles we conclude that cross-effect is probably the dominant polarization transfer mechanism.
Collapse
Affiliation(s)
- Marcos de Oliveira
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany. and São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, SP, Brazil.
| | - Kevin Herr
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
| | - Martin Brodrecht
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
| | - Nadia B Haro-Mares
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
| | - Till Wissel
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
| | - Vytautas Klimavicius
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany. and Institute of Chemical Physics, Vilnius University, Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Hergen Breitzke
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
| | - Torsten Gutmann
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
| | - Gerd Buntkowsky
- Institut für Physikalische Chemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
| |
Collapse
|
24
|
Heiliger J, Matzel T, Çetiner EC, Schwalbe H, Kuenze G, Corzilius B. Site-specific dynamic nuclear polarization in a Gd(III)-labeled protein. Phys Chem Chem Phys 2020; 22:25455-25466. [PMID: 33103678 DOI: 10.1039/d0cp05021k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamic nuclear polarization (DNP) of a biomolecule tagged with a polarizing agent has the potential to not only increase NMR sensitivity but also to provide specificity towards the tagging site. Although the general concept has been often discussed, the observation of true site-specific DNP and its dependence on the electron-nuclear distance has been elusive. Here, we demonstrate site-specific DNP in a uniformly isotope-labeled ubiquitin. By recombinant expression of three different ubiquitin point mutants (F4C, A28C, and G75C) post-translationally modified with a Gd3+-chelator tag, localized metal-ion DNP of 13C and 15N is investigated. Effects counteracting the site-specificity of DNP such as nuclear spin-lattice relaxation and proton-driven spin diffusion have been attenuated by perdeuteration of the protein. Particularly for 15N, large DNP enhancement factors on the order of 100 and above as well as localized effects within side-chain resonances differently distributed over the protein are observed. By analyzing the experimental DNP built-up dynamics combined with structural modeling of Gd3+-tags in ubiquitin supported by paramagnetic relaxation enhancement (PRE) in solution, we provide, for the first time, quantitative information on the distance dependence of the initial DNP transfer. We show that the direct 15N DNP transfer rate indeed linearly depends on the square of the hyperfine interaction between the electron and the nucleus following Fermi's golden rule, however, below a certain distance cutoff paramagnetic signal bleaching may dramatically skew the correlation.
Collapse
Affiliation(s)
- Jörg Heiliger
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|