1
|
Bradbury NC, Li BY, Allen T, Caram JR, Neuhauser D. No more gap-shifting: Stochastic many-body-theory based TDHF for accurate theory of polymethine cyanine dyes. J Chem Phys 2024; 161:141101. [PMID: 39377322 DOI: 10.1063/5.0223783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/15/2024] [Indexed: 10/09/2024] Open
Abstract
We introduce an individually fitted screened-exchange interaction for the time-dependent Hartree-Fock (TDHF) method and show that it resolves the missing binding energies in polymethine organic dye molecules compared to time-dependent density functional theory (TDDFT). The interaction kernel, which can be thought of as a dielectric function, is generated by stochastic fitting to the screened-Coulomb interaction of many-body perturbation theory (MBPT), specific to each system. We test our method on the flavylium and indocyanine green dye families with a modifiable length of the polymethine bridge, leading to excitations ranging from visible to short-wave infrared. Our approach validates earlier observations on the importance of inclusion of medium range exchange for the exciton binding energy. Our resulting method, TDHF@vW, also achieves a mean absolute error on a par with MBPT at a computational cost on a par with local-functional TDDFT.
Collapse
Affiliation(s)
- Nadine C Bradbury
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Barry Y Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Tucker Allen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Daniel Neuhauser
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
2
|
Knysh I, Lipparini F, Blondel A, Duchemin I, Blase X, Loos PF, Jacquemin D. Reference CC3 Excitation Energies for Organic Chromophores: Benchmarking TD-DFT, BSE/ GW, and Wave Function Methods. J Chem Theory Comput 2024. [PMID: 39237472 DOI: 10.1021/acs.jctc.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
To expand the QUEST database of highly accurate vertical transition energies, we consider a series of large organic chromogens ubiquitous in dye chemistry, such as anthraquinone, azobenzene, BODIPY, and naphthalimide. We compute, at the CC3 level of theory, the singlet and triplet vertical transition energies associated with the low-lying excited states. This leads to a collection of more than 120 new highly accurate excitation energies. For several singlet transitions, we have been able to determine CCSDT transition energies with a compact basis set, finding minimal deviations from the CC3 values for most states. Subsequently, we employ these reference values to benchmark a series of lower-order wave function approaches, including the popular ADC(2) and CC2 schemes, as well as time-dependent density-functional theory (TD-DFT), both with and without applying the Tamm-Dancoff approximation (TDA). At the TD-DFT level, we evaluate a large panel of global, range-separated, local, and double hybrid functionals. Additionally, we assess the performance of the Bethe-Salpeter equation (BSE) formalism relying on both G0W0 and evGW quasiparticle energies evaluated from various starting points. It turns out that CC2 and ADC(2.5) are the most accurate models among those with respective O ( N 5 ) and O ( N 6 ) scalings with system size. In contrast, CCSD does not outperform CC2. The best performing exchange-correlation functionals include BMK, M06-2X, M06-SX, CAM-B3LYP, ωB97X-D, and LH20t, with average deviations of approximately 0.20 eV or slightly below. Errors on vertical excitation energies can be further reduced by considering double hybrids. Both SOS-ωB88PP86 and SOS-ωPBEPP86 exhibit particularly attractive performances with overall quality on par with CC2, whereas PBE0-DH and PBE-QIDH are only slightly less efficient. BSE/evGW calculations based on Kohn-Sham starting points have been found to be particularly effective for singlet transitions, but much less for their triplet counterparts.
Collapse
Affiliation(s)
- Iryna Knysh
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 3, 56124 Pisa, Italy
| | - Aymeric Blondel
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Ivan Duchemin
- Université Grenoble Alpes, CEA, IRIG-MEM-L Sim, 38054 Grenoble, France
| | - Xavier Blase
- Université Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| |
Collapse
|
3
|
Kossoski F, Boggio-Pasqua M, Loos PF, Jacquemin D. Reference Energies for Double Excitations: Improvement and Extension. J Chem Theory Comput 2024; 20:5655-5678. [PMID: 38885174 DOI: 10.1021/acs.jctc.4c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
In the realm of photochemistry, the significance of double excitations (also known as doubly excited states), where two electrons are concurrently elevated to higher energy levels, lies in their involvement in key electronic transitions essential in light-induced chemical reactions as well as their challenging nature from the computational theoretical chemistry point of view. Based on state-of-the-art electronic structure methods (such as high-order coupled-cluster, selected configuration interaction, and multiconfigurational methods), we improve and expand our prior set of accurate reference excitation energies for electronic states exhibiting a substantial amount of double excitations [Loos et al. J. Chem. Theory Comput. 2019, 15, 1939]. This extended collection encompasses 47 electronic transitions across 26 molecular systems that we separate into two distinct subsets: (i) 28 "genuine" doubly excited states where the transitions almost exclusively involve doubly excited configurations and (ii) 19 "partial" doubly excited states which exhibit a more balanced character between singly and doubly excited configurations. For each subset, we assess the performance of high-order coupled-cluster (CC3, CCSDT, CC4, and CCSDTQ) and multiconfigurational methods (CASPT2, CASPT3, PC-NEVPT2, and SC-NEVPT2). Using as a probe the percentage of single excitations involved in a given transition (%T1) computed at the CC3 level, we also propose a simple correction that reduces the errors of CC3 by a factor of 3, for both sets of excitations. We hope that this more complete and diverse compilation of double excitations will help future developments of electronic excited-state methodologies.
Collapse
Affiliation(s)
- Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| |
Collapse
|
4
|
Holzer C, Franzke YJ. Beyond Electrons: Correlation and Self-Energy in Multicomponent Density Functional Theory. Chemphyschem 2024; 25:e202400120. [PMID: 38456204 DOI: 10.1002/cphc.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
Post-Kohn-Sham methods are used to evaluate the ground-state correlation energy and the orbital self-energy of systems consisting of multiple flavors of different fermions. Starting from multicomponent density functional theory, suitable ways to arrive at the corresponding multicomponent random-phase approximation and the multicomponent Green's functionG W ${GW}$ approximation, including relativistic effects, are outlined. Given the importance of both of this methods in the development of modern Kohn-Sham density functional approximations, this work will provide a foundation to design advanced multicomponent density functional approximations. Additionally, theG W ${GW}$ quasiparticle energies are needed to study light-matter interactions with the Bethe-Salpeter equation.
Collapse
Affiliation(s)
- Christof Holzer
- Karlsruhe Institute of Technology (KIT), Institute of Theoretical Solid State Physics, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Yannick J Franzke
- Friedrich Schiller University Jena, Otto Schott Institute of Materials Research, Löbdergraben 32, 07743, Jena, Germany
| |
Collapse
|
5
|
Inico E, Saetta C, Di Liberto G. Impact of quantum size effects to the band gap of catalytic materials: a computational perspective. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:361501. [PMID: 38830369 DOI: 10.1088/1361-648x/ad53b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
The evolution of nanotechnology has facilitated the development of catalytic materials with controllable composition and size, reaching the sub-nanometer limit. Nowadays, a viable strategy for tailoring and optimizing the catalytic activity involves controlling the size of the catalyst. This strategy is underpinned by the fact that the properties and reactivity of objects with dimensions on the order of nanometers can differ from those of the corresponding bulk material, due to the emergence of quantum size effects. Quantum size effects have a deep influence on the band gap of semiconducting catalytic materials. Computational studies are valuable for predicting and estimating the impact of quantum size effects. This perspective emphasizes the crucial role of modeling quantum size effects when simulating nanostructured catalytic materials. It provides a comprehensive overview of the fundamental principles governing the physics of quantum confinement in various experimentally observable nanostructures. Furthermore, this work may serve as a tutorial for modeling the electronic gap of simple nanostructures, highlighting that when working at the nanoscale, the finite dimensions of the material lead to an increase of the band gap because of the emergence of quantum confinement. This aspect is sometimes overlooked in computational chemistry studies focused on surfaces and nanostructures.
Collapse
Affiliation(s)
- Elisabetta Inico
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Clara Saetta
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
6
|
Damour Y, Scemama A, Jacquemin D, Kossoski F, Loos PF. State-Specific Coupled-Cluster Methods for Excited States. J Chem Theory Comput 2024; 20:4129-4145. [PMID: 38749498 PMCID: PMC11137840 DOI: 10.1021/acs.jctc.4c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 05/29/2024]
Abstract
We reexamine ΔCCSD, a state-specific coupled-cluster (CC) with single and double excitations (CCSD) approach that targets excited states through the utilization of non-Aufbau determinants. This methodology is particularly efficient when dealing with doubly excited states, a domain in which the standard equation-of-motion CCSD (EOM-CCSD) formalism falls short. Our goal here to evaluate the effectiveness of ΔCCSD when applied to other types of excited states, comparing its consistency and accuracy with EOM-CCSD. To this end, we report a benchmark on excitation energies computed with the ΔCCSD and EOM-CCSD methods for a set of molecular excited-state energies that encompasses not only doubly excited states but also doublet-doublet transitions and (singlet and triplet) singly excited states of closed-shell systems. In the latter case, we rely on a minimalist version of multireference CC known as the two-determinant CCSD method to compute the excited states. Our data set, consisting of 276 excited states stemming from the quest database [Véril et al., WIREs Comput. Mol. Sci. 2021, 11, e1517], provides a significant base to draw general conclusions concerning the accuracy of ΔCCSD. Except for the doubly excited states, we found that ΔCCSD underperforms EOM-CCSD. For doublet-doublet transitions, the difference between the mean absolute errors (MAEs) of the two methodologies (of 0.10 and 0.07 eV) is less pronounced than that obtained for singly excited states of closed-shell systems (MAEs of 0.15 and 0.08 eV). This discrepancy is largely attributed to a greater number of excited states in the latter set exhibiting multiconfigurational characters, which are more challenging for ΔCCSD. We also found typically small improvements by employing state-specific optimized orbitals.
Collapse
Affiliation(s)
- Yann Damour
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Anthony Scemama
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Denis Jacquemin
- Nantes
Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut
Universitaire de France (IUF), F-75005 Paris, France
| | - Fábris Kossoski
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Pierre-François Loos
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| |
Collapse
|
7
|
Wang X, Gao S, Luo Y, Liu X, Tom R, Zhao K, Chang V, Marom N. Computational Discovery of Intermolecular Singlet Fission Materials Using Many-Body Perturbation Theory. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:7841-7864. [PMID: 38774154 PMCID: PMC11103713 DOI: 10.1021/acs.jpcc.4c01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024]
Abstract
Intermolecular singlet fission (SF) is the conversion of a photogenerated singlet exciton into two triplet excitons residing on different molecules. SF has the potential to enhance the conversion efficiency of solar cells by harvesting two charge carriers from one high-energy photon, whose surplus energy would otherwise be lost to heat. The development of commercial SF-augmented modules is hindered by the limited selection of molecular crystals that exhibit intermolecular SF in the solid state. Computational exploration may accelerate the discovery of new SF materials. The GW approximation and Bethe-Salpeter equation (GW+BSE) within the framework of many-body perturbation theory is the current state-of-the-art method for calculating the excited-state properties of molecular crystals with periodic boundary conditions. In this Review, we discuss the usage of GW+BSE to assess candidate SF materials as well as its combination with low-cost physical or machine learned models in materials discovery workflows. We demonstrate three successful strategies for the discovery of new SF materials: (i) functionalization of known materials to tune their properties, (ii) finding potential polymorphs with improved crystal packing, and (iii) exploring new classes of materials. In addition, three new candidate SF materials are proposed here, which have not been published previously.
Collapse
Affiliation(s)
- Xiaopeng Wang
- School
of Foundational Education, University of
Health and Rehabilitation Sciences, Qingdao 266113, China
- Qingdao
Institute for Theoretical and Computational Sciences, Institute of
Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Siyu Gao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yiqun Luo
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xingyu Liu
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rithwik Tom
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kaiji Zhao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Vincent Chang
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Noa Marom
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
8
|
Knysh I, Raimbault D, Duchemin I, Blase X, Jacquemin D. Assessing the accuracy of TD-DFT excited-state geometries through optimal tuning with GW energy levels. J Chem Phys 2024; 160:144115. [PMID: 38602292 DOI: 10.1063/5.0203818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
We study the accuracy of excited state (ES) geometries using optimally tuned LC-PBE functionals with tuning based on GW quasiparticle energies. We compare the results obtained with the PBE, PBE0, non-tuned, and tuned LC-PBE functionals with available high-level CC reference values as well as experimental data. First, we compare ES geometrical parameters obtained for three different types of systems: molecules composed of a few atoms, 4-(dimethylamino)benzonitrile (DMABN), and conjugated dyes. To this end, we used wave-function results as benchmarks. Next, we evaluate the accuracy of the theoretically simulated spectra as compared to the experimental ones for five large dyes. Our results show that, besides small compact molecules for which tuning LC-PBE does not allow obtaining geometries more accurate than those computed with standard functionals, tuned range-separated functionals are clearly to be favored, not only for ES geometries but also for 0-0 energies, band shapes, and intensities for absorption and emission spectra. In particular, the results indicate that GW-tuned LC-PBE functionals provide improved matching with experimental spectra as compared to conventionally tuned functionals. It is an open question whether TD-DFT with GW-tuned functionals can qualitatively mimic the actual many-body Bethe-Salpeter (BSE/GW) formalism for which analytic ionic gradients remain to be developed.
Collapse
Affiliation(s)
- Iryna Knysh
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Denez Raimbault
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Ivan Duchemin
- Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim, 38054 Grenoble, France
| | - Xavier Blase
- Université Grenoble Alpes, CNRS, Institut, Néel F-38042, Grenoble
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
9
|
Graml M, Zollner K, Hernangómez-Pérez D, Faria Junior PE, Wilhelm J. Low-Scaling GW Algorithm Applied to Twisted Transition-Metal Dichalcogenide Heterobilayers. J Chem Theory Comput 2024; 20:2202-2208. [PMID: 38353944 PMCID: PMC10938508 DOI: 10.1021/acs.jctc.3c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 03/13/2024]
Abstract
The GW method is widely used for calculating the electronic band structure of materials. The high computational cost of GW algorithms prohibits their application to many systems of interest. We present a periodic, low-scaling, and highly efficient GW algorithm that benefits from the locality of the Gaussian basis and the polarizability. The algorithm enables G0W0 calculations on a MoSe2/WS2 bilayer with 984 atoms per unit cell, in 42 h using 1536 cores. This is 4 orders of magnitude faster than a plane-wave G0W0 algorithm, allowing for unprecedented computational studies of electronic excitations at the nanoscale.
Collapse
Affiliation(s)
- Maximilian Graml
- Institute
of Theoretical Physics, University of Regensburg, 93053 Regensburg, Germany
- Regensburg
Center for Ultrafast Nanoscopy (RUN), University
of Regensburg, 93053 Regensburg, Germany
| | - Klaus Zollner
- Institute
of Theoretical Physics, University of Regensburg, 93053 Regensburg, Germany
| | - Daniel Hernangómez-Pérez
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Paulo E. Faria Junior
- Institute
of Theoretical Physics, University of Regensburg, 93053 Regensburg, Germany
| | - Jan Wilhelm
- Institute
of Theoretical Physics, University of Regensburg, 93053 Regensburg, Germany
- Regensburg
Center for Ultrafast Nanoscopy (RUN), University
of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
10
|
Bennecke W, Windischbacher A, Schmitt D, Bange JP, Hemm R, Kern CS, D'Avino G, Blase X, Steil D, Steil S, Aeschlimann M, Stadtmüller B, Reutzel M, Puschnig P, Jansen GSM, Mathias S. Disentangling the multiorbital contributions of excitons by photoemission exciton tomography. Nat Commun 2024; 15:1804. [PMID: 38413573 PMCID: PMC10899218 DOI: 10.1038/s41467-024-45973-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Excitons are realizations of a correlated many-particle wave function, specifically consisting of electrons and holes in an entangled state. Excitons occur widely in semiconductors and are dominant excitations in semiconducting organic and low-dimensional quantum materials. To efficiently harness the strong optical response and high tuneability of excitons in optoelectronics and in energy-transformation processes, access to the full wavefunction of the entangled state is critical, but has so far not been feasible. Here, we show how time-resolved photoemission momentum microscopy can be used to gain access to the entangled wavefunction and to unravel the exciton's multiorbital electron and hole contributions. For the prototypical organic semiconductor buckminsterfullerene (C60), we exemplify the capabilities of exciton tomography and achieve unprecedented access to key properties of the entangled exciton state including localization, charge-transfer character, and ultrafast exciton formation and relaxation dynamics.
Collapse
Affiliation(s)
- Wiebke Bennecke
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Andreas Windischbacher
- Institute of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010, Graz, Austria
| | - David Schmitt
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Jan Philipp Bange
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Ralf Hemm
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern-Landau, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - Christian S Kern
- Institute of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010, Graz, Austria
| | - Gabriele D'Avino
- Univ. Grenoble Alpes, CNRS, Inst NEEL, F-38042, Grenoble, France
| | - Xavier Blase
- Univ. Grenoble Alpes, CNRS, Inst NEEL, F-38042, Grenoble, France
| | - Daniel Steil
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Sabine Steil
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Martin Aeschlimann
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern-Landau, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - Benjamin Stadtmüller
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern-Landau, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - Marcel Reutzel
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Peter Puschnig
- Institute of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010, Graz, Austria
| | - G S Matthijs Jansen
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany.
| | - Stefan Mathias
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany.
- International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
11
|
Zavatski S, Neilande E, Bandarenka H, Popov A, Piskunov S, Bocharov D. Density functional theory for doped TiO 2: current research strategies and advancements. NANOTECHNOLOGY 2024; 35:192001. [PMID: 38324910 DOI: 10.1088/1361-6528/ad272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Since the inception of the density functional theory (DFT) by Hohenberg and Kohn in 1964, it rapidly became an indispensable theoretical tool across various disciplines, such as chemistry, biology, and materials science, among others. This theory has ushered in a new era of computational research, paving the way for substantial advancements in fundamental understanding. Today, DFT is routinely employed for a diverse range of applications, such as probing new material properties and providing a profound understanding of the mechanisms underlying physical, chemical, and biological processes. Even after decades of active utilization, the improvement of DFT principles has never been slowed down, meaning that more accurate theoretical results are continuously generated with time. This work highlights the latest achievements acquired by DFT in the specific research field, namely the theoretical investigations of doped TiO2systems, which have not been comprehensively reviewed and summarized yet. Successful progress in this niche is currently hard to imagine without the support by DFT. It can accurately reveal new TiO2properties after introducing the desired dopant and help to find the optimal system design for a specific application prior to proceeding to more time-consuming and expensive experimental research. Hence, by evaluating a selection of the most recent research studies, we aim to highlight the pertinent aspects of DFT as they relate to the study of doped TiO2systems. We also aim to shed light on the strengths and weaknesses of DFT and present the primary strategies employed thus far to predict the properties of various doped TiO2systems reliably.
Collapse
Affiliation(s)
- Siarhei Zavatski
- Applied Plasmonics Laboratory, Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
| | - Elina Neilande
- Institute of Solid State Physics, University of Latvia, Riga, Latvia
| | - Hanna Bandarenka
- Applied Plasmonics Laboratory, Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
| | - Anatoli Popov
- Institute of Solid State Physics, University of Latvia, Riga, Latvia
| | - Sergei Piskunov
- Institute of Solid State Physics, University of Latvia, Riga, Latvia
| | - Dmitry Bocharov
- Institute of Solid State Physics, University of Latvia, Riga, Latvia
| |
Collapse
|
12
|
Rauwolf N, Klopper W, Holzer C. Non-linear light-matter interactions from the Bethe-Salpeter equation. J Chem Phys 2024; 160:061101. [PMID: 38341783 DOI: 10.1063/5.0191499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
A route to assess non-linear light-matter interactions from the increasingly popular GW-Bethe-Salpeter equation (GW-BSE) method is outlined. In the present work, the necessary analytic expressions within the static-screened exchange approximation of the BSE are derived. This enables a straightforward implementation of the computation of the first hyperpolarizability as well as two-photon absorption processes for molecular systems. Benchmark calculations on small molecular systems reveal that the GW-BSE method is intriguingly accurate for predicting both first hyperpolarizabilities and two-photon absorption strengths. Using state-of-the-art Kohn-Sham references as a starting point, the accuracy of the GW-BSE method rivals that of the coupled-cluster singles-and-doubles method, outperforming both second-order coupled-cluster and time-dependent density-functional theory.
Collapse
Affiliation(s)
- Nina Rauwolf
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
13
|
Botella R, Cao W, Celis J, Fernández-Catalá J, Greco R, Lu L, Pankratova V, Temerov F. Activating two-dimensional semiconductors for photocatalysis: a cross-dimensional strategy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:141501. [PMID: 38086082 DOI: 10.1088/1361-648x/ad14c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
The emerging two-dimensional (2D) semiconductors substantially extend materials bases for versatile applications such as semiconductor photocatalysis demanding semiconductive matrices and large surface areas. The dimensionality, while endowing 2D semiconductors the unique properties to host photocatalytic functionality of pollutant removal and hydrogen evolution, hurdles the activation paths to form heterogenous photocatalysts where the photochemical processes are normally superior over these on the mono-compositional counterparts. In this perspective, we present a cross-dimensional strategy to employ thenD (n= 0-2) clusters or nanomaterials as activation partners to boost the photocatalytic activities of the 2D semiconductors. The formation principles of heterogenous photocatalysts are illustrated specifically for the 2D matrices, followed by selection criteria of them among the vast 2D database. The computer investigations are illustrated in the density functional theory route and machine learning benefitted from the vast samples in the 2D library. Synthetic realizations and characterizations of the 2D heterogenous systems are introduced with an emphasis on chemical methods and advanced techniques to understand materials and mechanistic studies. The perspective outlooks cross-dimensional activation strategies of the 2D materials for other applications such as CO2removal, and materials matrices in other dimensions which may inspire incoming research within these fields.
Collapse
Affiliation(s)
- R Botella
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - W Cao
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - J Celis
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - J Fernández-Catalá
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - R Greco
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - L Lu
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - V Pankratova
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| | - F Temerov
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, FIN-90014, Finland
| |
Collapse
|
14
|
Cardia R, Dardenne N, Mula G, Pinna E, Rignanese GM, Charlier JC, Cappellini G. First-Principles Investigation of the Optical Properties of Eumelanin Protomolecules. J Phys Chem A 2023; 127:10797-10806. [PMID: 38109190 DOI: 10.1021/acs.jpca.3c04898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Using first-principles calculations, we investigate the absorption spectra (in the near-infrared, visible, and first UV range) of the two most probable eumelanin tetrameric molecules exhibiting either a linear open-chain or a cyclic porphyrine-like configuration. In order to simulate a realistic molecular system, an implicit solvent model is used in our calculations to mimic the effect of the solvated environment around the eumelanin molecule. Although the presence of solvent is found not to significantly affect the absorption pattern of both molecules, the onset of the spectra are shifted toward higher energies, especially for the linear tetramer. Interestingly, the absorption spectra and optical onsets of the two molecules differ significantly both in a vacuum and in ethanol. However, the two predicted spectra do not allow us to definitely discriminate between the two configurations when comparing the theoretical predictions with the available experimental spectrum. In addition, a mix of the two eumelanin configurations (close to fifty-fifty) leads to a maximum overlap between theoretical and experimental spectra. Consequently, this theoretical research shows that deeper insight can be gained using beyond DFT techniques on the real form of eumelanin protomolecules present in living systems as well as on their possible use in hybrid solar cells.
Collapse
Affiliation(s)
- Roberto Cardia
- Department of Physics, Università degli Studi di Cagliari, Cittadella Universitaria I-09042 Monserrato, Cagliari, Italy
| | - Nicolas Dardenne
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
| | - Guido Mula
- Department of Physics, Università degli Studi di Cagliari, Cittadella Universitaria I-09042 Monserrato, Cagliari, Italy
| | - Elisa Pinna
- Department of Physics, Università degli Studi di Cagliari, Cittadella Universitaria I-09042 Monserrato, Cagliari, Italy
| | - Gian-Marco Rignanese
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
- European Theoretical Spectroscopy Facility (ETSF)
| | - Jean-Christophe Charlier
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
- European Theoretical Spectroscopy Facility (ETSF)
| | - Giancarlo Cappellini
- Department of Physics, Università degli Studi di Cagliari, Cittadella Universitaria I-09042 Monserrato, Cagliari, Italy
- European Theoretical Spectroscopy Facility (ETSF)
| |
Collapse
|
15
|
King DS, Truhlar DG, Gagliardi L. Variational Active Space Selection with Multiconfiguration Pair-Density Functional Theory. J Chem Theory Comput 2023; 19:8118-8128. [PMID: 37905518 DOI: 10.1021/acs.jctc.3c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The selection of an adequate set of active orbitals for modeling strongly correlated electronic states is difficult to automate because it is highly dependent on the states and molecule of interest. Although many approaches have shown some success, no single approach has worked well in all cases. In light of this, we present the "discrete variational selection" (DVS) approach to active space selection, in which one generates multiple trial wave functions from a diverse set of systematically constructed active spaces and then selects between these wave functions variationally. We apply this DVS approach to 207 vertical excitations of small-to-medium-sized organic and inorganic molecules (with 3 to 18 atoms) in the QUESTDB database by (i) constructing various sets of active space orbitals through diagonalization of parametrized operators and (ii) choosing the result with the lowest average energy among the states of interest. This approach proves ineffective when variationally selecting between wave functions using the density matrix renormalization group (DMRG) or complete active space self-consistent field (CASSCF) energy but is able to provide good results when variationally selecting between wave functions using the energy of the translated PBE (tPBE) functional from multiconfiguration pair-density functional theory (MC-PDFT). Applying this DVS-tPBE approach to selection among state-averaged DMRG wave functions, we obtain a mean unsigned error of only 0.17 eV using hybrid MC-PDFT. This result matches that of our previous benchmark without the need to filter out poor active spaces and with no further orbital optimization following active space selection of the SA-DMRG wave functions. Furthermore, we find that DVS-tPBE is able to robustly and effectively select between the new SA-DMRG wave functions and our previous SA-CASSCF results.
Collapse
Affiliation(s)
- Daniel S King
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Group, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
16
|
Hennefarth MR, King DS, Gagliardi L. Linearized Pair-Density Functional Theory for Vertical Excitation Energies. J Chem Theory Comput 2023; 19:7983-7988. [PMID: 37877741 DOI: 10.1021/acs.jctc.3c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Multiconfiguration pair-density functional theory (MC-PDFT) is a computationally efficient method that computes the energies of electronic states in a state specific or state average framework via an on-top functional. However, MC-PDFT does not include state interaction among these states since the final energies do not come from the diagonalization of an effective model-space Hamiltonian. Recently, multistate extensions such as linearized PDFT (L-PDFT) have been developed to accurately model the potentials near conical intersections and avoided crossings. However, there has not been any systematic study evaluating their performance for predicting vertical excitations at the equilibrium geometry of a molecule, when the excited states are generally well separated. In this paper, we report the performance of L-PDFT on the extensive QUESTDB data set of vertical excitations using a database of automatically selected active spaces. We show that L-PDFT performs well on all these excitations and successfully reproduces the performance of MC-PDFT. These results further demonstrate the potential of L-PDFT, as its scaling is constant with the number of states included in the state-average manifold, whereas MC-PDFT scales linearly in this regard.
Collapse
Affiliation(s)
| | | | - Laura Gagliardi
- Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
17
|
Jacquemin D, Kossoski F, Gam F, Boggio-Pasqua M, Loos PF. Reference Vertical Excitation Energies for Transition Metal Compounds. J Chem Theory Comput 2023. [PMID: 37965941 DOI: 10.1021/acs.jctc.3c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
To enrich and enhance the diversity of the quest database of highly accurate excitation energies [Véril, M.; et al. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2021, 11, e1517], we report vertical transition energies in transition metal compounds. Eleven diatomic molecules with a singlet or doublet ground state containing a fourth-row transition metal (CuCl, CuF, CuH, ScF, ScH, ScO, ScS, TiN, ZnH, ZnO, and ZnS) are considered, and the corresponding excitation energies are computed using high-level coupled-cluster (CC) methods, namely, CC3, CCSDT, CC4, and CCSDTQ, as well as multiconfigurational methods such as CASPT2 and NEVPT2. In many cases, to provide more comprehensive benchmark data, we also provide full configuration interaction estimates computed with the configuration interaction using a perturbative selection made iteratively (CIPSI) method. Based on these calculations, theoretical best estimates of the transition energies are established in both the aug-cc-pVDZ and aug-cc-pVTZ basis sets. This allows us to accurately assess the performance of the CC and multiconfigurational methods for this specific set of challenging transitions. Furthermore, comparisons with experimental data and previous theoretical results are also reported.
Collapse
Affiliation(s)
- Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Franck Gam
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| |
Collapse
|
18
|
Knysh I, Villalobos-Castro JDJ, Duchemin I, Blase X, Jacquemin D. Excess and excited-state dipole moments of real-life dyes: a comparison between wave-function, BSE/ GW, and TD-DFT values. Phys Chem Chem Phys 2023; 25:29993-30004. [PMID: 37905396 DOI: 10.1039/d3cp04467j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
In this work, we assess the accuracy of the Bethe-Salpeter equation (BSE) many-body Green's function formalism, adopting the eigenvalue-self-consistent evGW exchange-correlation kernel, for the calculation of the excited-state (μES) and excess dipole moments (Δμ), the latter ones being the changes of dipole amplitude between the ground and excited states (ES), in organic dyes. We compare the results obtained with wave-function methods [ADC(2), CC2, and CCSD], time-dependent density functional theory (TD-DFT), and BSE/evGW levels of theory. First, we compute the evolution of the dipole moments of the two lowest singlet excited states of 4-(dimethylamino)benzonitrile (DMABN) upon twisting of the amino group. Next, we use a set of 25 dyes having ES characters ranging from locally excited to charge transfer to determine both μES and Δμ. For DMABN our results show that BSE/evGW provides Δμ values closer to the CCSD reference and more consistent trends than TD-DFT. Moreover, a statistical analysis of both Δμ and μES for the set of 25 dyes shows that the BSE/evGW accuracy is comparable or sometimes slightly better than that of TD-M06-2X and TD-CAM-B3LYP, BSE/evGW outperforming TD-DFT in challenging cases (zwitterionic and cyanine transitions). Finally, the starting point dependency of BSE/evGW seems to be larger for Δμ, ES dipoles, and oscillator strengths than for transition energies.
Collapse
Affiliation(s)
- Iryna Knysh
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
| | | | - Ivan Duchemin
- Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim, 38054 Grenoble, France
| | - Xavier Blase
- Université Grenoble Alpes, CNRS, Institut Néel, F-38042 Grenoble, France.
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
- Institut Universitaire de France, F-75005 Paris, France
| |
Collapse
|
19
|
Mejia-Rodriguez D, Aprà E, Autschbach J, Bauman NP, Bylaska EJ, Govind N, Hammond JR, Kowalski K, Kunitsa A, Panyala A, Peng B, Rehr JJ, Song H, Tretiak S, Valiev M, Vila FD. NWChem: Recent and Ongoing Developments. J Chem Theory Comput 2023; 19:7077-7096. [PMID: 37458314 DOI: 10.1021/acs.jctc.3c00421] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This paper summarizes developments in the NWChem computational chemistry suite since the last major release (NWChem 7.0.0). Specifically, we focus on functionality, along with input blocks, that is accessible in the current stable release (NWChem 7.2.0) and in the "master" development branch, interfaces to quantum computing simulators, interfaces to external libraries, the NWChem github repository, and containerization of NWChem executable images. Some ongoing developments that will be available in the near future are also discussed.
Collapse
Affiliation(s)
- Daniel Mejia-Rodriguez
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Edoardo Aprà
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Nicholas P Bauman
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Eric J Bylaska
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Niranjan Govind
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jeff R Hammond
- Accelerated Computing, NVIDIA Helsinki Oy, Porkkalankatu 1, 00180 Helsinki, Finland
| | - Karol Kowalski
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Alexander Kunitsa
- Zapata Computing, Inc., 100 Federal Street, Boston, Massachusetts 02110, United States
| | - Ajay Panyala
- Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bo Peng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - John J Rehr
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Marat Valiev
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Fernando D Vila
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
20
|
Marie A, Loos PF. A Similarity Renormalization Group Approach to Green's Function Methods. J Chem Theory Comput 2023; 19:3943-3957. [PMID: 37311565 PMCID: PMC10339683 DOI: 10.1021/acs.jctc.3c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Indexed: 06/15/2023]
Abstract
The family of Green's function methods based on the GW approximation has gained popularity in the electronic structure theory thanks to its accuracy in weakly correlated systems combined with its cost-effectiveness. Despite this, self-consistent versions still pose challenges in terms of convergence. A recent study [Monino and Loos J. Chem. Phys. 2022, 156, 231101.] has linked these convergence issues to the intruder-state problem. In this work, a perturbative analysis of the similarity renormalization group (SRG) approach is performed on Green's function methods. The SRG formalism enables us to derive, from first-principles, the expression of a naturally static and Hermitian form of the self-energy that can be employed in quasiparticle self-consistent GW (qsGW) calculations. The resulting SRG-based regularized self-energy significantly accelerates the convergence of qsGW calculations, slightly improves the overall accuracy, and is straightforward to implement in existing code.
Collapse
Affiliation(s)
- Antoine Marie
- Laboratoire de Chimie et
Physique Quantiques (UMR 5626), Université
de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et
Physique Quantiques (UMR 5626), Université
de Toulouse, CNRS, UPS, 31400 Toulouse, France
| |
Collapse
|
21
|
Holzer C. Practical Post-Kohn-Sham Methods for Time-Reversal Symmetry Breaking References. J Chem Theory Comput 2023. [PMID: 37183702 DOI: 10.1021/acs.jctc.3c00156] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The applicability of reduced scaling algorithms based on auxiliary subspace methods for the correlation energy from the random phase approximation (RPA) as well as the correlation part of the self-energy obtained from the GW method is outlined for time-reversal symmetry breaking Kohn-Sham (KS) references. The updated algorithms allow for an efficient evaluation of RPA energies and GW quasiparticle energies for molecular systems with KS references that break time-reversal symmetry. The latter occur, for example, in magnetic fields. Furthermore, KS references for relativistic open-shell molecules also break time-reversal symmetry due to the single determinant ansatz used. Errors of the updated reduced-scaling algorithms are shown to be negligible compared to reference implementations, while the overall computational scaling is reduced by 2 orders of magnitude. Ionization energies obtained from the GW approximation are shown to be robust even for the electronically complicated group of trivalent lanthanoid ions. Starting from GW quasiparticle energies, it is subsequently shown that light-matter interactions of these systems can be calculated using the Bethe-Salpeter equation (BSE). Using the combined GW-BSE method, the absorption and emission spectra of a molecular europium(III) complex can be obtained including spin-orbit coupling.
Collapse
Affiliation(s)
- Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| |
Collapse
|
22
|
Bradbury NC, Allen T, Nguyen M, Ibrahim KZ, Neuhauser D. Optimized attenuated interaction: Enabling stochastic Bethe-Salpeter spectra for large systems. J Chem Phys 2023; 158:2882253. [PMID: 37094001 DOI: 10.1063/5.0146555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
We develop an improved stochastic formalism for the Bethe-Salpeter equation (BSE), based on an exact separation of the effective-interaction W into two parts, W = (W - vW) + vW, where the latter is formally any translationally invariant interaction, vW(r - r'). When optimizing the fit of the exchange kernel vW to W, using a stochastic sampling W, the difference W - vW becomes quite small. Then, in the main BSE routine, this small difference is stochastically sampled. The number of stochastic samples needed for an accurate spectrum is then largely independent of system size. While the method is formally cubic in scaling, the scaling prefactor is small due to the constant number of stochastic orbitals needed for sampling W.
Collapse
Affiliation(s)
- Nadine C Bradbury
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, USA
| | - Tucker Allen
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, USA
| | - Minh Nguyen
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, USA
| | - Khaled Z Ibrahim
- Computer Science Department, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Daniel Neuhauser
- Department of Chemistry and Biochemistry, and California Nanoscience Institute, UCLA, Los Angeles, California 90095-1569, USA
| |
Collapse
|
23
|
Knysh I, Villalobos-Castro JDJ, Duchemin I, Blase X, Jacquemin D. Exploring Bethe-Salpeter Excited-State Dipoles: The Challenging Case of Increasingly Long Push-Pull Oligomers. J Phys Chem Lett 2023; 14:3727-3734. [PMID: 37042642 DOI: 10.1021/acs.jpclett.3c00699] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The change of molecular dipole moment induced by photon absorption is key to interpret the measured optical spectra. Except for compact molecules, time-dependent density functional theory (TD-DFT) remains the only theory allowing to quickly predict excited-state dipoles (μES), albeit with a strong dependency on the selected exchange-correlation functional. This Letter presents the first assessment of the performances of the many-body Green's function Bethe-Salpeter equation (BSE) formalism for the evaluation of the μES. We explore increasingly long push-pull oligomers as they present an excited-state nature evolving with system size. This work shows that BSE's μES do present the same evolution with oligomeric length as their CC2 and CCSD counterparts, with a dependency on the starting exchange-correlation functional that is strongly decreased as compared to TD-DFT. This Letter demonstrates that BSE is a valuable alternative to TD-DFT for properties related to the excited-state density and not only for transition energies and oscillator strengths.
Collapse
Affiliation(s)
- Iryna Knysh
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | | | - Ivan Duchemin
- Université Grenoble Alpes, CEA, IRIG-MEM-L Sim, 38054 Grenoble, France
| | - Xavier Blase
- Université Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
24
|
Monzel L, Holzer C, Klopper W. Natural virtual orbitals for the GW method in the random-phase approximation and beyond. J Chem Phys 2023; 158:144102. [PMID: 37061489 DOI: 10.1063/5.0144469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
The increasingly popular GW method is becoming a convenient tool to determine vertical ionization energies in molecular systems. However, depending on the formalism used and the range of orbitals investigated, it may be hampered by a steep computational scaling. To alleviate this issue, correlated natural virtual orbitals (NVOs) based on second-order Møller-Plesset (MP2) and direct MP2 correlation energies are implemented, and the resulting correlated NVOs are tested on GW quasiparticle energies. Test cases include the popular GW variants G0W0 and evGW0 as well as more elaborate vertex corrections. We find that for increasingly larger molecular systems and basis sets, NVOs considerably improve efficiency. Furthermore, we test the performance of the truncated (frozen) NVO ansatz on the GW100 test set. For the latter, it is demonstrated that, using a carefully chosen truncation threshold, NVOs lead to a negligible loss in accuracy while providing speedups of one order of magnitude. Furthermore, we compare the resulting quasiparticle energies to very accurate vertical ionization energies obtained from coupled-cluster theory with singles, doubles, and noniterative triples [CCSD(T)], confirming that the loss in accuracy introduced by truncating the NVOs is negligible compared to the methodical errors in the GW approximation. It is also demonstrated that the choice of basis set impacts results far more than using a suitably truncated NVO space. Therefore, at the same computational expense, more accurate results can be obtained using NVOs. Finally, we provide improved reference CCSD(T) values for the GW100 test set, which have been obtained using the def2-QZVPP basis set.
Collapse
Affiliation(s)
- Laurenz Monzel
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| |
Collapse
|
25
|
Knysh I, Letellier K, Duchemin I, Blase X, Jacquemin D. Excited state potential energy surfaces of N-phenylpyrrole upon twisting: reference values and comparison between BSE/ GW and TD-DFT. Phys Chem Chem Phys 2023; 25:8376-8385. [PMID: 36883347 DOI: 10.1039/d3cp00474k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The puzzling case of the mixing between the charge transfer (CT) and local excited (LE) characters upon twisting of the geometry of N-phenylpyrrole (N-PP) is investigated considering the six low-lying singlet excited states (ES). The theoretical calculations of the potential energy surfaces (PES) have been performed for these states using a Coupled Cluster method accounting for the impact of the contributions from the triples, many-body Green's function GW and Bethe-Salpeter equation (BSE) formalisms, as well as Time-Dependent Density Functional Theory (TD-DFT) using various exchange-correlation functionals. Our findings confirm that the BSE formalism is more reliable than TD-DFT for close-lying ES with mixed CT/LE nature. More specifically, BSE/GW yields a more accurate evolution of the excited state PES than TD-DFT when compared to the reference coupled cluster values. BSE/GW PES curves also show negligible exchange-correlation functional starting point dependency in sharp contrast with their TD-DFT counterparts.
Collapse
Affiliation(s)
- Iryna Knysh
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France.
| | | | - Ivan Duchemin
- Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim, 38054, Grenoble, France
| | - Xavier Blase
- Université Grenoble Alpes, CNRS, Institut Néel, F-38042, Grenoble, France.
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France.
- Institut Universitaire de France, 75005, Paris, France
| |
Collapse
|
26
|
Ghosh R, Paesani F. Connecting the dots for fundamental understanding of structure-photophysics-property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chem Sci 2023; 14:1040-1064. [PMID: 36756323 PMCID: PMC9891456 DOI: 10.1039/d2sc03793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Photoactive organic and hybrid organic-inorganic materials such as conjugated polymers, covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and layered perovskites, display intriguing photophysical signatures upon interaction with light. Elucidating structure-photophysics-property relationships across a broad range of functional materials is nontrivial and requires our fundamental understanding of the intricate interplay among excitons (electron-hole pair), polarons (charges), bipolarons, phonons (vibrations), inter-layer stacking interactions, and different forms of structural and conformational defects. In parallel with electronic structure modeling and data-driven science that are actively pursued to successfully accelerate materials discovery, an accurate, computationally inexpensive, and physically-motivated theoretical model, which consistently makes quantitative connections with conceptually complicated experimental observations, is equally important. Within this context, the first part of this perspective highlights a unified theoretical framework in which the electronic coupling as well as the local coupling between the electronic and nuclear degrees of freedom can be efficiently described for a broad range of quasiparticles with similarly structured Holstein-style vibronic Hamiltonians. The second part of this perspective discusses excitonic and polaronic photophysical signatures in polymers, COFs, MOFs, and perovskites, and attempts to bridge the gap between different research fields using a common theoretical construct - the Multiparticle Holstein Formalism. We envision that the synergistic integration of state-of-the-art computational approaches with the Multiparticle Holstein Formalism will help identify and establish new, transformative design strategies that will guide the synthesis and characterization of next-generation energy materials optimized for a broad range of optoelectronic, spintronic, and photonic applications.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
- San Diego Supercomputer Center, University of California La Jolla San Diego California 92093 USA
- Materials Science and Engineering, University of California La Jolla San Diego California 92093 USA
| |
Collapse
|
27
|
Perez I. Ab initio methods for the computation of physical properties and performance parameters of electrochemical energy storage devices. Phys Chem Chem Phys 2023; 25:1476-1503. [PMID: 36602004 DOI: 10.1039/d2cp03611h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the rapid development of electric vehicles and mobile technologies, there is a high demand for electrochemical energy storage devices and electrochemical energy conversion devices. Devices meeting these needs include metal-ion batteries (MIBs), supercapacitors (SCs), electrochromic devices (ECDs), and multifunctional devices such as electrochromic batteries and supercapatteries. Currently, the goal has been the enhancement of operational parameters and physical properties that results in a higher performance of these devices. In the case of batteries, SCs, and supercapatteries, scientists seek to improve the equilibrium voltage, energy density, power, capacitance, and charge rate. In the case of ECDs, the focus is on improvement of the optical modulation and coloration efficiency. However, synthesis and characterization of new materials, or of materials with optimized properties, is time consuming and highly expensive. Computational simulation of materials can expedite the experimental endeavor by modelling novel atomic structures and predicting device performance. This is possible using ab initio theories and applying physical principles that allow us to understand the underlying mechanisms governing the behavior of materials in these devices. Taking as a point of departure density functional theory (DFT), in this review, we discuss the first principles methods used for the computation of physical properties and performance parameters of electrochemical energy storage devices. A wide coverage of DFT is given, dealing with the strengths and weaknesses of the most popular functionals used in the field of electrochemical energy storage. With these tools, ab initio methods for the computation of basic properties such as effective mass, mobility, optical band gap, transmissivity, conductivity (ionic and electronic), and criteria for structure stability (cohesive energy, formation energy, adsorption energy, and phonon frequency) are addressed. We also highlight the first principles techniques for the calculation of performance parameters in MIBs, SCs, and ECDs.
Collapse
Affiliation(s)
- Israel Perez
- National Council of Science and Technology (CONACYT)-Department of Physics and Mathematics, Institute of Engineering and Technology, Universidad Autonoma de Ciudad Juarez, Av. del Charro 450 Col. Romero Partido, C.P. 32310, Juarez, Chihuahua, Mexico.
| |
Collapse
|
28
|
Orlando R, Romaniello P, Loos PF. Exploring new exchange-correlation kernels in the Bethe–Salpeter equation: A study of the asymmetric Hubbard dimer. ADVANCES IN QUANTUM CHEMISTRY 2023. [DOI: 10.1016/bs.aiq.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
29
|
Andrusenko I, Hall CL, Mugnaioli E, Potticary J, Hall SR, Schmidt W, Gao S, Zhao K, Marom N, Gemmi M. True molecular conformation and structure determination by three-dimensional electron diffraction of PAH by-products potentially useful for electronic applications. IUCRJ 2023; 10:131-142. [PMID: 36598508 PMCID: PMC9812223 DOI: 10.1107/s205225252201154x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The true molecular conformation and the crystal structure of benzo[e]dinaphtho[2,3-a;1',2',3',4'-ghi]fluoranthene, 7,14-diphenylnaphtho[1,2,3,4-cde]bisanthene and 7,16-diphenylnaphtho[1,2,3,4-cde]helianthrene were determined ab initio by 3D electron diffraction. All three molecules are remarkable polycyclic aromatic hydrocarbons. The molecular conformation of two of these compounds could not be determined via classical spectroscopic methods due to the large size of the molecule and the occurrence of multiple and reciprocally connected aromatic rings. The molecular structure of the third molecule was previously considered provisional. These compounds were isolated as by-products in the synthesis of similar products and were at the same time nanocrystalline and available only in very limited amounts. 3D electron diffraction data, taken from submicrometric single crystals, allowed for direct ab initio structure solution and the unbiased determination of the internal molecular conformation. Detailed synthetic routes and spectroscopic analyses are also discussed. Based on many-body perturbation theory simulations, benzo[e]dinaphtho[2,3-a;1',2',3',4'-ghi]fluoranthene may be a promising candidate for triplet-triplet annihilation and 7,14-diphenylnaphtho[1,2,3,4-cde]bisanthene may be a promising candidate for intermolecular singlet fission in the solid state.
Collapse
Affiliation(s)
- Iryna Andrusenko
- Center for Material Interfaces, Electron Crystallography, Instituto Italiano di Tecnologia, Pontedera 56025, Italy
| | - Charlie L. Hall
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Enrico Mugnaioli
- Center for Material Interfaces, Electron Crystallography, Instituto Italiano di Tecnologia, Pontedera 56025, Italy
- Department of Earth Sciences, University of Pisa, Pisa 56126, Italy
| | - Jason Potticary
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Simon R. Hall
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | | | - Siyu Gao
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Kaiji Zhao
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Noa Marom
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Mauro Gemmi
- Center for Material Interfaces, Electron Crystallography, Instituto Italiano di Tecnologia, Pontedera 56025, Italy
| |
Collapse
|
30
|
Quintero-Monsebaiz R, Monino E, Marie A, Loos PF. Connections between many-body perturbation and coupled-cluster theories. J Chem Phys 2022; 157:231102. [PMID: 36550046 DOI: 10.1063/5.0130837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Here, we build on the works of Scuseria et al. [J. Chem. Phys. 129, 231101 (2008)] and Berkelbach [J. Chem. Phys. 149, 041103 (2018)] to show connections between the Bethe-Salpeter equation (BSE) formalism combined with the GW approximation from many-body perturbation theory and coupled-cluster (CC) theory at the ground- and excited-state levels. In particular, we show how to recast the GW and Bethe-Salpeter equations as non-linear CC-like equations. Similitudes between BSE@GW and the similarity-transformed equation-of-motion CC method are also put forward. The present work allows us to easily transfer key developments and the general knowledge gathered in CC theory to many-body perturbation theory. In particular, it may provide a path for the computation of ground- and excited-state properties (such as nuclear gradients) within the GW and BSE frameworks.
Collapse
Affiliation(s)
- Raúl Quintero-Monsebaiz
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Enzo Monino
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Antoine Marie
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
31
|
Li J, Golze D, Yang W. Combining Renormalized Singles GW Methods with the Bethe-Salpeter Equation for Accurate Neutral Excitation Energies. J Chem Theory Comput 2022; 18:6637-6645. [PMID: 36279250 PMCID: PMC9972216 DOI: 10.1021/acs.jctc.2c00686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We apply the renormalized singles (RS) Green's function in the Bethe-Salpeter equation (BSE)/GW approach to predict accurate neutral excitation energies of molecular systems. The BSE calculations are performed on top of the GRSWRS method, which uses the RS Green's function also for the computation of the screened Coulomb interaction W. We show that the BSE/GRSWRS approach significantly outperforms BSE/G0W0 for predicting excitation energies of valence, Rydberg, and charge-transfer (CT) excitations by benchmarking the Truhlar-Gagliardi set, Stein CT set, and an atomic Rydberg test set. For the Truhlar-Gagliardi test set, BSE/GRSWRS provides comparable accuracy to time-dependent density functional theory (TDDFT) and is slightly better than BSE starting from eigenvalue self-consistent GW (evGW). For the Stein CT test set, BSE/GRSWRS significantly outperforms BSE/G0W0 and TDDFT with the accuracy comparable to BSE/evGW. We also show that BSE/GRSWRS predicts Rydberg excitation energies of atomic systems well. Besides the excellent accuracy, BSE/GRSWRS largely eliminates the dependence on the choice of the density functional approximation. This work demonstrates that the BSE/GRSWRS approach is accurate and efficient for predicting excitation energies for a broad range of systems, which expands the applicability of the BSE/GW approach.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Dorothea Golze
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Weitao Yang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
32
|
Aryal S, Frimpong J, Liu ZF. Comparative Study of Covalent and van der Waals CdS Quantum Dot Assemblies from Many-Body Perturbation Theory. J Phys Chem Lett 2022; 13:10153-10161. [PMID: 36278936 DOI: 10.1021/acs.jpclett.2c02856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Quantum dot (QD) assemblies are nanostructured networks made from aggregates of QDs and feature improved charge and energy transfer efficiencies compared to discrete QDs. Using first-principles many-body perturbation theory, we systematically compare the electronic and optical properties of two types of CdS QD assemblies that have been experimentally investigated: (i) QD gels, where individual QDs are covalently connected via di- or polysulfide bonds, and (ii) QD nanocrystals, where individual QDs are bound via van der Waals interactions. Our work illustrates how the electronic and optical properties evolve when discrete QDs are assembled into 1D, 2D, and 3D gels and nanocrystals, as well as how the one-body and many-body interactions in these systems impact the trends as the dimensionality of the assembly increases. Furthermore, our work reveals the crucial role of the di- or polysulfide covalent bonds in the localization of the excitons, which highlights the difference between QD gels and QD nanocrystals.
Collapse
Affiliation(s)
- Sandip Aryal
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Joseph Frimpong
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Zhen-Fei Liu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
33
|
King D, Hermes MR, Truhlar DG, Gagliardi L. Large-Scale Benchmarking of Multireference Vertical-Excitation Calculations via Automated Active-Space Selection. J Chem Theory Comput 2022; 18:6065-6076. [PMID: 36112354 PMCID: PMC9558375 DOI: 10.1021/acs.jctc.2c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/29/2022]
Abstract
We have calculated state-averaged complete-active-space self-consistent-field (SA-CASSCF), multiconfiguration pair-density functional theory (MC-PDFT), hybrid MC-PDFT (HMC-PDFT), and n-electron valence state second-order perturbation theory (NEVPT2) excitation energies with the approximate pair coefficient (APC) automated active-space selection scheme for the QUESTDB benchmark database of 542 vertical excitation energies. We eliminated poor active spaces (20-40% of calculations) by applying a threshold to the SA-CASSCF absolute error. With the remaining calculations, we find that NEVPT2 performance is significantly impacted by the size of the basis set the wave functions are converged in, regardless of the quality of their description, which is a problem absent in MC-PDFT. Additionally, we find that HMC-PDFT is a significant improvement over MC-PDFT with the translated PBE (tPBE) density functional and that it performs about as well as NEVPT2 and second-order coupled cluster on a set of 373 excitations in the QUESTDB database. We optimized the percentage of SA-CASSCF energy to include in HMC-PDFT when using the tPBE on-top functional, and we find the 25% value used in tPBE0 to be optimal. This work is by far the largest benchmarking of MC-PDFT and HMC-PDFT to date, and the data produced in this work are useful as a validation of HMC-PDFT and of the APC active-space selection scheme. We have made all the wave functions produced in this work (orbitals and CI vectors) available to the public and encourage the community to utilize this data as a tool in the development of further multireference model chemistries.
Collapse
Affiliation(s)
- Daniel
S. King
- Department
of Chemistry, University of Chicago, Chicago Illinois 60637, United States
| | - Matthew R. Hermes
- Department
of Chemistry, University of Chicago, Chicago Illinois 60637, United States
| | - Donald G. Truhlar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputng
Institute, University of Minnesota, Minneapolis Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago Illinois 60637, United States
| |
Collapse
|
34
|
McKeon CA, Hamed SM, Bruneval F, Neaton JB. An optimally tuned range-separated hybrid starting point for ab initio GW plus Bethe–Salpeter equation calculations of molecules. J Chem Phys 2022; 157:074103. [DOI: 10.1063/5.0097582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ab initio GW plus Bethe–Salpeter equation (GW-BSE, where G is the one particle Green's function and W is the screened Coulomb interaction) approach has emerged as a leading method for predicting excitations in both solids and molecules with a predictive power contingent upon several factors. Among these factors are the (1) generalized Kohn–Sham eigensystem used to construct the GW self-energy and to solve the BSE and (2) the efficacy and suitability of the Tamm–Dancoff approximation. Here, we present a detailed benchmark study of low-lying singlet excitations from a generalized Kohn–Sham (gKS) starting point based on an optimally tuned range-separated hybrid (OTRSH) functional. We show that the use of this gKS starting point with one-shot G0W0 and G0W0-BSE leads to the lowest mean absolute errors (MAEs) and mean signed errors (MSEs), with respect to high-accuracy reference values, demonstrated in the literature thus far for the ionization potentials of the GW100 benchmark set and for low-lying neutral excitations of Thiel’s set molecules in the gas phase, without the need for self-consistency. The MSEs and MAEs of one-shot G0W0-BSE@OTRSH excitation energies are comparable to or lower than those obtained with other functional starting points after self-consistency. Additionally, we compare these results with linear-response time-dependent density functional theory (TDDFT) calculations and find GW-BSE to be superior to TDDFT when calculations are based on the same exchange-correlation functional. This work demonstrates tuned range-separated hybrids used in combination with GW and GW-BSE can greatly suppress starting point dependence for molecules, leading to accuracy similar to that for higher-order wavefunction-based theories for molecules without the need for costlier iterations to self-consistency.
Collapse
Affiliation(s)
- Caroline A. McKeon
- Department of Physics, University of California, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Natural Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Samia M. Hamed
- Department of Physics, University of California, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Natural Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Fabien Bruneval
- Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique, 91191 Gif-sur-Yvette, France
| | - Jeffrey B. Neaton
- Department of Physics, University of California, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Natural Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Kavli ENSI, University of California, Berkeley, California 94720, USA
| |
Collapse
|
35
|
Kim J, Ko E, Jo J, Kim M, Yoo H, Son YW, Cheong H. Anomalous optical excitations from arrays of whirlpooled lattice distortions in moiré superlattices. NATURE MATERIALS 2022; 21:890-895. [PMID: 35484329 DOI: 10.1038/s41563-022-01240-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Moiré superlattices formed by stacking two-dimensional crystals have reinvigorated the pursuit for emergent functionalities of engineered superlattices. Unique optical characteristics can be realized from the interplay between the electronic excitations and the atomic rearrangements owing to their intrinsic softness. Although large-scale reconstructions have been identified at small twist angles, they have been treated as being rigid at large twist angles. Here, we report that moiré superlattices made from single layers of MoS2 and WSe2 exhibit a pair of torsional strains with opposite chirality irrespective of the twist angle. The whirlpool-shaped periodic lattice distortions introduce fuzziness in the Raman spectra and universal redshifts to the intralayer excitons for all twist angles. We show that both of these modulations become weaker as the twist angle increases but do not disappear, whereas they are turned off when the constituent layers are not tightly coupled, thus establishing an essential structure-property relationship for moiré superlattices.
Collapse
Affiliation(s)
- Jungcheol Kim
- Department of Physics, Sogang University, Seoul, Korea
| | - Eunjung Ko
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
| | - Jaeyeon Jo
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, Korea
| | - Miyoung Kim
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, Korea
| | - Hyobin Yoo
- Department of Physics, Sogang University, Seoul, Korea.
- Institute of Emergent Materials, Sogang University, Seoul, Korea.
| | - Young-Woo Son
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea.
| | | |
Collapse
|
36
|
Monino E, Boggio-Pasqua M, Scemama A, Jacquemin D, Loos PF. Reference Energies for Cyclobutadiene: Automerization and Excited States. J Phys Chem A 2022; 126:4664-4679. [PMID: 35820169 DOI: 10.1021/acs.jpca.2c02480] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclobutadiene is a well-known playground for theoretical chemists and is particularly suitable to test ground- and excited-state methods. Indeed, due to its high spatial symmetry, especially at the D4h square geometry but also in the D2h rectangular arrangement, the ground and excited states of cyclobutadiene exhibit multiconfigurational characters and single-reference methods, such as standard adiabatic time-dependent density-functional theory (TD-DFT) or standard equation-of-motion coupled cluster (EOM-CC), are notoriously known to struggle in such situations. In this work, using a large panel of methods and basis sets, we provide an extensive computational study of the automerization barrier (defined as the difference between the square and rectangular ground-state energies) and the vertical excitation energies at D2h and D4h equilibrium structures. In particular, selected configuration interaction (SCI), multireference perturbation theory (CASSCF, CASPT2, and NEVPT2), and coupled-cluster (CCSD, CC3, CCSDT, CC4, and CCSDTQ) calculations are performed. The spin-flip formalism, which is known to provide a qualitatively correct description of these diradical states, is also tested within TD-DFT (combined with numerous exchange-correlation functionals) and the algebraic diagrammatic construction [ADC(2)-s, ADC(2)-x, and ADC(3)]. A theoretical best estimate is defined for the automerization barrier and for each vertical transition energy.
Collapse
Affiliation(s)
- Enzo Monino
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
37
|
Bradbury NC, Nguyen M, Caram J, Neuhauser D. Bethe Salpeter Equation Spectra for Very Large Systems. J Chem Phys 2022; 157:031104. [DOI: 10.1063/5.0100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present a highly efficient method for the extraction of optical properties of very large molecules via the Bethe-Salpeter equation. The crutch of this approach is the calculation of the action of the effective Coulombic interaction, $W$, through a stochastic TD Hartree propagation, which uses only 10 stochastic orbitals rather than propagating the full sea of occupied states. This leads to a scaling that is at most cubic in system size, with trivial parallelization of the calculation. We apply this new method to calculate the spectra and electronic density of the dominant excitons of a carbon-nanohoop bound fullerene system with 520 electrons, using less than 4000 core hours.
Collapse
Affiliation(s)
- Nadine Claire Bradbury
- Chemistry and Biochemistry, University of California Los Angeles Department of Chemistry and Biochemistry, United States of America
| | - Minh Nguyen
- Chemistry and Biochemistry, University of California Los Angeles Department of Chemistry and Biochemistry, United States of America
| | - Justin Caram
- UCLA, UCLA Division of Physical Sciences, United States of America
| | - Daniel Neuhauser
- Department of Chemistry and Biochemistry, UCLA, United States of America
| |
Collapse
|
38
|
Loos PF, Lipparini F, Matthews DA, Blondel A, Jacquemin D. A Mountaineering Strategy to Excited States: Revising Reference Values with EOM-CC4. J Chem Theory Comput 2022; 18:4418-4427. [PMID: 35737466 DOI: 10.1021/acs.jctc.2c00416] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the framework of the computational determination of highly accurate vertical excitation energies in small organic compounds, we explore the possibilities offered by the equation-of-motion formalism relying on the approximate fourth-order coupled-cluster (CC) method, CC4. We demonstrate, using an extended set of more than 200 reference values based on CC including up to quadruples excitations (CCSDTQ), that CC4 is an excellent approximation to CCSDTQ for excited states with a dominant contribution from single excitations with an average deviation as small as 0.003 eV. We next assess the accuracy of several additive basis set correction schemes, in which vertical excitation energies obtained with a compact basis set and a high-order CC method are corrected with lower-order CC calculations performed in a larger basis set. Such strategies are found to be overall very beneficial, though their accuracy depends significantly on the actual scheme. Finally, CC4 is employed to improve several theoretical best estimates of the QUEST database for molecules containing between four and six (nonhydrogen) atoms, for which previous estimates were computed at the CCSDT level.
Collapse
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 3, 56124 Pisa, Italy
| | - Devin A Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Aymeric Blondel
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
39
|
Monino E, Loos PF. Unphysical discontinuities, intruder states and regularization in GW methods. J Chem Phys 2022; 156:231101. [PMID: 35732525 DOI: 10.1063/5.0089317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By recasting the non-linear frequency-dependent GW quasiparticle equation into a linear eigenvalue problem, we explain the appearance of multiple solutions and unphysical discontinuities in various physical quantities computed within the GW approximation. Considering the GW self-energy as an effective Hamiltonian, it is shown that these issues are key signatures of strong correlation in the (N ± 1)-electron states and can be directly related to the intruder state problem. A simple and efficient regularization procedure inspired by the similarity renormalization group is proposed to avoid such issues and speed up the convergence of partially self-consistent GW calculations.
Collapse
Affiliation(s)
- Enzo Monino
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
40
|
Vinson J. Advances in the OCEAN-3 spectroscopy package. Phys Chem Chem Phys 2022; 24:12787-12803. [PMID: 35608324 PMCID: PMC9844114 DOI: 10.1039/d2cp01030e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The OCEAN code for calculating valence- and core-level spectra using the Bethe-Salpeter equation is briefly reviewed. OCEAN is capable of calculating optical absorption, near-edge X-ray absorption or non-resonant scattering, and resonant inelastic X-ray scattering, requiring only the structure of the material as input. Improved default behavior and reduced input requirements are detailed as well as new capabilities, such as incorporation of final-state-dependent broadening, finite-temperature dependence, and flexibility in the density-functional theory exchange-correlation potentials. OCEAN is built on top of a plane-wave, pseudopotential, density-functional theory foundation, and calculations are shown for systems ranging in size up to 7 nm3.
Collapse
Affiliation(s)
- John Vinson
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
41
|
Zhang L, Shu Y, Xing C, Chen X, Sun S, Huang Y, Truhlar DG. Recommendation of Orbitals for G0W0 Calculations on Molecules and Crystals. J Chem Theory Comput 2022; 18:3523-3537. [PMID: 35580263 DOI: 10.1021/acs.jctc.2c00242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The many-body GW approximation, especially the G0W0 method, has been widely used for condensed matter and molecules to calculate quasiparticle energies for ionization, electron attachment, and band gaps. Because G0W0 calculations are well-known to have a strong dependence on the orbitals, the goal of the present work is to provide guidance on the choice of density functional used to generate orbitals and to recommend a choice that gives the most broadly accurate results. We have systematically investigated the dependence of G0W0 calculations on the orbitals for 100 molecules and 8 crystals by considering orbitals obtained with a diverse set of Kohn-Sham (KS) and generalized KS (GKS) functionals (63 functionals plus Hartree-Fock). The percentage of Hartree-Fock exchange employed in density functionals has been found to have strong influence on the predicted molecular ionization energy and crystal fundamental band gaps (with optimum values between 40 and 56%), but to have less effect on predicting molecular electron affinities. The low cost of the Gaussian implementation, even with hybrid functionals in periodic calculations, the better performance of global hybrids as compared to range-separated hybrids of either than screened exchange or long-range-corrected type, and the relatively low cost of global-hybrid-functional periodic calculations using Gaussians means that one can employ global-hybrid functionals at a very reasonable cost and obtain more accurate band gaps of semiconductors than are obtained by the methods currently widely employed, namely local gradient approximations. We single out three global-hybrid functionals that give especially good results for both molecules (100 in the test set) and crystals (8 in the test set, for all of which our benchmark data are the proper band gap rather than an optical band gap uncorrected for exciton effects).
Collapse
Affiliation(s)
- Linyao Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yinan Shu
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Chang Xing
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China.,School of Astronautics, Harbin Institute of Technology, Harbin 150001, PR China
| | - Xiye Chen
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Shaozeng Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yudong Huang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
42
|
Cho Y, Bintrim SJ, Berkelbach TC. Simplified GW/BSE Approach for Charged and Neutral Excitation Energies of Large Molecules and Nanomaterials. J Chem Theory Comput 2022; 18:3438-3446. [PMID: 35544591 DOI: 10.1021/acs.jctc.2c00087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inspired by Grimme's simplified Tamm-Dancoff density functional theory approach [Grimme, S. J. Chem. Phys. 2013, 138, 244104], we describe a simplified approach to excited-state calculations within the GW approximation to the self-energy and the Bethe-Salpeter equation (BSE), which we call sGW/sBSE. The primary simplification to the electron repulsion integrals yields the same structure as with tensor hypercontraction, such that our method has a storage requirement that grows quadratically with system size and computational timing that grows cubically with system size. The performance of sGW is tested on the ionization potential of the molecules in the GW100 test set, for which it differs from ab initio GW calculations by only 0.2 eV. The performance of sBSE (based on the sGW input) is tested on the excitation energies of molecules in Thiel's set, for which it differs from ab initio GW/BSE calculations by about 0.5 eV. As examples of the systems that can be routinely studied with sGW/sBSE, we calculate the band gap and excitation energy of hydrogen-passivated silicon nanocrystals with up to 2650 electrons in 4678 spatial orbitals and the absorption spectra of two large organic dye molecules with hundreds of atoms.
Collapse
Affiliation(s)
- Yeongsu Cho
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sylvia J Bintrim
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Timothy C Berkelbach
- Department of Chemistry, Columbia University, New York, New York 10027, United States.,Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| |
Collapse
|
43
|
Dawson W, Degomme A, Stella M, Nakajima T, Ratcliff LE, Genovese L. Density functional theory calculations of large systems: Interplay between fragments, observables, and computational complexity. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Martina Stella
- Department of Materials Imperial College London London UK
| | | | | | - Luigi Genovese
- Université Grenoble Alpes, INAC‐MEM, L_Sim Grenoble France
| |
Collapse
|
44
|
Loos PF, Romaniello P. Static and dynamic Bethe-Salpeter equations in the T-matrix approximation. J Chem Phys 2022; 156:164101. [PMID: 35490009 DOI: 10.1063/5.0088364] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
While the well-established GW approximation corresponds to a resummation of the direct ring diagrams and is particularly well suited for weakly correlated systems, the T-matrix approximation does sum ladder diagrams up to infinity and is supposedly more appropriate in the presence of strong correlation. Here, we derive and implement, for the first time, the static and dynamic Bethe-Salpeter equations when one considers T-matrix quasiparticle energies and a T-matrix-based kernel. The performance of the static scheme and its perturbative dynamical correction are assessed by computing the neutral excited states of molecular systems. A comparison with more conventional schemes as well as other wave function methods is also reported. Our results suggest that the T-matrix-based formalism performs best in few-electron systems where the electron density remains low.
Collapse
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pina Romaniello
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
45
|
Li J, Jin Y, Su NQ, Yang W. Combining localized orbital scaling correction and Bethe-Salpeter equation for accurate excitation energies. J Chem Phys 2022; 156:154101. [PMID: 35459294 PMCID: PMC9033305 DOI: 10.1063/5.0087498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022] Open
Abstract
We applied localized orbital scaling correction (LOSC) in Bethe-Salpeter equation (BSE) to predict accurate excitation energies for molecules. LOSC systematically eliminates the delocalization error in the density functional approximation and is capable of approximating quasiparticle (QP) energies with accuracy similar to or better than GW Green's function approach and with much less computational cost. The QP energies from LOSC, instead of commonly used G0W0 and evGW, are directly used in BSE. We show that the BSE/LOSC approach greatly outperforms the commonly used BSE/G0W0 approach for predicting excitations with different characters. For the calculations of Truhlar-Gagliardi test set containing valence, charge transfer, and Rydberg excitations, BSE/LOSC with the Tamm-Dancoff approximation provides a comparable accuracy to time-dependent density functional theory (TDDFT) and BSE/evGW. For the calculations of Stein CT test set and Rydberg excitations of atoms, BSE/LOSC considerably outperforms both BSE/G0W0 and TDDFT approaches with a reduced starting point dependence. BSE/LOSC is, thus, a promising and efficient approach to calculate excitation energies for molecular systems.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Ye Jin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Neil Qiang Su
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Weitao Yang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
46
|
Sarkar R, Loos PF, Boggio-Pasqua M, Jacquemin D. Assessing the Performances of CASPT2 and NEVPT2 for Vertical Excitation Energies. J Chem Theory Comput 2022; 18:2418-2436. [PMID: 35333060 DOI: 10.1021/acs.jctc.1c01197] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Methods able to simultaneously account for both static and dynamic electron correlations have often been employed, not only to model photochemical events but also to provide reference values for vertical transition energies, hence allowing benchmarking of lower-order models. In this category, both the complete-active-space second-order perturbation theory (CASPT2) and the N-electron valence state second-order perturbation theory (NEVPT2) are certainly popular, the latter presenting the advantage of not requiring the application of the empirical ionization-potential-electron-affinity (IPEA) and level shifts. However, the actual accuracy of these multiconfigurational approaches is not settled yet. In this context, to assess the performances of these approaches, the present work relies on highly accurate (±0.03 eV) aug-cc-pVTZ vertical transition energies for 284 excited states of diverse character (174 singlet, 110 triplet, 206 valence, 78 Rydberg, 78 n → π*, 119 π → π*, and 9 double excitations) determined in 35 small- to medium-sized organic molecules containing from three to six non-hydrogen atoms. The CASPT2 calculations are performed with and without IPEA shift and compared to the partially contracted (PC) and strongly contracted (SC) variants of NEVPT2. We find that both CASPT2 with IPEA shift and PC-NEVPT2 provide fairly reliable vertical transition energy estimates, with slight overestimations and mean absolute errors of 0.11 and 0.13 eV, respectively. These values are found to be rather uniform for the various subgroups of transitions. The present work completes our previous benchmarks focused on single-reference wave function methods ( J. Chem. Theory Comput. 2018, 14, 4360; J. Chem. Theory Comput. 2020, 16, 1711), hence allowing for a fair comparison between various families of electronic structure methods. In particular, we show that ADC(2), CCSD, and CASPT2 deliver similar accuracies for excited states with a dominant single-excitation character.
Collapse
Affiliation(s)
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, CNRS, UPS, Université de Toulouse, Toulouse 31062, France
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques, CNRS, UPS, Université de Toulouse, Toulouse 31062, France
| | - Denis Jacquemin
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
47
|
Zech A, Bazhirov T. CateCom: A Practical Data-Centric Approach to Categorization of Computational Models. J Chem Inf Model 2022; 62:1268-1281. [PMID: 35230849 DOI: 10.1021/acs.jcim.2c00112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The advent of data-driven science in the 21st century brought about the need for well-organized structured data and associated infrastructure able to facilitate the applications of artificial intelligence and machine learning. We present an effort aimed at organizing the diverse landscape of physics-based and data-driven computational models in order to facilitate the storage of associated information as structured data. We apply object-oriented design concepts and outline the foundations of an open-source collaborative framework that is (1) capable of uniquely describing the approaches in structured data, (2) flexible enough to cover the majority of widely used models, and (3) utilizes collective intelligence through community contributions. We present example database schemas and corresponding data structures and explain how these are deployed in software at the time of this writing.
Collapse
Affiliation(s)
- Alexander Zech
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Timur Bazhirov
- Exabyte Inc., San Francisco, California 94105, United States
| |
Collapse
|
48
|
Yao Y, Golze D, Rinke P, Blum V, Kanai Y. All-Electron BSE@ GW Method for K-Edge Core Electron Excitation Energies. J Chem Theory Comput 2022; 18:1569-1583. [PMID: 35138865 DOI: 10.1021/acs.jctc.1c01180] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present an accurate computational approach to calculate absolute K-edge core electron excitation energies as measured by X-ray absorption spectroscopy. Our approach employs an all-electron Bethe-Salpeter equation (BSE) formalism based on GW quasiparticle energies (BSE@GW) using numeric atom-centered orbitals (NAOs). The BSE@GW method has become an increasingly popular method for the computation of neutral valence excitation energies of molecules. However, it was so far not applied to molecular K-edge excitation energies. We discuss the influence of different numerical approximations on the BSE@GW calculation and employ in our final setup (i) exact numeric algorithms for the frequency integration of the GW self-energy, (ii) G0W0 and BSE starting points with ∼50% of exact exchange, (iii) the Tamm-Dancoff approximation and (iv) relativistic corrections. We study the basis set dependence and convergence with common Gaussian-type orbital and NAO basis sets. We identify the importance of additional spatially confined basis functions as well as of diffuse augmenting basis functions. The accuracy of our BSE@GW method is assessed for a benchmark set of small organic molecules, previously used for benchmarking the equation-of-motion coupled cluster method [Peng et al., J. Chem. Theory Comput., 2015, 11, 4146], as well as the medium-sized dibenzothiophene (DBT) molecule. Our BSE@GW results for absolute excitation energies are in excellent agreement with the experiment, with a mean average error of only 0.63 eV for the benchmark set and with errors <1 eV for the DBT molecule.
Collapse
Affiliation(s)
- Yi Yao
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Dorothea Golze
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.,Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
| | - Patrick Rinke
- Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
| | | | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
49
|
Tölle J, Neugebauer J. The Seamless Connection of Local and Collective Excited States in Subsystem Time-Dependent Density Functional Theory. J Phys Chem Lett 2022; 13:1003-1018. [PMID: 35061387 DOI: 10.1021/acs.jpclett.1c04023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The theoretical understanding of photoinduced processes in multichromophoric systems requires, as an essential ingredient, the possibility of accurately describing their electronically excited states. However, the size of these systems often prohibits the usage of conventional electronic-structure methods, so that often multiscale approaches based on phenomenologically motivated models are employed. In contrast, subsystem time-dependent density functional theory (sTDDFT) allows for a subsystem-based ab initio description of multichromophoric systems and therefore allows for, in principle, an exact description of photoinduced processes. This Perspective aims to outline the theoretical foundations and commonly used practical realizations as well as to illustrate benefits of recent developments and open issues in the field of sTDDFT. Prospective, potential future applications and possible methodological developments are discussed.
Collapse
Affiliation(s)
- Johannes Tölle
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
50
|
Bintrim SJ, Berkelbach TC. Full-frequency dynamical Bethe-Salpeter equation without frequency and a study of double excitations. J Chem Phys 2022; 156:044114. [PMID: 35105075 PMCID: PMC8807000 DOI: 10.1063/5.0074434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/31/2021] [Indexed: 01/30/2023] Open
Abstract
The Bethe-Salpeter equation (BSE) that results from the GW approximation to the self-energy is a frequency-dependent (nonlinear) eigenvalue problem due to the dynamically screened Coulomb interaction between electrons and holes. The computational time required for a numerically exact treatment of this frequency dependence is O(N6), where N is the system size. To avoid the common static screening approximation, we show that the full-frequency dynamical BSE can be exactly reformulated as a frequency-independent eigenvalue problem in an expanded space of single and double excitations. When combined with an iterative eigensolver and the density fitting approximation to the electron repulsion integrals, this reformulation yields a dynamical BSE algorithm whose computational time is O(N5), which we verify numerically. Furthermore, the reformulation provides direct access to excited states with dominant double excitation character, which are completely absent in the spectrum of the statically screened BSE. We study the 21Ag state of butadiene, hexatriene, and octatetraene and find that GW/BSE overestimates the excitation energy by about 1.5-2 eV and significantly underestimates the double excitation character.
Collapse
Affiliation(s)
- Sylvia J. Bintrim
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|