1
|
Sarkar S, Dhibar S, Jana B. Modulation of the conformational landscape of the PDZ3 domain by perturbation on a distal non-canonical α3 helix: decoding the microscopic mechanism of allostery in the PDZ3 domain. Phys Chem Chem Phys 2024; 26:21249-21259. [PMID: 39076021 DOI: 10.1039/d4cp01806k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
While allosteric signal transduction is crucial for protein signaling and regulation, the dynamic process of allosteric communication remains poorly understood. The third PDZ domain (PDZ stands for the common structural domain shared by the postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (DlgA), and zonula occludens-1 protein (ZO-1)) serves as a classic example of a single-domain allosteric protein, demonstrating a long-range coupling between the C-terminal α helix (known as the α3 helix) and ligand binding. A molecular level understanding of how the α3 helix modulates the ligand binding affinity of the PDZ3 domain is still lacking. In this study, extensive molecular dynamics simulations corroborated with principal component analysis (PCA), ligand binding free energy calculations, energetic frustration analysis and Markov state model analysis are employed to uncover such molecular details. We demonstrate the definite presence of a binding competent closed-like state in the conformational landscape of wild-type PDZ3. The population modulations of this closed state and other binding incompetent states in the landscape due to α3-truncation/mutation of PDZ3 are explored. A correlation between the closed state population and calculated binding free energy is established, which supports the conformation selection mechanism. Covariance analysis identified the presence of correlated motion between two distant loops (β1-β2 and β2-β3) in the wild-type PDZ3 system, which weakened due to truncation/mutation in the distant α3 helix. It has also been observed that whenever the α3 helix was perturbed, the β2-β3 loop got further away from the binding groove and it is found to be correlated with the binding free energy values. Energetic frustration analysis of the PDZ3 domain also showed that the β2-β3 loop is highly frustrated. Finally, MSM analysis revealed a relevant timescale (closed to open state transition), which is similar to the observed experimental signal transduction timescale for the system. These observations led to the conclusion that the distantly located α3 helix plays a pivotal role in regulating the conformational landscape of the PDZ3 domain, determining the ligand binding affinity and resulting in allosteric behavior of the domain.
Collapse
Affiliation(s)
- Subhajit Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| | - Saikat Dhibar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| |
Collapse
|
2
|
Sinha K, Kumawat A, Jang H, Nussinov R, Chakrabarty S. Molecular mechanism of regulation of RhoA GTPase by phosphorylation of RhoGDI. Biophys J 2024; 123:57-67. [PMID: 37978802 PMCID: PMC10808049 DOI: 10.1016/j.bpj.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/16/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
Rho-specific guanine nucleotide dissociation inhibitors (RhoGDIs) play a crucial role in the regulation of Rho family GTPases. They act as negative regulators that prevent the activation of Rho GTPases by forming complexes with the inactive GDP-bound state of GTPase. Release of Rho GTPase from the RhoGDI-bound complex is necessary for Rho GTPase activation. Biochemical studies provide evidence of a "phosphorylation code," where phosphorylation of some specific residues of RhoGDI selectively releases its GTPase partner (RhoA, Rac1, Cdc42, etc.). This work attempts to understand the molecular mechanism behind this specific phosphorylation-induced reduction in binding affinity. Using several microseconds long atomistic molecular dynamics simulations of the wild-type and phosphorylated states of the RhoA-RhoGDI complex, we propose a molecular-interaction-based mechanistic model for the dissociation of the complex. Phosphorylation induces major structural changes, particularly in the positively charged polybasic region (PBR) of RhoA and the negatively charged N-terminal region of RhoGDI that contribute most to the binding affinity. Molecular mechanics Poisson-Boltzmann surface area binding energy calculations show a significant weakening of interaction on phosphorylation at the RhoA-specific site of RhoGDI. In contrast, phosphorylation at a Rac1-specific site does not affect the overall binding affinity significantly, which confirms the presence of a phosphorylation code. RhoA-specific phosphorylation leads to a reduction in the number of contacts between the PBR of RhoA and the N-terminal region of RhoGDI, which manifests a reduction of the binding affinity. Using hydrogen bond occupancy analysis and energetic perturbation network, we propose a mechanistic model for the allosteric response, i.e., long-range signal propagation from the site of phosphorylation to the PBR and buried geranylgeranyl group in the form of rearrangement and rewiring of hydrogen bonds and salt bridges. Our results highlight the crucial role of specific electrostatic interactions in manifestation of the phosphorylation code.
Collapse
Affiliation(s)
- Krishnendu Sinha
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Amit Kumawat
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Suman Chakrabarty
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India.
| |
Collapse
|
3
|
Stevens AO, Kazan IC, Ozkan B, He Y. Investigating the allosteric response of the PICK1 PDZ domain to different ligands with all-atom simulations. Protein Sci 2022; 31:e4474. [PMID: 36251217 PMCID: PMC9667829 DOI: 10.1002/pro.4474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
The PDZ family is comprised of small modular domains that play critical roles in the allosteric modulation of many cellular signaling processes by binding to the C-terminal tail of different proteins. As dominant modular proteins that interact with a diverse set of peptides, it is of particular interest to explore how different binding partners induce different allosteric effects on the same PDZ domain. Because the PICK1 PDZ domain can bind different types of ligands, it is an ideal test case to answer this question and explore the network of interactions that give rise to dynamic allostery. Here, we use all-atom molecular dynamics simulations to explore dynamic allostery in the PICK1 PDZ domain by modeling two PICK1 PDZ systems: PICK1 PDZ-DAT and PICK1 PDZ-GluR2. Our results suggest that ligand binding to the PICK1 PDZ domain induces dynamic allostery at the αA helix that is similar to what has been observed in other PDZ domains. We found that the PICK1 PDZ-ligand distance is directly correlated with both dynamic changes of the αA helix and the distance between the αA helix and βB strand. Furthermore, our work identifies a hydrophobic core between DAT/GluR2 and I35 as a key interaction in inducing such dynamic allostery. Finally, the unique interaction patterns between different binding partners and the PICK1 PDZ domain can induce unique dynamic changes to the PICK1 PDZ domain. We suspect that unique allosteric coupling patterns with different ligands may play a critical role in how PICK1 performs its biological functions in various signaling networks.
Collapse
Affiliation(s)
- Amy O. Stevens
- Department of Chemistry and Chemical BiologyThe University of New MexicoAlbuquerqueNew MexicoUSA
| | - I. Can Kazan
- Department of Physics, Center for Biological PhysicsArizona State UniversityTempeArizonaUSA
| | - Banu Ozkan
- Department of Physics, Center for Biological PhysicsArizona State UniversityTempeArizonaUSA
| | - Yi He
- Department of Chemistry and Chemical BiologyThe University of New MexicoAlbuquerqueNew MexicoUSA
| |
Collapse
|
4
|
Phenol sensing in nature is modulated via a conformational switch governed by dynamic allostery. J Biol Chem 2022; 298:102399. [PMID: 35988639 PMCID: PMC9556785 DOI: 10.1016/j.jbc.2022.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
The NtrC family of proteins senses external stimuli and accordingly stimulates stress and virulence pathways via activation of associated σ54-dependent RNA polymerases. However, the structural determinants that mediate this activation are not well understood. Here, we establish using computational, structural, biochemical, and biophysical studies that MopR, an NtrC protein, harbors a dynamic bidirectional electrostatic network that connects the phenol pocket to two distal regions, namely the “G-hinge” and the “allosteric linker.” While the G-hinge influences the entry of phenol into the pocket, the allosteric linker passes the signal to the downstream ATPase domain. We show that phenol binding induces a rewiring of the electrostatic connections by eliciting dynamic allostery and demonstrates that perturbation of the core relay residues results in a complete loss of ATPase stimulation. Furthermore, we found a mutation of the G-hinge, ∼20 Å from the phenol pocket, promotes altered flexibility by shifting the pattern of conformational states accessed, leading to a protein with 7-fold enhanced phenol binding ability and enhanced transcriptional activation. Finally, we conducted a global analysis that illustrates that dynamic allostery-driven conserved community networks are universal and evolutionarily conserved across species. Taken together, these results provide insights into the mechanisms of dynamic allostery-mediated conformational changes in NtrC sensor proteins.
Collapse
|
5
|
MacKenzie DWS, Schaefer A, Steckner J, Leo CA, Naser D, Artikis E, Broom A, Ko T, Shah P, Ney MQ, Tran E, Smith MTJ, Fuglestad B, Wand AJ, Brooks CL, Meiering EM. A fine balance of hydrophobic-electrostatic communication pathways in a pH-switching protein. Proc Natl Acad Sci U S A 2022; 119:e2119686119. [PMID: 35737838 PMCID: PMC9245636 DOI: 10.1073/pnas.2119686119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/29/2022] [Indexed: 12/24/2022] Open
Abstract
Allostery is the phenomenon of coupling between distal binding sites in a protein. Such coupling is at the crux of protein function and regulation in a myriad of scenarios, yet determining the molecular mechanisms of coupling networks in proteins remains a major challenge. Here, we report mechanisms governing pH-dependent myristoyl switching in monomeric hisactophilin, whereby the myristoyl moves between a sequestered state, i.e., buried within the core of the protein, to an accessible state, in which the myristoyl has increased accessibility for membrane binding. Measurements of the pH and temperature dependence of amide chemical shifts reveal protein local structural stability and conformational heterogeneity that accompany switching. An analysis of these measurements using a thermodynamic cycle framework shows that myristoyl-proton coupling at the single-residue level exists in a fine balance and extends throughout the protein. Strikingly, small changes in the stereochemistry or size of core and surface hydrophobic residues by point mutations readily break, restore, or tune myristoyl switch energetics. Synthesizing the experimental results with those of molecular dynamics simulations illuminates atomistic details of coupling throughout the protein, featuring a large network of hydrophobic interactions that work in concert with key electrostatic interactions. The simulations were critical for discerning which of the many ionizable residues in hisactophilin are important for switching and identifying the contributions of nonnative interactions in switching. The strategy of using temperature-dependent NMR presented here offers a powerful, widely applicable way to elucidate the molecular mechanisms of allostery in proteins at high resolution.
Collapse
Affiliation(s)
| | - Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Julia Steckner
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Christopher A. Leo
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Efrosini Artikis
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Aron Broom
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Travis Ko
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Purnank Shah
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mikaela Q. Ney
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Elisa Tran
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Martin T. J. Smith
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Brian Fuglestad
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - A. Joshua Wand
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Charles L. Brooks
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109
| | | |
Collapse
|
6
|
Madhu MK, Debroy A, Murarka RK. Molecular Insights into Phosphorylation-Induced Allosteric Conformational Changes in a β 2-Adrenergic Receptor. J Phys Chem B 2022; 126:1917-1932. [PMID: 35196859 DOI: 10.1021/acs.jpcb.1c08610] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The large conformational flexibility of G protein-coupled receptors (GPCRs) has been a puzzle in structural and pharmacological studies for the past few decades. Apart from structural rearrangements induced by ligands, enzymatic phosphorylations by GPCR kinases (GRKs) at the carboxy-terminal tail (C-tail) of a GPCR also make conformational alterations to the transmembrane helices and facilitates the binding of one of its transducer proteins named β-arrestin. The phosphorylation-induced conformational transition of the receptor that causes specific binding to β-arrestin but prevents the association of other transducers such as G proteins lacks atomistic understanding and is elusive to experimental studies. Using microseconds of all-atom conventional and Gaussian accelerated molecular dynamics (GaMD) simulations, we investigate the allosteric mechanism of phosphorylation induced-conformational changes in β2-adrenergic receptor, a well-characterized GPCR model system. Free energy profiles reveal that the phosphorylated receptor samples a new conformational state in addition to the canonical active state corroborating with recent nuclear magnetic resonance experimental findings. The new state has a smaller intracellular cavity that is likely to accommodate β-arrestin better than G protein. Using contact map and inter-residue interaction energy calculations, we found the phosphorylated C-tail adheres to the cytosolic surface of the transmembrane domain of the receptor. Transfer entropy calculations show that the C-tail residues drive the correlated motions of TM residues, and the allosteric signal is relayed via several residues at the cytosolic surface. Our results also illustrate how the redistribution of inter-residue nonbonding interaction couples with the allosteric communication from the phosphorylated C-tail to the transmembrane. Atomistic insight into phosphorylation-induced β-arrestin specific conformation is therapeutically important to design drugs with higher efficacy and fewer side effects. Our results, therefore, open novel opportunities to fine-tune β-arrestin bias in GPCR signaling.
Collapse
Affiliation(s)
- Midhun K Madhu
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India
| | - Annesha Debroy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India
| | - Rajesh K Murarka
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India
| |
Collapse
|
7
|
Naganathan AN, Kannan A. A hierarchy of coupling free energies underlie the thermodynamic and functional architecture of protein structures. Curr Res Struct Biol 2021; 3:257-267. [PMID: 34704074 PMCID: PMC8526763 DOI: 10.1016/j.crstbi.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022] Open
Abstract
Protein sequences and structures evolve by satisfying varied physical and biochemical constraints. This multi-level selection is enabled not just by the patterning of amino acids on the sequence, but also via coupling between residues in the native structure. Here, we employ an energetically detailed statistical mechanical model with millions of microstates to extract such long-range structural correlations, i.e. thermodynamic coupling free energies, from a diverse family of protein structures. We find that despite the intricate and anisotropic distribution of coupling patterns, the majority of residues (>70%) are only marginally coupled contributing to functional motions and catalysis. Physical origins of ‘sectors’, determinants of native ensemble heterogeneity in extant, ancient and designed proteins, and the basis for allostery emerge naturally from coupling free energies. The statistical framework highlights how evolutionary selection and optimization occur at the level of global interaction network for a given protein fold impacting folding, function, and allosteric outputs. Evolution of protein structures occurs at the level of global interaction network. More than 70% of the protein residues are weakly or marginally coupled. Functional ‘sector’ regions are a manifestation of marginal coupling. Coupling indices vary across the entire proteins in extant-ancient and natural-designed pairs. The proposed methodology can be used to understand allostery and epistasis.
Collapse
Affiliation(s)
- Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Adithi Kannan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
8
|
Bozovic O, Ruf J, Zanobini C, Jankovic B, Buhrke D, Johnson PJM, Hamm P. The Speed of Allosteric Signaling Within a Single-Domain Protein. J Phys Chem Lett 2021; 12:4262-4267. [PMID: 33904738 DOI: 10.1021/acs.jpclett.1c00915] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
While much is known about different allosteric regulation mechanisms, the nature of the allosteric signal and the time scale on which it propagates remains elusive. The PDZ3 domain from postsynaptic density-95 protein is a small protein domain with a terminal third α-helix, i.e., the α3-helix, which is known to be allosterically active. By cross-linking the allosteric helix with an azobenzene moiety, we obtained a photocontrollable PDZ3 variant. Photoswitching triggers its allosteric transition, resulting in a change in binding affinity of a peptide to the remote binding pocket. Using time-resolved infrared and UV/vis spectroscopy, we follow the allosteric signal transduction and reconstruct the timeline in which the allosteric signal propagates through the protein within 200 ns.
Collapse
Affiliation(s)
- Olga Bozovic
- Department of Chemistry, University of Zurich, 8006 Zurich, Switzerland
| | - Jeannette Ruf
- Department of Chemistry, University of Zurich, 8006 Zurich, Switzerland
| | - Claudio Zanobini
- Department of Chemistry, University of Zurich, 8006 Zurich, Switzerland
| | - Brankica Jankovic
- Department of Chemistry, University of Zurich, 8006 Zurich, Switzerland
| | - David Buhrke
- Department of Chemistry, University of Zurich, 8006 Zurich, Switzerland
| | | | - Peter Hamm
- Department of Chemistry, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
9
|
Guclu TF, Atilgan AR, Atilgan C. Dynamic Community Composition Unravels Allosteric Communication in PDZ3. J Phys Chem B 2021; 125:2266-2276. [PMID: 33631929 DOI: 10.1021/acs.jpcb.0c11604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The third domain of PSD-95 (PDZ3) is a model for investigating allosteric communication in protein and ligand interactions. While motifs contributing to its binding specificity have been scrutinized, a conformational dynamical basis is yet to be established. Despite the miniscule structural changes due to point mutants, the observed significant binding affinity differences have previously been assessed with a focus on two α-helices located at the binding groove (α2) and the C-terminus (α3). Here, we employ a new computational approach to develop a generalized view on the molecular basis of PDZ3 binding selectivity and interaction communication for a set of point mutants of the protein (G330T, H372A, G330T-H372A) and its ligand (CRIPT, named L1, and its T-2F variant, L2) along with the wild type (WT). To analyze the dynamical aspects hidden in the conformations that are produced by molecular dynamics simulations, we utilize variations in community composition calculated based on the betweenness centrality measure from graph theory. We find that the highly charged N-terminus, which is located far from the ligand, has the propensity to share the same community with the ligand in the biologically functional complexes, indicating a distal segment might mediate the binding dynamics. N- and C-termini of PDZ3 share communities, and α3 acts as a hub for the whole protein by sustaining the communication with all structural segments, albeit being a trait not unique to the functional complexes. Moreover, α2 which lines the binding cavity frequently parts communities with the ligand and is not a controller of the binding but is rather a slave to the overall dynamics coordinated by the N-terminus. Thus, ligand binding fate in PDZ3 is traced to the population of community compositions extracted from dynamics despite the lack of significant conformational changes.
Collapse
Affiliation(s)
- Tandac F Guclu
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Ali Rana Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| |
Collapse
|
10
|
Dudola D, Hinsenkamp A, Gáspári Z. Ensemble-Based Analysis of the Dynamic Allostery in the PSD-95 PDZ3 Domain in Relation to the General Variability of PDZ Structures. Int J Mol Sci 2020; 21:ijms21218348. [PMID: 33172212 PMCID: PMC7672539 DOI: 10.3390/ijms21218348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022] Open
Abstract
PDZ domains are abundant interaction hubs found in a number of different proteins and they exhibit characteristic differences in their structure and ligand specificity. Their internal dynamics have been proposed to contribute to their biological activity via changes in conformational entropy upon ligand binding and allosteric modulation. Here we investigate dynamic structural ensembles of PDZ3 of the postsynaptic protein PSD-95, calculated based on previously published backbone and side-chain S2 order parameters. We show that there are distinct but interdependent structural rearrangements in PDZ3 upon ligand binding and the presence of the intramolecular allosteric modulator helix α3. We have also compared these rearrangements in PDZ1-2 of PSD-95 and the conformational diversity of an extended set of PDZ domains available in the PDB database. We conclude that although the opening-closing rearrangement, occurring upon ligand binding, is likely a general feature for all PDZ domains, the conformer redistribution upon ligand binding along this mode is domain-dependent. Our findings suggest that the structural and functional diversity of PDZ domains is accompanied by a diversity of internal motional modes and their interdependence.
Collapse
Affiliation(s)
- Dániel Dudola
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083 Budapest, Hungary; (D.D.); (A.H.)
| | - Anett Hinsenkamp
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083 Budapest, Hungary; (D.D.); (A.H.)
- 3in-PPCU Research Group, 2500 Esztergom, Hungary
| | - Zoltán Gáspári
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083 Budapest, Hungary; (D.D.); (A.H.)
- Correspondence:
| |
Collapse
|