1
|
He WM, Hu JH, Cui YJ, Li J, Si YB, Wang SB, Zhao YJ, Zhou Z, Ma LF, Zang SQ. Filling the gaps in icosahedral superatomic metal clusters. Natl Sci Rev 2024; 11:nwae174. [PMID: 38887544 PMCID: PMC11182670 DOI: 10.1093/nsr/nwae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 06/20/2024] Open
Abstract
Chemically modified superatoms have emerged as promising candidates in the new periodic table, in which Au13 and its doped M n Au13- n have been widely studied. However, their important counterpart, Ag13 artificial element, has not yet been synthesized. In this work, we report the synthesis of Ag13 nanoclusters using strong chelating ability and rigid ligands, that fills the gaps in the icosahedral superatomic metal clusters. After further doping Ag13 template with different degrees of Au atoms, we gained insight into the evolution of their optical properties. Theoretical calculations show that the kernel metal doping can modulate the transition of the excited-state electronic structure, and the electron transfer process changes from local excitation (LE) to charge transfer (CT) to LE. This study not only enriches the families of artificial superatoms, but also contributes to the understanding of the electronic states of superatomic clusters.
Collapse
Affiliation(s)
- Wei-Miao He
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jia-Hua Hu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Jia Cui
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Science, Xuchang University, Xuchang 461000, China
| | - Yu-Bing Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai-Bo Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Jing Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan Zhou
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Lu-Fang Ma
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Halford GC, McDarby SP, Hertle S, Kiely AF, Luu JT, Wang CJ, Personick ML. Troubleshooting the influence of trace chemical impurities on nanoparticle growth kinetics via electrochemical measurements. NANOSCALE 2024; 16:11038-11051. [PMID: 38691093 DOI: 10.1039/d4nr00070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Reproducibility issues resulting from particle growth solutions made with cetyltrimethylammonium bromide (CTAB) surfactant from different lots and product lines in a newly developed synthesis of monometallic palladium (Pd) tetrahexahedra (THH) nanoparticles are investigated via a multi-pronged approach. Time-resolved electrochemical measurements of solution potential, variation of chemical parameters in colloidal synthesis, and correlation to electrodeposition syntheses are used together to uncover the effects of the unknown contaminants on the chemical reducing environment during nanoparticle growth. Iodide-a known impurity in commercial CTAB-is identified as one of the required components for equalizing the reducing environment across multiple CTAB sources. However, an additional component-acetone-is critical to establishing the growth kinetics necessary to enable the reproducible synthesis of THH in each of the CTAB formulations. In one CTAB variety, the powdered surfactant contains too much acetone, and drying of the as-received surfactant and re-addition of solvent is necessary for successful Pd THH synthesis. The relevance of solvent impurities to the reducing environment in aqueous nanoparticle synthesis is confirmed via electrochemical measurement approaches and solvent addition experiments. This work highlights the utility of real-time electrochemical potential measurements as a tool for benchmarking of nanoparticle syntheses and troubleshooting of reproducibility issues. The results additionally emphasize the importance of considering organic solvent impurities in powdered commercial reagents as a possible shape-determining factor during shaped nanomaterials synthesis.
Collapse
Affiliation(s)
- Gabriel C Halford
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Sean P McDarby
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Sebastian Hertle
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Anne F Kiely
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Jessica T Luu
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Claire J Wang
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Michelle L Personick
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| |
Collapse
|
3
|
Zou X, Kang X, Zhu M. Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters. Chem Soc Rev 2023; 52:5892-5967. [PMID: 37577838 DOI: 10.1039/d2cs00876a] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metal nanoclusters serve as an emerging class of modular nanomaterials. The transformation of metal nanoclusters has been fully reflected in their studies from every aspect, including the structural evolution analysis, physicochemical property regulation, and practical application promotion. In this review, we highlight the driving forces for transforming atomically precise metal nanoclusters and summarize the related transforming principles and fundamentals. Several driving forces for transforming nanoclusters are meticulously reviewed herein: ligand-exchange-induced transformations, metal-exchange-induced transformations, intercluster reactions, photochemical transformations, oxidation/reduction-induced transformations, and other factors (intrinsic instability, pH, temperature, and metal salts) triggering transformations. The exploitation of transforming principles to customize the preparations, structures, physicochemical properties, and practical applications of metal nanoclusters is also disclosed. At the end of this review, we provide our perspectives and highlight the challenges remaining for future research on the transformation of metal nanoclusters. Our intended audience is the broader scientific community interested in metal nanoclusters, and we believe that this review will provide researchers with a comprehensive synthetic toolbox and insights on the research fundamentals needed to realize more cluster-based nanomaterials with customized compositions, structures, and properties.
Collapse
Affiliation(s)
- Xuejuan Zou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
4
|
Qin L, Sun F, Gong Z, Ma G, Chen Y, Tang Q, Qiao L, Wang R, Liu ZQ, Tang Z. Electrochemical NO 3- Reduction Catalyzed by Atomically Precise Ag 30Pd 4 Bimetallic Nanocluster: Synergistic Catalysis or Tandem Catalysis? ACS NANO 2023. [PMID: 37377221 DOI: 10.1021/acsnano.3c03692] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Electrochemically converting NO3- compounds into ammonia represents a sustainable route to remove industrial pollutants in wastewater and produce valuable chemicals. Bimetallic nanomaterials usually exhibit better catalytic performance than the monometallic counterparts, yet unveiling the reaction mechanism is extremely challenging. Herein, we report an atomically precise [Ag30Pd4 (C6H9)26](BPh4)2 (Ag30Pd4) nanocluster as a model catalyst toward the electrochemical NO3- reduction reaction (eNO3-RR) to elucidate the different role of the Ag and Pd site and unveil the comprehensive catalytic mechanism. Ag30Pd4 is the homoleptic alkynyl-protected superatom with 2 free electrons, and it has a Ag30Pd4 metal core where 4 Pd atoms are located at the subcenter of the metal core. Furthermore, Ag30Pd4 exhibits excellent performance toward eNO3-RR and robust stability for prolonged operation, and it can achieve the highest Faradaic efficiency of NH3 over 90%. In situ Fourier-transform infrared study revealed that a Ag site plays a more critical role in converting NO3- into NO2-, while the Pd site makes a major contribution to catalyze NO2- into NH3. The bimetallic nanocluster adopts a tandem catalytic mechanism rather than a synergistic catalytic effect in eNO3-RR. Such finding was further confirmed by density functional theory calculations, as they disclosed that Ag is the most preferable binding site for NO3-, which then binds a water molecule to release NO2-. Subsequently, NO2- can transfer to the vicinal exposed Pd site to promote NH3 formation.
Collapse
Affiliation(s)
- Lubing Qin
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Zhiheng Gong
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Guanyu Ma
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yan Chen
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Liang Qiao
- China Petrochemical Research Institute, PetroChina Company Limited, Beijing, 102206, China
| | - Renheng Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, No. 230 Wai Huan Xi Road, Guangzhou, 510006, China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| |
Collapse
|
5
|
Wu X, Weng S, Lv Y, He S, Yu H. DFT Insights into the Variety in the Coordination Modes of the Equatorial Halides in [Au 13 Ag 12 (PR 3 ) 10 X 8 ] + (X=Cl/Br) Clusters. Chemphyschem 2023; 24:e202200526. [PMID: 36173928 DOI: 10.1002/cphc.202200526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/29/2022] [Indexed: 01/19/2023]
Abstract
The bonding character within metal nanoclusters represents an intriguing topic, shedding light on the inherent driving force for the packing preference in nanomaterials. Herein, density functional theory (DFT) calculations were conducted to investigate the correlation of the series of isomeric [Au13 Ag12 (PR3 )10 X8 ]+ (X=Cl/Br) clusters, which are mainly differentiated by the coordination mode of the equatorial halides (μ2 -, μ3 - and μ4 -) in the rod-like, bi-icosahedral framework. The theoretical simulation corroborates the variety in the configuration of the Au13 Ag12 clusters and elucidates the fast isomerization kinetics among the different configurations. The easy tautomerization and the variety in chloride binding modes correspond to a fluxionality character of the equatorial halides and are verified by the potential energy curve analysis. The structural flexibility of the central Au3 Ag10 block is the main driving force, while the relatively stronger Ag-X bonding interaction (compared to that of Au-X), and a sufficient number of halides are also requisite for the associating Ag-X tautomerizations.
Collapse
Affiliation(s)
- Xiaohang Wu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Shiyin Weng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Shuping He
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
6
|
Bao Y, Wu X, Yin B, Kang X, Lin Z, Deng H, Yu H, Jin S, Chen S, Zhu M. Structured copper-hydride nanoclusters provide insight into the surface-vacancy-defect to non-defect structural evolution. Chem Sci 2022; 13:14357-14365. [PMID: 36545150 PMCID: PMC9749112 DOI: 10.1039/d2sc03239b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/20/2022] [Indexed: 11/22/2022] Open
Abstract
Exploring the structural evolution of clusters with similar sizes and atom numbers induced by the removal or addition of a few atoms contributes to a deep understanding of structure-property relationships. Herein, three well-characterized copper-hydride nanoclusters that provide insight into the surface-vacancy-defect to non-defect structural evolution were reported. A surface-defective copper hydride nanocluster [Cu28(S-c-C6H11)18(PPh2Py)3H8]2+ (Cu28-PPh2Py for short) with only one C 1 symmetry axis was synthesized using a one-pot method under mild conditions, and its structure was determined. Through ligand regulation, a 29th copper atom was inserted into the surface vacancy site to give two non-defective copper hydride nanoclusters, namely [Cu29(SAdm)15Cl3(P(Ph-Cl)3)4H10]+ (Cu29-P(Ph-Cl)3 for short) with one C 3 symmetry axis and (Cu29(S-c-C6H11)18(P(Ph-pMe)3)4H10)+ (Cu29-P(Ph-Me)3 for short) with four C 3 symmetry axes. The optimized structures show that the 10 hydrides cap four triangular and all six square-planar structures of the cuboctahedral Cu13 core of Cu29-P(Ph-Me)3, while the 10 hydrides cap four triangular and six square-planar structures of the anti-cuboctahedral Cu13 core of Cu29-P(Ph-Cl)3, with the eight hydrides in Cu28-PPh2Py capping four triangular and four square planar-structures of its anti-cuboctahedral Cu13 core. Cluster stability was found to increase sequentially from Cu28-PPh2Py to Cu29-P(Ph-Cl)3 and then to Cu29-P(Ph-Me)3, which indicates that stability is affected by the overall structure of the cluster. Structural adjustments to the metal core, shell, and core-shell bonding model, in moving from Cu28-PPh2Py to Cu29-P(Ph-Cl)3 and then to Cu29-P(Ph-Me)3, enable the structural evolution and mechanism responsible for their physicochemical properties to be understood and provide valuable insight into the structures of surface vacancies in copper nanoclusters and structure-property relationships.
Collapse
Affiliation(s)
- Yizheng Bao
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Xiaohang Wu
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Bing Yin
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Xi Kang
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Zidong Lin
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Huijuan Deng
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Haizhu Yu
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Shan Jin
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Shuang Chen
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| |
Collapse
|
7
|
Li Q, Yang S, Chai J, Zhang H, Zhu M. Insights into mechanisms of diphosphine-mediated controlled surface construction on Au nanoclusters. NANOSCALE 2022; 14:15804-15811. [PMID: 36254852 DOI: 10.1039/d2nr05291a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Unraveling the rules governing the size regulation of nanoclusters is of great importance not only in fundamental research, but also in practical applications because of the high structure-property correlation in nanoclusters. Diphosphine-mediated size tailoring is recognized as a powerful method for modulating the size, configuration, and properties of nanoclusters, but the role of diphosphines in these size-controlled processes is still poorly understood due to a lack of systematic studies. Herein, using Au23(SR)16- as the template for modification, the factors influencing the size-modulation of nanoclusters by diphosphines were systematically investigated. It is revealed that by controlling the length of the diphosphines (from shorter to longer), Au21(SR)12L2+ (L = diphosphine) and Au22(SR)14L can be produced. Moreover, introducing a rigid group into the diphosphines can twist the structural framework or lead to the formation of a new surface motif configuration in the nanoclusters, forming twisted Au22(SR)14L and Au25(SR)16L2+. The size regulation of these nanoclusters enables fine-tuning of the optical properties, including the absorption wavelengths and photoluminescence emission intensity, affording an avenue for precise control of the physicochemical properties of nanoclusters for practical applications.
Collapse
Affiliation(s)
- Qinzhen Li
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China.
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Hui Zhang
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
8
|
Lummis PA, Osten KM, Levchenko TI, Sabooni Asre Hazer M, Malola S, Owens-Baird B, Veinot AJ, Albright EL, Schatte G, Takano S, Kovnir K, Stamplecoskie KG, Tsukuda T, Häkkinen H, Nambo M, Crudden CM. NHC-Stabilized Au 10 Nanoclusters and Their Conversion to Au 25 Nanoclusters. JACS AU 2022; 2:875-885. [PMID: 35557749 PMCID: PMC9088291 DOI: 10.1021/jacsau.2c00004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 05/25/2023]
Abstract
Herein, we describe the synthesis of a toroidal Au10 cluster stabilized by N-heterocyclic carbene and halide ligands via reduction of the corresponding NHC-Au-X complexes (X = Cl, Br, I). The significant effect of the halide ligands on the formation, stability, and further conversions of these clusters is presented. While solutions of the chloride derivatives of Au10 show no change even upon heating, the bromide derivative readily undergoes conversion to form a biicosahedral Au25 cluster at room temperature. For the iodide derivative, the formation of a significant amount of Au25 was observed even upon the reduction of NHC-Au-I. The isolated bromide derivative of the Au25 cluster displays a relatively high (ca. 15%) photoluminescence quantum yield, attributed to the high rigidity of the cluster, which is enforced by multiple CH-π interactions within the molecular structure. Density functional theory computations are used to characterize the electronic structure and optical absorption of the Au10 cluster. 13C-Labeling is employed to assist with characterization of the products and to observe their conversions by NMR spectroscopy.
Collapse
Affiliation(s)
- Paul A. Lummis
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
| | - Kimberly M. Osten
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
| | - Tetyana I. Levchenko
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
| | - Maryam Sabooni Asre Hazer
- Departments
of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Sami Malola
- Departments
of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Bryan Owens-Baird
- Department
of Chemistry, Iowa State University, 2415 Osborn Drive, Ames, Iowa 50011, United States
- U.S.
Department of Energy, Ames Laboratory, Ames, Iowa 50011, United States
| | - Alex J. Veinot
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
| | - Emily L. Albright
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
| | - Gabriele Schatte
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
| | - Shinjiro Takano
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kirill Kovnir
- Department
of Chemistry, Iowa State University, 2415 Osborn Drive, Ames, Iowa 50011, United States
- U.S.
Department of Energy, Ames Laboratory, Ames, Iowa 50011, United States
| | - Kevin G. Stamplecoskie
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
| | - Tatsuya Tsukuda
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hannu Häkkinen
- Departments
of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Masakazu Nambo
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
| | - Cathleen M. Crudden
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
9
|
Qin L, Sun F, Ma X, Ma G, Tang Y, Wang L, Tang Q, Jin R, Tang Z. Homoleptic Alkynyl‐Protected Ag
15
Nanocluster with Atomic Precision: Structural Analysis and Electrocatalytic Performance toward CO
2
Reduction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lubing Qin
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute School of Environment and Energy South China University of Technology Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 401331 China
| | - Xiaoshuang Ma
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute School of Environment and Energy South China University of Technology Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Guanyu Ma
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute School of Environment and Energy South China University of Technology Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Yun Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute School of Environment and Energy South China University of Technology Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Likai Wang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255049 Shandong China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 401331 China
| | - Rongchao Jin
- Department of Chemistry Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Zhenghua Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute School of Environment and Energy South China University of Technology Guangzhou Higher Education Mega Center Guangzhou 510006 China
| |
Collapse
|
10
|
Qin L, Sun F, Ma X, Ma G, Tang Y, Wang L, Tang Q, Jin R, Tang Z. Homoleptic Alkynyl-Protected Ag 15 Nanocluster with Atomic Precision: Structural Analysis and Electrocatalytic Performance toward CO 2 Reduction. Angew Chem Int Ed Engl 2021; 60:26136-26141. [PMID: 34559925 DOI: 10.1002/anie.202110330] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Indexed: 01/05/2023]
Abstract
We report the fabrication of homoleptic alkynyl-protected Ag15 (C≡C-t Bu)12 + (abbreviated as Ag15 ) nanocluster and its electrocatalytic properties toward CO2 reduction reaction. Crystal structure analysis reveals that Ag15 possesses a body-centered-cubic (BCC) structure with an Ag@Ag8 @Ag6 metal core configuration. Interestingly, we found that Ag15 can adsorb CO2 in the air and spontaneously self-assembled into one-dimensional linear material during the crystal growth process. Furthermore, Ag15 can convert CO2 into CO with a faradaic efficiency of ca. 95.0 % at -0.6 V and a maximal turnover frequency of 6.37 s-1 at -1.1 V along with excellent long-term stability. Finally, density functional theory (DFT) calculations disclosed that Ag15 (C≡C-t Bu)11 + with one alkynyl ligand stripping off from the intact cluster can expose the uncoordinated Ag atom as the catalytically active site for CO formation.
Collapse
Affiliation(s)
- Lubing Qin
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Xiaoshuang Ma
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Guanyu Ma
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yun Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Zhenghua Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| |
Collapse
|