1
|
Lin LL, Alvarez-Puebla R, Liz-Marzán LM, Trau M, Wang J, Fabris L, Wang X, Liu G, Xu S, Han XX, Yang L, Shen A, Yang S, Xu Y, Li C, Huang J, Liu SC, Huang JA, Srivastava I, Li M, Tian L, Nguyen LBT, Bi X, Cialla-May D, Matousek P, Stone N, Carney RP, Ji W, Song W, Chen Z, Phang IY, Henriksen-Lacey M, Chen H, Wu Z, Guo H, Ma H, Ustinov G, Luo S, Mosca S, Gardner B, Long YT, Popp J, Ren B, Nie S, Zhao B, Ling XY, Ye J. Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39991932 DOI: 10.1021/acsami.4c17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The year 2024 marks the 50th anniversary of the discovery of surface-enhanced Raman spectroscopy (SERS). Over recent years, SERS has experienced rapid development and became a critical tool in biomedicine with its unparalleled sensitivity and molecular specificity. This review summarizes the advancements and challenges in SERS substrates, nanotags, instrumentation, and spectral analysis for biomedical applications. We highlight the key developments in colloidal and solid SERS substrates, with an emphasis on surface chemistry, hotspot design, and 3D hydrogel plasmonic architectures. Additionally, we introduce recent innovations in SERS nanotags, including those with interior gaps, orthogonal Raman reporters, and near-infrared-II-responsive properties, along with biomimetic coatings. Emerging technologies such as optical tweezers, plasmonic nanopores, and wearable sensors have expanded SERS capabilities for single-cell and single-molecule analysis. Advances in spectral analysis, including signal digitalization, denoising, and deep learning algorithms, have improved the quantification of complex biological data. Finally, this review discusses SERS biomedical applications in nucleic acid detection, protein characterization, metabolite analysis, single-cell monitoring, and in vivo deep Raman spectroscopy, emphasizing its potential for liquid biopsy, metabolic phenotyping, and extracellular vesicle diagnostics. The review concludes with a perspective on clinical translation of SERS, addressing commercialization potentials and the challenges in deep tissue in vivo sensing and imaging.
Collapse
Affiliation(s)
- Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ramon Alvarez-Puebla
- Departamento de Química Física e Inorganica, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, University of Santiago de nCompostela, Bilbao 48013, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aiguo Shen
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chunchun Li
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Shao-Chuang Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-An Huang
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Research Unit of Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Biocenter Oulu, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas 79106, United States
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Lam Bang Thanh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyuan Bi
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Nicholas Stone
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhou Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Haoran Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gennadii Ustinov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Siheng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Benjamin Gardner
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
2
|
Holikulov U, Kazachenko AS, Issaoui N, Kazachenko AS, Raja M, Al-Dossary OM, Xiang Z. The molecular structure, vibrational spectra, solvation effect, non-covalent interactions investigations of psilocin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124600. [PMID: 38852303 DOI: 10.1016/j.saa.2024.124600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Psilocin, or 4-HO-DMT (or 3-(2-dimethylaminoethyl)-1H-indol-4-ol), is a psychoactive alkaloid substance from the tryptamine family, isolated from Psilocybe mushrooms. This substance is being studied by various research groups because it has a clear therapeutic effect in certain dosages. In this work, the study of the structure and properties of psilocin was carried using theoretical methods: the effects of polar solvents (acetonitrile, dimethylsulfoxide, water, and tetrahydrofuran) on the structural parameters, spectroscopic properties (Raman, IR, and UV-Vis), frontier molecular orbital (FMO), molecular electrostatic potential (MEP) surface, and nonlinear optical parameters (NLO). Theoretical calculations were performed at the B3LYP/6-311++G(d,p) level by the density functional theory (DFT) method. IEFPCM was used to account for solvent effects. The types and nature of non-covalent interactions (NCI) between psilocin and solvent molecules were determined using Atoms in Molecules (AIM), the reduced density gradient method (RDG), the electron localization function (ELF), and the localization orbital locator (LOL). Experimental and calculated FT-IR, FT-Raman, and UV-Vis spectra were compared and found to be in good agreement.
Collapse
Affiliation(s)
- Utkirjon Holikulov
- Department of Optics and Spectroscopy, Samarkand State University, 15 University Blvd., 140104 Samarkand, Uzbekistan
| | - Aleksandr S Kazachenko
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center, Krasnoyarsk Science Center SB RAS, Akademgorodok, 50/24, Krasnoyarsk 660036, Russia; Siberian Federal University, pr. Svobodny 79, Krasnoyarsk 660041 Russia.
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics, University Monastir, Monastir 5079, Tunisia
| | - Anna S Kazachenko
- Siberian Federal University, pr. Svobodny 79, Krasnoyarsk 660041 Russia
| | - Murugesan Raja
- Department of Physics, Govt. Thirumagal Mills College, Gudiyatham, Vellore 632602, India
| | - Omar M Al-Dossary
- Department of Physics and Astronomy, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 China
| |
Collapse
|
4
|
Miranda P, Castro A, Díaz P, Minini L, Ferraro F, Paulsen E, Faccio R, Pardo H. Novel Thermosensitive and Mucoadhesive Nasal Hydrogel Containing 5-MeO-DMT Optimized Using Box-Behnken Experimental Design. Polymers (Basel) 2024; 16:2148. [PMID: 39125174 PMCID: PMC11314354 DOI: 10.3390/polym16152148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
We present the development and characterization of a nasal drug delivery system comprised of a thermosensitive mucoadhesive hydrogel based on a mixture of the polymers Poloxamer 407, Poloxamer 188 and Hydroxypropyl-methylcellulose, and the psychedelic drug 5-methoxy-N,-N-dimethyltryptamine. The development relied on a 3 × 3 Box-Behnken experimental design, focusing on optimizing gelification temperature, viscosity and mucoadhesion. The primary objective of this work was to tailor the formulation for efficient nasal drug delivery. This would increase contact time between the hydrogel and the mucosa while preserving normal ciliary functioning. Following optimization, the final formulation underwent characterization through an examination of the in vitro drug release profile via dialysis under sink conditions. Additionally, homogeneity of its composition was assessed using Raman Confocal Spectroscopy. The results demonstrate complete mixing of drug and polymers within the hydrogel matrix. Furthermore, the formulation exhibits sustained release profile, with 73.76% of the drug being delivered after 5 h in vitro. This will enable future studies to assess the possibility of using this formulation to treat certain mental disorders. We have successfully developed a promising thermosensitive and mucoadhesive hydrogel with a gelling temperature of around 32 °C, a viscosity close to 100 mPas and a mucoadhesion of nearly 4.20 N·m.
Collapse
Affiliation(s)
- Pablo Miranda
- Unidad de Nanotecnología, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Montevideo 91000, Uruguay; (P.M.); (A.C.)
| | - Analía Castro
- Unidad de Nanotecnología, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Montevideo 91000, Uruguay; (P.M.); (A.C.)
| | - Paola Díaz
- Biomind Labs, Brookfield Place, 181 Bay Street, Suite 1800, Toronto, ON M5J 2T9, Canada; (P.D.); (L.M.); (F.F.)
| | - Lucía Minini
- Biomind Labs, Brookfield Place, 181 Bay Street, Suite 1800, Toronto, ON M5J 2T9, Canada; (P.D.); (L.M.); (F.F.)
| | - Florencia Ferraro
- Biomind Labs, Brookfield Place, 181 Bay Street, Suite 1800, Toronto, ON M5J 2T9, Canada; (P.D.); (L.M.); (F.F.)
| | - Erika Paulsen
- Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República, Montevideo 11800, Uruguay;
| | - Ricardo Faccio
- Área Física, DETEMA, Facultad de Química, Universidad de la República, Montevideo 11300, Uruguay;
| | - Helena Pardo
- Unidad de Nanotecnología, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Montevideo 91000, Uruguay; (P.M.); (A.C.)
- Área Física, DETEMA, Facultad de Química, Universidad de la República, Montevideo 11300, Uruguay;
| |
Collapse
|
6
|
Zeng P, Zhang H, Guan Q, Zhang Q, Yan X, Yu L, Duan L, Wang C. Constructing a 3D interconnected network of Ag nanostructures for high-performance SERS detection of food coloring agents. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6088-6096. [PMID: 37933465 DOI: 10.1039/d3ay01515g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The design and preparation of various effective three-dimensional (3D) silver nanostructures is a frontier area of research in the field of surface-enhanced Raman scattering (SERS). This paper demonstrates a simple and novel method for the preparation of a substrate, whose surface was covered by a 3D interconnected network of Ag nanostructures, and the resulting network structure surface is free of organic contaminants. The EDS measurements confirm the metallic nature of the formed 3D Ag nanonetwork substrate. Additionally, the influence of experimental parameters on the morphology of the 3D Ag nanonetwork was also investigated, such as reaction time, hydrofluoric acid concentration, silver nitrate concentration and sodium citrate concentration. The 3D Ag nanonetwork has good uniformity. Importantly, the 3D Ag nanonetwork substrate was used to accurately and reliably detect amaranth (AR) and sunset yellow (SY) in beverages, with the lowest detection limit of 3 and 0.1 μg L-1, respectively. Therefore, this substrate is expected to be a promising candidate for SERS detection and offers attractive potential for a wider range of applications.
Collapse
Affiliation(s)
- Pei Zeng
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Huan Zhang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Qi Guan
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Qianqian Zhang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Xianzai Yan
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Lili Yu
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Luying Duan
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Chunrong Wang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
7
|
Lee H, Liao JD, Wong TW, Wu CW, Huang BY, Wu SC, Shao PL, Wei YH, Cheng MH. Detection of micro-plasma-induced exosomes secretion in a fibroblast-melanoma co-culture model. Anal Chim Acta 2023; 1281:341910. [PMID: 38783745 DOI: 10.1016/j.aca.2023.341910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Melanoma is a highly aggressive tumor and a significant cause of skin cancer-related death. Timely diagnosis and treatment require identification of specific biomarkers in exosomes secreted by melanoma cells. In this study, label-free surface-enhanced Raman spectroscopy (SERS) method with size-matched selectivity was used to detect membrane proteins in exosomes released from a stimulated environment of fibroblasts (L929) co-cultured with melanoma cells (B16-F10). To promote normal secretion of exosomes, micro-plasma treatment was used to gently induce the co-cultured cells and slightly increase the stress level around the cells for subsequent detection using the SERS method. RESULTS AND DISCUSSION Firstly, changes in reactive oxygen species/reactive nitrogen species (ROS/RNS) concentrations in the cellular microenvironment and the viability and proliferation of healthy cells are assessed. Results showed that micro-plasma treatment increased extracellular ROS/RNS levels while modestly reducing cell proliferation without significantly affecting cell survival. Secondly, the particle size of secreted exosomes isolated from the culture medium of L929, B16-F10, and co-cultured cells with different micro-plasma treatment time did not increase significantly under single-cell conditions at short treatment time but might be changed under co-culture condition or longer treatment time. Third, for SERS signals related to membrane protein biomarkers, exosome markers CD9, CD63, and CD81 can be assigned to significant Raman shifts in the range of 943-1030 and 1304-1561 cm-1, while the characteristics SERS peaks of L929 and B16-F10 cells are most likely located at 1394/1404, 1271 and 1592 cm-1 respectively. SIGNIFICANCE AND NOVELTY Therefore, this micro-plasma-induced co-culture model provides a promising preclinical approach to understand the diagnostic potential of exosomes secreted by cutaneous melanoma/fibroblasts. Furthermore, the label-free SERS method with size-matched selectivity provides a novel approach to screen biomarkers in exosomes secreted by melanoma cells, aiming to reduce the use of labeling reagents and the processing time traditionally required.
Collapse
Affiliation(s)
- Han Lee
- Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan.
| | - Jiunn-Der Liao
- Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan.
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, Department of Biochemistry and Molecular Biology, College of Medicine, Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Che-Wei Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80701, Taiwan; Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, 80701, Taiwan.
| | - Bo-Yao Huang
- Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan.
| | - Shun-Cheng Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80701, Taiwan; Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, 80701, Taiwan.
| | - Pei-Lin Shao
- Department of Nursing, Asia University, 500 Liou Feng Road, Taichung, 413, Taiwan.
| | - Yu-Han Wei
- Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan.
| | - Ming-Hsien Cheng
- Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan.
| |
Collapse
|