1
|
Qin T, Liang B, Hu L, Xu Q, Wang T, Zhu J. On-Surface Synthesis of Two-Dimensional Carbon-Based Networks via Hierarchical Ullmann Coupling Reactions. Chemphyschem 2025; 26:e202400601. [PMID: 39370398 DOI: 10.1002/cphc.202400601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 10/05/2024] [Indexed: 10/08/2024]
Abstract
The recent developed bottom-up on-surface synthesis offers unprecedent opportunities for the fabrication of two-dimensional (2D) carbon-based networks with atomic precision. Hierarchical coupling approach has been proposed as an efficient strategy for improving the corresponding reaction selectivity and quality of target structures. Herein, we report the synthesis of a nitrogen-doped carbon-based network on Ag(100) utilizing a hierarchical Ullmann coupling strategy. The accurate identification of reaction intermediates and products by scanning tunneling microscopy allows us to unravel the reaction mechanism. The synthetic process of 2D carbon-based networks is kinetics-driven, relying on the competition between dechlorination and C-C coupling. We expect that our discussion on the mechanism of hierarchical coupling may shed light on the rational design and precise synthesis of 2D carbon-based networks on surfaces.
Collapse
Affiliation(s)
- Tianchen Qin
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Baiyao Liang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Lei Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Qian Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Tao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Han D, Ding H, Xiong J, Qin T, Cheng X, Hu J, Xu Q, Zhu J. Unraveling the Origin of Elemental Chemical Shift and the Role of Atomic Hydrogen in a Surface Ullmann Coupling System. ACS NANO 2024; 18:28946-28955. [PMID: 39385340 DOI: 10.1021/acsnano.4c09375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The Ullmann coupling of aryl halides is a powerful method in the on-surface synthesis of functional materials. Understanding its basic aspects and influencing factors can aid in the use of this tool for the fabrication of intriguing structures. In this study, we unveil (1) the origin of the shift in the elemental binding energy (BE) and (2) the functions of atomic hydrogen (AH) in a typical Ullmann coupling system using combined spectroscopy and microscopy techniques. During debromination of the aryl halide precursor, the work function (WF) alteration is correlated with the surface Br amount. The WF change instead of C-Ag formation is proposed to play a dominant role in the shift of the molecular C 1s BE. AH dosing onto organometallic chains leads to chain decomposition and surface Br removal. In contrast, AH dosing onto covalent poly(para-phenylene) (PPP) chains results in superhydrogenation in addition to Br removal. The C 1s BE shift is attributed to both WF change and superhydrogenation effects. Thermal annealing restores the PPP chains by eliminating superhydrogenation, which causes the C 1s BE to shift to a high BE. This study provides deep insights into the mechanisms of Ullmann coupling on surfaces, highlighting the significant role of WF alterations and AH treatments in these processes.
Collapse
Affiliation(s)
- Dong Han
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Honghe Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Juanjuan Xiong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Tianchen Qin
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Xingwang Cheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Jun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Qian Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
3
|
Liou F, Tsai HZ, Goodwin ZAH, Yang Y, Aikawa AS, Angeles BRP, Pezzini S, Nguyen L, Trishin S, Cheng Z, Zhou S, Roberts PW, Xu X, Watanabe K, Taniguchi T, Bellani V, Wang F, Lischner J, Crommie MF. Gate-Switchable Molecular Diffusion on a Graphene Field-Effect Transistor. ACS NANO 2024; 18:24262-24268. [PMID: 39158860 DOI: 10.1021/acsnano.4c05808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Controlling the surface diffusion of particles on 2D devices creates opportunities for advancing microscopic processes such as nanoassembly, thin-film growth, and catalysis. Here, we demonstrate the ability to control the diffusion of F4TCNQ molecules at the surface of clean graphene field-effect transistors (FETs) via electrostatic gating. Tuning the back-gate voltage (VG) of a graphene FET switches molecular adsorbates between negative and neutral charge states, leading to dramatic changes in their diffusion properties. Scanning tunneling microscopy measurements reveal that the diffusivity of neutral molecules decreases rapidly with a decreasing VG and involves rotational diffusion processes. The molecular diffusivity of negatively charged molecules, on the other hand, remains nearly constant over a wide range of applied VG values and is dominated by purely translational processes. First-principles density functional theory calculations confirm that the energy landscapes experienced by neutral vs charged molecules lead to diffusion behavior consistent with experiment. Gate-tunability of the diffusion barrier for F4TCNQ molecules on graphene enables graphene FETs to act as diffusion switches.
Collapse
Affiliation(s)
- Franklin Liou
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, California 94720, United States
| | - Hsin-Zon Tsai
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zachary A H Goodwin
- Department of Materials, Imperial College London, Prince Consort Rd, London SW7 2BB, U.K
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yiming Yang
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Andrew S Aikawa
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Brian R P Angeles
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Sergio Pezzini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Luc Nguyen
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Sergey Trishin
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Zhichao Cheng
- Tsinghua-Berkeley Shenzhen Institute & Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shizhe Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Paul W Roberts
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Xiaomin Xu
- Tsinghua-Berkeley Shenzhen Institute & Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | | | - Feng Wang
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, California 94720, United States
| | - Johannes Lischner
- Department of Materials, Imperial College London, Prince Consort Rd, London SW7 2BB, U.K
| | - Michael F Crommie
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Ooe H, Yokoyama T. On-surface polymerization reactions of dibrominated hexaphenylbenzene influenced by densely packed self-assembly. Phys Chem Chem Phys 2024; 26:12939-12946. [PMID: 38629232 DOI: 10.1039/d4cp00696h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Controlled bottom-up fabrication of molecular nanostructures through on-surface reactions of tailor-made precursors is of scientific and technological interest. Recently, on-surface polymerization reactions influenced by precursor self-assembly have been reported. Thus, a fundamental understanding of the reaction process is a prerequisite for controlled formation. Herein, we report on the influence of molecular self-assembly of dibrominated hexaphenylbenzene (Br2-HPB) on the on-surface polymerization reactions on a Au(111) substrate. By using low-temperature scanning tunnelling microscopy (STM), we find that the polymerization of Br2-HPB proceeds while maintaining the long-range ordered self-assembly, despite a decrease in HPB-HPB distance due to debromination and successive covalent bonding of Br2-HPB. From the STM investigations of the polymerization process, we conclude that the polymerization of Br2-HPB is accompanied by molecular rotations to maintain the periodic array of the self-assembled structure, contrary to the conventional understanding of the polymerization of the self-assembled precursor layer.
Collapse
Affiliation(s)
- Hiroaki Ooe
- Faculty of Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| | - Takashi Yokoyama
- Faculty of Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| |
Collapse
|
5
|
Kinikar A, Wang XY, Di Giovannantonio M, Urgel JI, Liu P, Eimre K, Pignedoli CA, Stolz S, Bommert M, Mishra S, Sun Q, Widmer R, Qiu Z, Narita A, Müllen K, Ruffieux P, Fasel R. Sterically Selective [3 + 3] Cycloaromatization in the On-Surface Synthesis of Nanographenes. ACS NANOSCIENCE AU 2024; 4:128-135. [PMID: 38644965 PMCID: PMC11027121 DOI: 10.1021/acsnanoscienceau.3c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 04/23/2024]
Abstract
Surface-catalyzed reactions have been used to synthesize carbon nanomaterials with atomically predefined structures. The recent discovery of a gold surface-catalyzed [3 + 3] cycloaromatization of isopropyl substituted arenes has enabled the on-surface synthesis of arylene-phenylene copolymers, where the surface activates the isopropyl substituents to form phenylene rings by intermolecular coupling. However, the resulting polymers suffered from undesired cross-linking when more than two molecules reacted at a single site. Here we show that such cross-links can be prevented through steric protection by attaching the isopropyl groups to larger arene cores. Upon thermal activation of isopropyl-substituted 8,9-dioxa-8a-borabenzo[fg]tetracene on Au(111), cycloaromatization is observed to occur exclusively between the two molecules. The cycloaromatization intermediate formed by the covalent linking of two molecules is prevented from reacting with further molecules by the wide benzotetracene core, resulting in highly selective one-to-one coupling. Our findings extend the versatility of the [3 + 3] cycloaromatization of isopropyl substituents and point toward steric protection as a powerful concept for suppressing competing reaction pathways in on-surface synthesis.
Collapse
Affiliation(s)
- Amogh Kinikar
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Xiao-Ye Wang
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
- State
Key
Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Marco Di Giovannantonio
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - José I. Urgel
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Pengcai Liu
- State
Key
Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kristjan Eimre
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Carlo A. Pignedoli
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Samuel Stolz
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Institute
of Condensed Matter Physics, Station 3, EPFL, 1015 Lausanne, Switzerland
| | - Max Bommert
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Shantanu Mishra
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Qiang Sun
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Roland Widmer
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Zijie Qiu
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
| | - Akimitsu Narita
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
| | - Klaus Müllen
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
- Department
of Chemistry, Johannes Gutenberg-Universität
Mainz, 55128 Mainz, Germany
| | - Pascal Ruffieux
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Roman Fasel
- Empa, Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
6
|
Fu B, Lu J, Geng J, Zhang Y, Sun S, Xiong W, Zhang Y, Niu G, Gao L, Cai J. On-surface synthesis of two types of cyano-substituted polyfluorene derivatives via Ullmann coupling on Au(111). NANOSCALE 2024. [PMID: 38436109 DOI: 10.1039/d3nr06186h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Using 4-(3,6-dibromo-9H-carbazol-9-yl)benzonitrile (DBCB) precursors, we successfully constructed two types of cyano-substituted polymers on Au(111) by the molecular beam epitaxy method. According to the geometry, the two polymers are referred to as w-type polymers composed of cis-dimers and z-type polymers composed of trans-dimers. The intermediate dimers and final polymers were well characterized by high-resolution scanning tunneling microscopy (HR-STM). Moreover, the productivities of these two polymers can be controlled by adjusting the heating rate and different treatment methods. High heating rates and hot deposition can provide more ample space and time for molecular diffusion, which is conducive to the formation of w-type polymers with relatively low density. In addition, by combining scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations, we have shown that the addition of CN groups reduces the band gap of the two polymers. Our investigation thus shows the controllable construction of nanostructures through efficient surface synthesis parameters and reveals the potential of using functional groups as tools to modify the electronic properties of polymers.
Collapse
Affiliation(s)
- Boyu Fu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China.
| | - Jianchen Lu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China.
| | - Jianqun Geng
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China.
| | - Yong Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China.
| | - Shijie Sun
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China.
| | - Wei Xiong
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China.
| | - Yi Zhang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China.
| | - Gefei Niu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China.
| | - Lei Gao
- Faculty of Science, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, China.
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming 650093, China.
- Southwest United Graduate School, Kunming, 650000, China
| |
Collapse
|
7
|
Xu X, Kinikar A, Di Giovannantonio M, Pignedoli CA, Ruffieux P, Müllen K, Fasel R, Narita A. On-Surface Synthesis of Anthracene-Fused Zigzag Graphene Nanoribbons from 2,7-Dibromo-9,9'-bianthryl Reveals Unexpected Ring Rearrangements. PRECISION CHEMISTRY 2024; 2:81-87. [PMID: 38425747 PMCID: PMC10900509 DOI: 10.1021/prechem.3c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
On-surface synthesis has emerged as a powerful strategy to fabricate unprecedented forms of atomically precise graphene nanoribbons (GNRs). However, the on-surface synthesis of zigzag GNRs (ZGNR) has met with only limited success. Herein, we report the synthesis and on-surface reactions of 2,7-dibromo-9,9'-bianthryl as the precursor toward π-extended ZGNRs. Characterization by scanning tunneling microscopy and high-resolution noncontact atomic force microscopy clearly demonstrated the formation of anthracene-fused ZGNRs. Unique skeletal rearrangements were also observed, which could be explained by intramolecular Diels-Alder cycloaddition. Theoretical calculations of the electronic properties of the anthracene-fused ZGNRs revealed spin-polarized edge-states and a narrow bandgap of 0.20 eV.
Collapse
Affiliation(s)
- Xiushang Xu
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
- Organic
and Carbon Nanomaterials Unit, Okinawa Institute
of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Amogh Kinikar
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces
Laboratory, 8600 Dübendorf, Switzerland
| | - Marco Di Giovannantonio
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces
Laboratory, 8600 Dübendorf, Switzerland
- Institute
of Structure of Matter − CNR (ISM-CNR), via Fosso del Cavaliere 100, 00133 Roma, Italy
| | | | - Pascal Ruffieux
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces
Laboratory, 8600 Dübendorf, Switzerland
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
- Institute
of Physical Chemistry, Johannes Gutenberg
University Mainz, Duesbergweg
10-14, 55128 Mainz, Germany
| | - Roman Fasel
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces
Laboratory, 8600 Dübendorf, Switzerland
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Akimitsu Narita
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
- Organic
and Carbon Nanomaterials Unit, Okinawa Institute
of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| |
Collapse
|
8
|
Zhao C, Bhagwandin DD, Xu W, Ruffieux P, Khan SI, Pignedoli CA, Fasel R, Rubin Y. Dramatic Acceleration of the Hopf Cyclization on Gold(111): From Enediynes to Peri-Fused Diindenochrysene Graphene Nanoribbons. J Am Chem Soc 2024; 146:2474-2483. [PMID: 38227949 PMCID: PMC10835731 DOI: 10.1021/jacs.3c10144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hopf et al. reported the high-temperature 6π-electrocyclization of cis-hexa-1,3-diene-5-yne to benzene in 1969. Subsequent studies using this cyclization have been limited by its very high reaction barrier. Here, we show that the reaction barrier for two model systems, (E)-1,3,4,6-tetraphenyl-3-hexene-1,5-diyne (1a) and (E)-3,4-bis(4-iodophenyl)-1,6-diphenyl-3-hexene-1,5-diyne (1b), is decreased by nearly half on a Au(111) surface. We have used scanning tunneling microscopy (STM) and noncontact atomic force microscopy (nc-AFM) to monitor the Hopf cyclization of enediynes 1a,b on Au(111). Enediyne 1a undergoes two sequential, quantitative Hopf cyclizations, first to naphthalene derivative 2, and finally to chrysene 3. Density functional theory (DFT) calculations reveal that a gold atom from the Au(111) surface is involved in all steps of this reaction and that it is crucial to lowering the reaction barrier. Our findings have important implications for the synthesis of novel graphene nanoribbons. Ullmann-like coupling of enediyne 1b at 20 °C on Au(111), followed by a series of Hopf cyclizations and aromatization reactions at higher temperatures, produces nanoribbons 12 and 13. These results show for the first time that graphene nanoribbons can be synthesized on a Au(111) surface using the Hopf cyclization mechanism.
Collapse
Affiliation(s)
- Chenxiao Zhao
- Nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Dayanni D Bhagwandin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Wangwei Xu
- Nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Pascal Ruffieux
- Nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Saeed I Khan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Carlo A Pignedoli
- Nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Roman Fasel
- Nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Yves Rubin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles Young Dr. East, Los Angeles, California 90095-1567, United States
| |
Collapse
|