1
|
Chesnyak V, Cuxart MG, Baranowski D, Seufert K, Cojocariu I, Jugovac M, Feyer V, Auwärter W. Stripe-Like hBN Monolayer Template for Self-Assembly and Alignment of Pentacene Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304803. [PMID: 37821403 DOI: 10.1002/smll.202304803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/28/2023] [Indexed: 10/13/2023]
Abstract
Metallic surfaces with unidirectional anisotropy are often used to guide the self-assembly of organic molecules along a particular direction. Such supports thus offer an avenue for the fabrication of hybrid organic-metal interfaces with tailored morphology and precise elemental composition. Nonetheless, such control often comes at the expense of detrimental interfacial interactions that might quench the pristine properties of molecules. Here, hexagonal boron nitride grown on Ir(100) is introduced as a robust platform with several coexisting 1D stripe-like moiré superstructures that effectively guide unidirectional self-assemblies of pentacene molecules, concomitantly preserving their pristine electronic properties. In particular, highly-aligned longitudinal arrays of equally-oriented molecules are formed along two perpendicular directions, as demonstrated by comprehensive scanning tunneling microscopy and photoemission characterization performed at the local and non-local scale, respectively. The functionality of the template is demonstrated by photoemission tomography, a surface-averaging technique requiring a high degree of orientational order of the probed molecules. The successful identification of pentacene's pristine frontier orbitals underlines that the template induces excellent long-range molecular ordering via weak interactions, preventing charge transfer.
Collapse
Affiliation(s)
- Valeria Chesnyak
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, 85747, Garching, Germany
- Dipartimento di Fisica, Università degli Studi di Trieste, via A. Valerio 2, Trieste, 34127, Italy
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, S.S. 14 km 163.5 in AREA Science Park, Basovizza, Trieste, 34149, Italy
| | - Marc G Cuxart
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, 85747, Garching, Germany
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), 28049, Madrid, Spain
| | - Daniel Baranowski
- Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Knud Seufert
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, 85747, Garching, Germany
| | - Iulia Cojocariu
- Dipartimento di Fisica, Università degli Studi di Trieste, via A. Valerio 2, Trieste, 34127, Italy
- Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
- Elettra-Sincrotrone, S.C.p.A. S.S 14 - km 163.5, Trieste, 34149, Italy
| | - Matteo Jugovac
- Elettra-Sincrotrone, S.C.p.A. S.S 14 - km 163.5, Trieste, 34149, Italy
| | - Vitaliy Feyer
- Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
- Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, 47048, Duisburg, Germany
| | - Willi Auwärter
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, 85747, Garching, Germany
| |
Collapse
|
2
|
Lisiecki J, Szabelski P. Structural Quantification of the Surface-Confined Metal-Organic Precursors Simulated with the Lattice Monte Carlo Method. Molecules 2023; 28:molecules28104253. [PMID: 37241994 DOI: 10.3390/molecules28104253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The diversity of surface-confined metal-organic precursor structures, which recently have been observed experimentally, poses a question of how the individual properties of a molecular building block determine those of the resulting superstructure. To answer this question, we use the Monte Carlo simulation technique to model the self-assembly of metal-organic precursors that precede the covalent polymerization of halogenated PAH isomers. For this purpose, a few representative examples of low-dimensional constructs were studied, and their basic structural features were quantified using such descriptors as the orientational order parameter, radial distribution function, and one- and two-dimensional structure factors. The obtained results demonstrated that the morphology of the precursor (and thus the subsequent polymer) could be effectively tuned by a suitable choice of molecular parameters, including size, shape, and intramolecular distribution of halogen substituents. Moreover, our theoretical investigations showed the effect of the main structural features of the precursors on the related indirect characteristics of these constructs. The results reported herein can be helpful in the custom designing and characterization of low-dimensional polymers with adjustable properties.
Collapse
Affiliation(s)
- Jakub Lisiecki
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M.C. Skłodowskiej 3, 20-031 Lublin, Poland
| | - Paweł Szabelski
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M.C. Skłodowskiej 3, 20-031 Lublin, Poland
| |
Collapse
|
3
|
Ren B, Lu Y, Wang R, Liu H. First-principles study of chalcogen-bonded self-assembly structures on silicene: some insight into the fabrication of molecular architectures on surfaces through chalcogen bonding. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Tang N, Chen Y, Li Y, Yu B. 2D Polymer Nanonets: Controllable Constructions and Functional Applications. Macromol Rapid Commun 2022; 43:e2200250. [PMID: 35524950 DOI: 10.1002/marc.202200250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/24/2022] [Indexed: 11/12/2022]
Abstract
Two-dimensional (2D) polymer nanonets have demonstrated great potential in various application fields due to their integrated advantages of ultrafine diameter, small pore size, high porosity, excellent interconnectivity, and large specific surface area. Here, a comprehensive overview of the controlled constructions of the polymer nanonets derived from electrospinning/netting, direct electronetting, self-assembly of cellulose nanofibers, and nonsolvent-induced phase separation is provided. Then, the widely researched multifunctional applications of polymer nanonets in filtration, sensor, tissue engineering, and electricity are also given. Finally, the challenges and possible directions for further developing the polymer nanonets are also intensively highlighted. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ning Tang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yu Chen
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuyao Li
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Bin Yu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
5
|
Nguyen NN, Lee H, Lee HC, Cho K. van der Waals Epitaxy of Organic Semiconductor Thin Films on Atomically Thin Graphene Templates for Optoelectronic Applications. Acc Chem Res 2022; 55:673-684. [PMID: 35142485 DOI: 10.1021/acs.accounts.1c00686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ConspectusOrganic semiconductors (OSCs) offer unique advantages with respect to mechanical flexibility, low-cost processing, and tunable properties. The optical and electrical properties of devices based on OSCs can be greatly improved when an OSC is coupled with graphene in a certain manner. Our research group has focused on using graphene as a growth template for OSCs and incorporating such high-quality heterostructures into optoelectronic devices. The idea is that graphene's atomically flat surface with a uniform sp2 carbon network can serve as a perfect quasi-epitaxial template for the growth of OSCs. In addition, OSC-graphene heterostructures benefit from graphene's unique characteristics, such as its high charge-carrier mobility, excellent optical transparency, and fascinating mechanical durability and flexibility.However, we have often found that OSC molecules assemble on graphene in unpredictable manners that vary from batch to batch. From observations of numerous research systems, we elucidated the mechanism underlying such poor repeatability and set out a framework to actually control the template effect of graphene on OSCs. In this Account, we not only present our scientific findings in this spectrum of areas but also convey our research scheme to the readers so that similar heterostructure complexes can be systematically studied.We began with experiments showing that the growth of OSCs on a graphene surface was driven by van der Waals interactions and is therefore sensitive to the cleanliness of the graphene surface. Nonetheless, we noted that, even on similarly clean graphene surfaces, the OSC thin film still varied with the underlying substrate. Thanks to the graphene-transfer method and in situ gating methods that we developed, we discovered that the decisive parameter for molecule-graphene interaction (and, hence, for the growth of OSCs on graphene) is the charge density in the graphene. Thus, to prepare a graphene template for high-quality graphene-OSC heterostructures, we controlled the charge density in the graphene to minimize the molecule-graphene interaction. Moreover, the possible charge transfer between OSC molecules and graphene, which induces additional molecule-graphene interactions, should also be taken into account. Eventually, we demonstrated a wide range of optoelectronic applications that benefitted from high-quality OSC-graphene heterostructures fabricated using our proof-of-concept systems.
Collapse
Affiliation(s)
- Nguyen Ngan Nguyen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Hansol Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Hyo Chan Lee
- Department of Chemical Engineering, Myoungji University, Yongin 17058, Republic of Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
6
|
Cao P, Wu J. Self-Assembly of MoS 2 Monolayer Sheets by Desulfurization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4971-4983. [PMID: 33858139 DOI: 10.1021/acs.langmuir.1c00369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembled structures of two-dimensional (2D) materials exhibit novel physical properties distinct from those of their parent materials. Herein, the critical role of desulfurization on the self-assembled structural morphologies of molybdenum disulfide (MoS2) monolayer sheets is explored using molecular dynamics (MD) simulations. MD results show that there are differences in the atomic energetics of MoS2 monolayer sheets with different desulfurization contents. Both free-standing and substrate-hosted MoS2 monolayer sheets show diversity in structural morphologies, for example, flat plane structures, wrinkles, nanotubes, and folds, depending on the desulfurization contents, planar dimensions, and ratios of length to width of MoS2 sheets. Particularly, at the critical desulfurization content, they can roll up into nanotubes, which is in good agreement with previous experimental observations. Importantly, these observed differences in the molecular structural morphologies between free-standing and substrate-hosted MoS2 monolayer sheets can be attributed to interatomic interactions and interlayer van der Waals interactions. Furthermore, MD results have demonstrated that the surface-driven stability of MoS2 structures can be indicated by the desulfurization contents on one surface of MoS2 monolayer sheets, and the self-assembly of MoS2 monolayer sheets by desulfurization can emerge to adjust their surface-driven stability. The study provides important atomic insights into tuning the self-assembling structural morphologies of 2D materials through defect engineering in the future science and engineering applications.
Collapse
Affiliation(s)
- Pinqiang Cao
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China
| | - Jianyang Wu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
7
|
Lisiecki J, Szabelski P. Designing 2D covalent networks with lattice Monte Carlo simulations: precursor self-assembly. Phys Chem Chem Phys 2021; 23:5780-5796. [PMID: 33666606 DOI: 10.1039/d0cp06608g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic synthesis reactions in the adsorbed phase have been recently an intensively studied topic in heterogeneous catalysis and material engineering. One of such processes is the Ullmann coupling in which halogenated organic monomers are transformed into covalently bonded polymeric structures. In this work, we use the lattice Monte Carlo simulation method to study the on-surface self-assembly of organometallic precursor architectures comprising tetrasubstituted naphthalene building blocks with differently distributed halogen atoms. In the coarse grained approach adopted herein the molecules and metal atoms were modeled by discrete segments, two connected and one, respectively, placed on a triangular lattice representing a (111) metallic surface. Our simulations focused on the influence of the intramolecular distribution of the substituents on the morphology of the resulting superstructures. Special attention was paid to the molecules that create porous networks characterized by long-range order. Moreover, the structural analysis of the assemblies comprising prochiral building blocks was made by running simulations for the corresponding enantiopure and racemic adsorbed systems. The obtained results demonstrated the possibility of directing the on-surface self-assembly towards networks with controllable pore shape and size. These findings can be helpful in designing covalently bonded 2D superstructures with predefined architecture and functions.
Collapse
Affiliation(s)
- Jakub Lisiecki
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Pl. M.C. Skłodowskiej 3, 20-031 Lublin, Poland.
| | - Paweł Szabelski
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Pl. M.C. Skłodowskiej 3, 20-031 Lublin, Poland.
| |
Collapse
|
8
|
Su CH, Chen HL, Sun SJ, Ju SP, Hou TH, Lin CH. Observing the three-dimensional terephthalic acid supramolecular growth mechanism on a stearic acid buffer layer by molecular simulation methods. RSC Adv 2020; 10:1319-1330. [PMID: 35494717 PMCID: PMC9047411 DOI: 10.1039/c9ra07007a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/05/2019] [Indexed: 11/21/2022] Open
Abstract
The terephthalic acid (TPA) supramolecular growth mechanisms on the stearic acid (STA) buffer layer, such as the phase separation and layer-by-layer (LBL) mechanisms, were considered by molecular simulations.
Collapse
Affiliation(s)
- Chia-Hao Su
- Institute for Translational Research in Biomedicine
- Kaohsiung Chang Gung Memorial Hospital
- Kaohsiung 833
- Taiwan
| | - Hui-Lung Chen
- Department of Chemistry and Institute of Applied Chemistry
- Chinese Culture University
- Taipei 111
- Taiwan
| | - Shih-Jye Sun
- Department of Applied Physics
- National University of Kaohsiung
- Kaohsiung 811
- Taiwan
| | - Shin-Pon Ju
- Department of Mechanical and Electro-Mechanical Engineering
- National Sun Yat-sen University
- Kaohsiung 804
- Taiwan
- Department of Medicinal and Applied Chemistry
| | - Tsu-Hsun Hou
- Department of Mechanical and Electro-Mechanical Engineering
- National Sun Yat-sen University
- Kaohsiung 804
- Taiwan
| | - Che-Hsin Lin
- Department of Mechanical and Electro-Mechanical Engineering
- National Sun Yat-sen University
- Kaohsiung 804
- Taiwan
| |
Collapse
|
9
|
Nieckarz D, Szabelski P. Surface-Confined Self-Assembly of Asymmetric Tetratopic Molecular Building Blocks. Chemphyschem 2019; 20:1850-1859. [PMID: 31095854 DOI: 10.1002/cphc.201900344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/15/2019] [Indexed: 11/11/2022]
Abstract
Surface-confined self-assembly of functional molecular building blocks has recently been widely used to create low-dimensional, also covalent, superstructures with tailorable geometry and physicochemical properties. In this contribution, using the lattice Monte Carlo simulation method, we demonstrate how the structure-property relation can be established for the 2D self-assembly of a model tetrapod molecule with reduced symmetry. To that end, a rigid functional unit comprising a few interconnected segments arranged in different tetrapod shapes was used and its self-assembly on a triangular lattice representing a (111) crystal surface was simulated. The results of our calculations show strong dependence of the structure formation on the molecular symmetry, in particular on the (pro)chiral nature of the building block. The simulations predicted the formation of unusual ordered racemic networks with unique aperiodic spatial distribution of the surface enantiomers. Molecular symmetry was also found to have significant influence on the enantiopure self-assembly which resulted in the Kagome and brickwall networks and other less ordered extended superstructures with parallelogram pores. The theoretical findings of this contribution can be relevant to designing and on-surface synthesis of molecular superstructures with predefined geometries and functions. In particular, the predicted molecular architectures can stimulate experimental efforts to fabricate and explore new nanostructures, for example graphitic, having the composition and geometry proposed in our study.
Collapse
Affiliation(s)
- Damian Nieckarz
- Department of Theoretical Chemistry, Maria-Curie Skłodowska University, Pl. M.C. Skłodowskiej 3, 20-031, Lublin, Poland
| | - Paweł Szabelski
- Department of Theoretical Chemistry, Maria-Curie Skłodowska University, Pl. M.C. Skłodowskiej 3, 20-031, Lublin, Poland
| |
Collapse
|
10
|
Freibert A, Dieterich JM, Hartke B. Exploring self-organization of molecular tether molecules on a gold surface by global structure optimization. J Comput Chem 2019; 40:1978-1989. [PMID: 31069834 DOI: 10.1002/jcc.25853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 11/11/2022]
Abstract
We employ nondeterministic global cluster structure optimization, based on the evolutionary algorithms paradigm, to model the self-assembly of complex molecules on a surface. As a real-life application example directly related to many recent experiments, we use this approach for the assembly of triazatriangulene "platform" molecules on the Au(111) surface. Without additional restrictions like spatial discretizations, coarse-graining or precalculated adsorption poses, and despite the proof-of-principle character of this study, we achieve satisfactory qualitative agreement with several experimental observations and can provide answers to questions that experiments on these species had left open so far. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Antonia Freibert
- Institute for Physical Chemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098, Kiel, Germany.,Department of Chemistry, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Johannnes M Dieterich
- Institute for Physical Chemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098, Kiel, Germany
| | - Bernd Hartke
- Institute for Physical Chemistry, Christian-Albrechts-University, Olshausenstr. 40, 24098, Kiel, Germany
| |
Collapse
|
11
|
Ma L, Jia Y, Ducharme S, Wang J, Zeng XC. Diisopropylammonium Bromide Based Two-Dimensional Ferroelectric Monolayer Molecular Crystal with Large In-Plane Spontaneous Polarization. J Am Chem Soc 2019; 141:1452-1456. [DOI: 10.1021/jacs.8b12102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liang Ma
- Department of Chemistry, Nebraska Center for Materials and Nanoscience, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
- School of Physics, Southeast University, Nanjing 211189, China
| | - Yinglu Jia
- Department of Chemistry, Nebraska Center for Materials and Nanoscience, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Stephen Ducharme
- Department of Physics and Astronomy, Nebraska Center for Materials and Nanoscience, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Xiao Cheng Zeng
- Department of Chemistry, Nebraska Center for Materials and Nanoscience, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
- Department of Physics and Astronomy, Nebraska Center for Materials and Nanoscience, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
- Department of Mechanical & Materials Engineering, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
12
|
Jiang S, Qian J, Duan Y, Wang H, Guo J, Guo Y, Liu X, Wang Q, Shi Y, Li Y. Millimeter-Sized Two-Dimensional Molecular Crystalline Semiconductors with Precisely Defined Molecular Layers via Interfacial-Interaction-Modulated Self-Assembly. J Phys Chem Lett 2018; 9:6755-6760. [PMID: 30415550 DOI: 10.1021/acs.jpclett.8b03108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The newly emerging field in organic electronics is to control the molecule-substrate interface properties at a two-dimensional (2D) limit via interfacial interactions, which paves the way for driving the molecular assembly for highly ordered 2D molecular crystalline films with precise molecular layers and large-area uniformity. Here, by exploiting molecule-substrate van der Waals (vdW) interactions, we demonstrate thermally induced self-assembly of 2D organic crystalline films exhibiting well-defined molecular layer number over a millimeter-sized area. The organic field-effect transistors (OFETs) with bilayer films show excellent electrical performance with a maximum mobility of 12.8 cm2 V-1 s-1. Moreover, we find that the monolayer films can act as interfacial molecular templates to construct heterojunctions with well-balanced ambipolar transport behaviors. The capability of thermally induced self-assembly of 2D molecular crystalline films with controllable molecular layers and scale-up coverage opens up a way for realizing complicated electronic applications, such as lateral heterojunctions and superlattices.
Collapse
Affiliation(s)
- Sai Jiang
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China
| | - Jun Qian
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China
| | - Yiwei Duan
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China
| | - Hengyuan Wang
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China
| | - Jianhang Guo
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China
| | - Yu Guo
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China
| | - Xinyi Liu
- Nanjing Foreign Language School , Nanjing , Jiangsu 210008 , P. R. China
| | - Qijing Wang
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China
| | - Yi Shi
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China
| | - Yun Li
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing , Jiangsu 210093 , P. R. China
| |
Collapse
|
13
|
Schwarz M, Duncan DA, Garnica M, Ducke J, Deimel PS, Thakur PK, Lee TL, Allegretti F, Auwärter W. Quantitative determination of a model organic/insulator/metal interface structure. NANOSCALE 2018; 10:21971-21977. [PMID: 30444513 PMCID: PMC6289171 DOI: 10.1039/c8nr06387g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/28/2018] [Indexed: 05/22/2023]
Abstract
By combining X-ray photoelectron spectroscopy, X-ray standing waves and scanning tunneling microscopy, we investigate the geometric and electronic structure of a prototypical organic/insulator/metal interface, namely cobalt porphine on monolayer hexagonal boron nitride (h-BN) on Cu(111). Specifically, we determine the adsorption height of the organic molecule and show that the original planar molecular conformation is preserved in contrast to the adsorption on Cu(111). In addition, we highlight the electronic decoupling provided by the h-BN spacer layer and find that the h-BN-metal separation is not significantly modified by the molecular adsorption. Finally, we find indication of a temperature dependence of the adsorption height, which might be a signature of strongly-anisotropic thermal vibrations of the weakly bonded molecules.
Collapse
Affiliation(s)
- Martin Schwarz
- Physics Department
, Technical University of Munich
,
85748 Garching
, Germany
.
;
| | - David A. Duncan
- Diamond Light Source
, Harwell Science and Innovation Campus
,
Didcot OX11 0DE
, UK
| | - Manuela Garnica
- Physics Department
, Technical University of Munich
,
85748 Garching
, Germany
.
;
| | - Jacob Ducke
- Physics Department
, Technical University of Munich
,
85748 Garching
, Germany
.
;
| | - Peter S. Deimel
- Physics Department
, Technical University of Munich
,
85748 Garching
, Germany
.
;
| | - Pardeep K. Thakur
- Diamond Light Source
, Harwell Science and Innovation Campus
,
Didcot OX11 0DE
, UK
| | - Tien-Lin Lee
- Diamond Light Source
, Harwell Science and Innovation Campus
,
Didcot OX11 0DE
, UK
| | - Francesco Allegretti
- Physics Department
, Technical University of Munich
,
85748 Garching
, Germany
.
;
| | - Willi Auwärter
- Physics Department
, Technical University of Munich
,
85748 Garching
, Germany
.
;
| |
Collapse
|
14
|
Mansbach RA, Ferguson AL. Patchy Particle Model of the Hierarchical Self-Assembly of π-Conjugated Optoelectronic Peptides. J Phys Chem B 2018; 122:10219-10236. [DOI: 10.1021/acs.jpcb.8b05781] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rachael A. Mansbach
- Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Andrew L. Ferguson
- Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, 1304 W Green Street, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Saikia N, Johnson F, Waters K, Pandey R. Dynamics of self-assembled cytosine nucleobases on graphene. NANOTECHNOLOGY 2018; 29:195601. [PMID: 29461252 DOI: 10.1088/1361-6528/aab0ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular self-assembly of cytosine (C n ) bases on graphene was investigated using molecular dynamics methods. For free-standing C n bases, simulation conditions (gas versus aqueous) determine the nature of self-assembly; the bases prefer to aggregate in the gas phase and are stabilized by intermolecular H-bonds, while in the aqueous phase, the water molecules disrupt base-base interactions, which facilitate the formation of π-stacked domains. The substrate-induced effects, on the other hand, find the polarity and donor-acceptor sites of the bases to govern the assembly process. For example, in the gas phase, the assembly of C n bases on graphene displays short-range ordered linear arrays stabilized by the intermolecular H-bonds. In the aqueous phase, however, there are two distinct configurations for the C n bases assembly on graphene. For the first case corresponding to low surface coverage, the bases are dispersed on graphene and are isolated. The second configuration archetype is disordered linear arrays assembled with medium and high surface coverage. The simulation results establish the role of H-bonding, vdW π-stacking, and the influence of graphene surface towards the self-assembly. The ability to regulate the assembly into well-defined patterns can aid in the design of self-assembled nanostructures for the next-generation DNA based biosensors and nanoelectronic devices.
Collapse
|
16
|
Szabelski P, Rżysko W, Nieckarz D. Dichotomous On-Surface Self-Assembly of Tripod Molecules with Anchor Like Interaction Pattern. Top Catal 2018. [DOI: 10.1007/s11244-018-0976-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Grzybowski BA, Fitzner K, Paczesny J, Granick S. From dynamic self-assembly to networked chemical systems. Chem Soc Rev 2018; 46:5647-5678. [PMID: 28703815 DOI: 10.1039/c7cs00089h] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although dynamic self-assembly, DySA, is a relatively new area of research, the past decade has brought numerous demonstrations of how various types of components - on scales from (macro)molecular to macroscopic - can be arranged into ordered structures thriving in non-equilibrium, steady states. At the same time, none of these dynamic assemblies has so far proven practically relevant, prompting questions about the field's prospects and ultimate objectives. The main thesis of this Review is that formation of dynamic assemblies cannot be an end in itself - instead, we should think more ambitiously of using such assemblies as control elements (reconfigurable catalysts, nanomachines, etc.) of larger, networked systems directing sequences of chemical reactions or assembly tasks. Such networked systems would be inspired by biology but intended to operate in environments and conditions incompatible with living matter (e.g., in organic solvents, elevated temperatures, etc.). To realize this vision, we need to start considering not only the interactions mediating dynamic self-assembly of individual components, but also how components of different types could coexist and communicate within larger, multicomponent ensembles. Along these lines, the review starts with the discussion of the conceptual foundations of self-assembly in equilibrium and non-equilibrium regimes. It discusses key examples of interactions and phenomena that can provide the basis for various DySA modalities (e.g., those driven by light, magnetic fields, flows, etc.). It then focuses on the recent examples where organization of components in steady states is coupled to other processes taking place in the system (catalysis, formation of dynamic supramolecular materials, control of chirality, etc.). With these examples of functional DySA, we then look forward and consider conditions that must be fulfilled to allow components of multiple types to coexist, function, and communicate with one another within the networked DySA systems of the future. As the closing examples show, such systems are already appearing heralding new opportunities - and, to be sure, new challenges - for DySA research.
Collapse
Affiliation(s)
- Bartosz A Grzybowski
- IBS Center for Soft and Living Matter, UNIST, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan, 689-798, Republic of Korea.
| | | | | | | |
Collapse
|
18
|
Tian T, Shih CJ. Molecular Epitaxy on Two-Dimensional Materials: The Interplay between Interactions. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02669] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tian Tian
- Institute for Chemical and
Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| | - Chih-Jen Shih
- Institute for Chemical and
Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| |
Collapse
|
19
|
Packwood DM, Han P, Hitosugi T. Chemical and entropic control on the molecular self-assembly process. Nat Commun 2017; 8:14463. [PMID: 28195175 PMCID: PMC5316874 DOI: 10.1038/ncomms14463] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/31/2016] [Indexed: 11/09/2022] Open
Abstract
Molecular self-assembly refers to the spontaneous assembly of molecules into larger structures. In order to exploit molecular self-assembly for the bottom-up synthesis of nanomaterials, the effects of chemical control (strength of the directionality in the intermolecular interaction) and entropic control (temperature) on the self-assembly process should be clarified. Here we present a theoretical methodology that unambiguously distinguishes the effects of chemical and entropic control on the self-assembly of molecules adsorbed to metal surfaces. While chemical control simply increases the formation probability of ordered structures, entropic control induces a variety of effects. These effects range from fine structure modulation of ordered structures, through to degrading large, amorphous structures into short, chain-shaped structures. Counterintuitively, the latter effect shows that entropic control can improve molecular ordering. By identifying appropriate levels of chemical and entropic control, our methodology can, therefore, identify strategies for optimizing the yield of desired nanostructures from the molecular self-assembly process.
Collapse
Affiliation(s)
- Daniel M Packwood
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.,Japan Science and Technology Agency (PRESTO), Kawaguchi, Saitama 332-0012, Japan
| | - Patrick Han
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan.,California NanoSystems Institute and Departments of Chemistry and Biochemistry and Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Taro Hitosugi
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan.,School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8352, Japan
| |
Collapse
|
20
|
Bouju X, Mattioli C, Franc G, Pujol A, Gourdon A. Bicomponent Supramolecular Architectures at the Vacuum–Solid Interface. Chem Rev 2017; 117:1407-1444. [DOI: 10.1021/acs.chemrev.6b00389] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xavier Bouju
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| | | | - Grégory Franc
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| | - Adeline Pujol
- Université de Toulouse, UPS, CNRS, CEMES, 118 route de Narbonne, 31062 Toulouse, France
| | - André Gourdon
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| |
Collapse
|
21
|
Lyu L, Niu D, Xie H, Cao N, Zhang H, Zhang Y, Liu P, Gao Y. Orientation-dependent energy level alignment and film growth of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on HOPG. J Chem Phys 2016; 144:034701. [PMID: 26801037 DOI: 10.1063/1.4939839] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Combining ultraviolet photoemission spectroscopy, X-ray photoemission spectroscopy, atomic force microscopy, and X-ray diffraction measurements, we performed a systematic investigation on the correlation of energy level alignment, film growth, and molecular orientation of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on highly oriented pyrolytic graphite. The molecules lie down in the first layer and then stand up from the second layer. The ionization potential shows a sharp decrease from the lying down region to the standing up region. When C8-BTBT molecules start standing up, unconventional energy level band-bending-like shifts are observed as the film thickness increases. These shifts are ascribed to gradual decreasing of the molecular tilt angle about the substrate normal with the increasing film thickness.
Collapse
Affiliation(s)
- Lu Lyu
- Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, No. 605 Lushan South Road, Changsha, Hunan 410012, People's Republic of China
| | - Dongmei Niu
- Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, No. 605 Lushan South Road, Changsha, Hunan 410012, People's Republic of China
| | - Haipeng Xie
- Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, No. 605 Lushan South Road, Changsha, Hunan 410012, People's Republic of China
| | - Ningtong Cao
- Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, No. 605 Lushan South Road, Changsha, Hunan 410012, People's Republic of China
| | - Hong Zhang
- Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, No. 605 Lushan South Road, Changsha, Hunan 410012, People's Republic of China
| | - Yuhe Zhang
- Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, No. 605 Lushan South Road, Changsha, Hunan 410012, People's Republic of China
| | - Peng Liu
- Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, No. 605 Lushan South Road, Changsha, Hunan 410012, People's Republic of China
| | - Yongli Gao
- Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, No. 605 Lushan South Road, Changsha, Hunan 410012, People's Republic of China
| |
Collapse
|
22
|
Wu B, Zhao Y, Nan H, Yang Z, Zhang Y, Zhao H, He D, Jiang Z, Liu X, Li Y, Shi Y, Ni Z, Wang J, Xu JB, Wang X. Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions. NANO LETTERS 2016; 16:3754-9. [PMID: 27183049 DOI: 10.1021/acs.nanolett.6b01108] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Precise assembly of semiconductor heterojunctions is the key to realize many optoelectronic devices. By exploiting the strong and tunable van der Waals (vdW) forces between graphene and organic small molecules, we demonstrate layer-by-layer epitaxy of ultrathin organic semiconductors and heterostructures with unprecedented precision with well-defined number of layers and self-limited characteristics. We further demonstrate organic p-n heterojunctions with molecularly flat interface, which exhibit excellent rectifying behavior and photovoltaic responses. The self-limited organic molecular beam epitaxy (SLOMBE) is generically applicable for many layered small-molecule semiconductors and may lead to advanced organic optoelectronic devices beyond bulk heterojunctions.
Collapse
Affiliation(s)
- Bing Wu
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University , Nanjing 210093, China
| | - Yinghe Zhao
- Department of Physics, Southeast University , Nanjing 211189, People's Republic of China
| | - Haiyan Nan
- Department of Physics, Southeast University , Nanjing 211189, People's Republic of China
| | - Ziyi Yang
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University , Nanjing 210093, China
| | - Yuhan Zhang
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University , Nanjing 210093, China
| | - Huijuan Zhao
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University , Nanjing 210093, China
| | - Daowei He
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University , Nanjing 210093, China
| | - Zonglin Jiang
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University , Nanjing 210093, China
| | - Xiaolong Liu
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University , Nanjing 210093, China
| | - Yun Li
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University , Nanjing 210093, China
| | - Yi Shi
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University , Nanjing 210093, China
| | - Zhenhua Ni
- Department of Physics, Southeast University , Nanjing 211189, People's Republic of China
| | - Jinlan Wang
- Department of Physics, Southeast University , Nanjing 211189, People's Republic of China
- Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University , Changsha 410081, China
| | - Jian-Bin Xu
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong , Hong Kong SAR, People's Republic of China
| | - Xinran Wang
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University , Nanjing 210093, China
| |
Collapse
|