1
|
Hymas M, Casademont-Reig I, Poigny S, Stavros VG. Characteristic Photoprotective Molecules from the Sphagnum World: A Solution-Phase Ultrafast Study of Sphagnic Acid. Molecules 2023; 28:6153. [PMID: 37630405 PMCID: PMC10458426 DOI: 10.3390/molecules28166153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
A natural UV-absorbing chromophore extracted from sphagnum mosses, sphagnic acid, is proposed as a new natural support to chemical UV filters for use in cosmetic applications. Sphagnic acid is structurally related to the cinnamate family of molecules, known for their strong UV absorption, efficient non-radiative decay, and antioxidant properties. In this study, transient electronic absorption spectroscopy is used, in conjunction with steady-state techniques, to model the photodynamics following photoexcitation of sphagnic acid in different solvent systems. Sphagnic acid was found in each system to relax with lifetimes of ~200 fs and ~1.5 ps before generating a cis-isomer photoproduct. This study helps to elucidate the photoprotective mechanism of a new potential natural support to sunscreens, from a unique plant source.
Collapse
Affiliation(s)
- Michael Hymas
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK; (M.H.); (I.C.-R.)
| | - Irene Casademont-Reig
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK; (M.H.); (I.C.-R.)
- Department of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Stéphane Poigny
- Mibelle Group Biochemistry, Mibelle AG, Bolimattstrasse 1, CH-5033 Buchs, Switzerland
| | - Vasilios G. Stavros
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK; (M.H.); (I.C.-R.)
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
2
|
Wang X, Kinziabulatova L, Bortoli M, Manickoth A, Barilla MA, Huang H, Blancafort L, Kohler B, Lumb JP. Indole-5,6-quinones display hallmark properties of eumelanin. Nat Chem 2023; 15:787-793. [PMID: 37037912 DOI: 10.1038/s41557-023-01175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023]
Abstract
Melanins are ubiquitous biopolymers produced from phenols and catechols by oxidation. They provide photoprotection, pigmentation and redox activity to most life forms, and inspire synthetic materials with desirable optical, electronic and mechanical properties. The chemical structures of melanins remain elusive, however, creating uncertainty about their roles, and preventing the design of synthetic mimics with tailored properties. Indole-5,6-quinone (IQ) has been implicated as a biosynthetic intermediate and structural subunit of mammalian eumelanin pigments, but its instability has prevented its isolation and unambiguous characterization. Here we use steric shielding to stabilize IQ and show that 'blocked' derivatives exhibit eumelanin's characteristic ultrafast nonradiative decay and its ability to absorb light from the ultraviolet to the near-infrared. These new compounds are also redox-active and a source of paramagnetism, emulating eumelanin's unique electronic properties, which include persistent radicals. Blocked IQs are atomistically precise and tailorable molecules that can offer a bottom-up understanding of emergent properties in eumelanin and have the potential to advance the rational design of melanin-inspired materials.
Collapse
Affiliation(s)
- Xueqing Wang
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Lilia Kinziabulatova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Marco Bortoli
- Institut de Química Computacional i Catàlisi, Facultat de Ciències, Universitat de Girona, Girona, Spain
| | - Anju Manickoth
- Institut de Química Computacional i Catàlisi, Facultat de Ciències, Universitat de Girona, Girona, Spain
| | - Marisa A Barilla
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Haiyan Huang
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi, Facultat de Ciències, Universitat de Girona, Girona, Spain.
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Gholap AD, Sayyad SF, Hatvate NT, Dhumal VV, Pardeshi SR, Chavda VP, Vora LK. Drug Delivery Strategies for Avobenzone: A Case Study of Photostabilization. Pharmaceutics 2023; 15:1008. [PMID: 36986867 PMCID: PMC10059943 DOI: 10.3390/pharmaceutics15031008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Several developments and research methods are ongoing in drug technology and chemistry research to elicit effectiveness regarding the therapeutic activity of drugs along with photoprotection for their molecular integrity. The detrimental effect of UV light induces damaged cells and DNA, which leads to skin cancer and other phototoxic effects. The application of sunscreen shields to the skin is important, along with recommended UV filters. Avobenzone is widely used as a UVA filter for skin photoprotection in sunscreen formulations. However, keto-enol tautomerism propagates photodegradation into it, which further channelizes the phototoxic and photoirradiation effects, further limiting its use. Several approaches have been used to counter these issues, including encapsulation, antioxidants, photostabilizers, and quenchers. To seek the gold standard approach for photoprotection in photosensitive drugs, combinations of strategies have been implemented to identify effective and safe sunscreen agents. The stringent regulatory guidelines for sunscreen formulations, along with the availability of limited FDA-approved UV filters, have led many researchers to develop perfect photostabilization strategies for available photostable UV filters, such as avobenzone. From this perspective, the objective of the current review is to summarize the recent literature on drug delivery strategies implemented for the photostabilization of avobenzone that could be useful to frame industrially oriented potential strategies on a large scale to circumvent all possible photounstable issues of avobenzone.
Collapse
Affiliation(s)
- Amol D. Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
- Department of Pharmaceutics, Amrutvahini College of Pharmacy, Sangamner 422608, Maharashtra, India
| | - Sadikali F. Sayyad
- Department of Pharmaceutics, Amrutvahini College of Pharmacy, Sangamner 422608, Maharashtra, India
| | - Navnath T. Hatvate
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Vilas V. Dhumal
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Sagar R. Pardeshi
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Lalitkumar K. Vora
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
4
|
Fares MM, Radaydeh SK, AlAmeen HM. Green Tannins /Avocado Oil Composites; Suncare and Skincare Materials. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
5
|
Whittock AL, Abiola TT, Stavros VG. A Perspective on Femtosecond Pump-Probe Spectroscopy in the Development of Future Sunscreens. J Phys Chem A 2022; 126:2299-2308. [PMID: 35394773 PMCID: PMC9036518 DOI: 10.1021/acs.jpca.2c01000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Given
the negative impacts of overexposure to ultraviolet radiation
(UVR) on humans, sunscreens have become a widely used product. Certain
ingredients within sunscreens are responsible for photoprotection
and these are known, collectively herein, as ultraviolet (UV) filters.
Generally speaking, organic UV filters work by absorbing the potentially
harmful UVR and dissipating this energy as harmless heat. This process
happens on picosecond time scales and so femtosecond pump–probe
spectroscopy (FPPS) is an ideal technique for tracking this energy
conversion in real time. Coupling FPPS with complementary techniques,
including steady-state spectroscopy and computational methods, can
provide a detailed mechanistic picture of how UV filters provide photoprotection.
As such, FPPS is crucial in aiding the future design of UV filters.
This Perspective sheds light on the advancements made over the past
two years on both approved and nature-inspired UV filters. Moreover,
we suggest where FPPS can be further utilized within sunscreen applications
for future considerations.
Collapse
Affiliation(s)
- Abigail L Whittock
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.,Analytical Science Centre for Doctoral Training, Senate House, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Temitope T Abiola
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Vasilios G Stavros
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
6
|
Revealing how proton transfer process of 2-hydroxylbenzophenones affected by the intermolecular hydrogen bond with different para-substituted groups. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Silva JFD, Picada JN, Campos ÉL, Leite GZ, Obach ES, Campo LF, Corrêa DS. A study on 2-(2’-hydroxyphenyl) benzoxazoles derivatives as potential organic UV filters, Part I. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Affiliation(s)
| | | | - Érico Leite Campos
- Lutheran University of Brazil, Brazil; Lutheran University of Brazil, Brazil
| | | | | | | | | |
Collapse
|
8
|
Chang XP, Zhang TS, Cui G. Theoretical Studies on the Excited-State Decay Mechanism of Homomenthyl Salicylate in a Gas Phase and an Acetonitrile Solution. J Phys Chem A 2021; 126:16-28. [PMID: 34963284 DOI: 10.1021/acs.jpca.1c07108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we employ the CASPT2//CASSCF and QM(CASPT2//CASSCF)/MM approaches to explore the photochemical mechanism of homomenthyl salicylate (HMS) in vacuum and an acetonitrile solution. The results show that in both cases, the excited-state relaxation mainly involves a spectroscopically "bright" S1(1ππ*) state and the lower-lying T1 and T2 states. In the major relaxation pathway, the photoexcited S1 keto system first undergoes an essentially barrierless excited-state intramolecular proton transfer (ESIPT) to generate the S1 enol minimum, near which a favorable S1/S0 conical intersection decays the system to the S0 state followed by a reverse ground-state intramolecular proton transfer (GSIPT) to repopulate the initial S0 keto species. In the minor one, an S1/T2/T1 three-state intersection in the keto region makes the T1 state populated via direct and T2-mediated intersystem crossing (ISC) processes. In the T1 state, an ESIPT occurs, which is followed by ISC near a T1/S0 crossing point in the enol region to the S0 state and finally back to the S0 keto species. In addition, a T1/S0 crossing point near the T1 keto minimum can also help the system decay to the S0 keto species. However, small spin-orbit couplings between T1 and S0 at these T1/S0 crossing points make ISC to the S0 state very slow and make the system trapped in the T1 state for a while. The present work rationalizes not only the ultrafast excited-state decay dynamics of HMS but also its low quantum yield of phosphorescence at 77 K.
Collapse
Affiliation(s)
- Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Teng-Shuo Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
9
|
Xie BB, Tang XF, Liu XY, Chang XP, Cui G. Mechanistic photophysics and photochemistry of unnatural bases and sunscreen molecules: insights from electronic structure calculations. Phys Chem Chem Phys 2021; 23:27124-27149. [PMID: 34849517 DOI: 10.1039/d1cp03994f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photophysics and photochemistry are basic subjects in the study of light-matter interactions and are ubiquitous in diverse fields such as biology, energy, materials, and environment. A full understanding of mechanistic photophysics and photochemistry underpins many recent advances and applications. This contribution first provides a short discussion on the theoretical calculation methods we have used in relevant studies, then we introduce our latest progress on the mechanistic photophysics and photochemistry of two classes of molecular systems, namely unnatural bases and sunscreens. For unnatural bases, we disclose the intrinsic driving forces for the ultrafast population to reactive triplet states, impacts of the position and degree of chalcogen substitutions, and the effects of complex environments. For sunscreen molecules, we reveal the photoprotection mechanisms that dissipate excess photon energy to the surroundings by ultrafast internal conversion to the ground state. Finally, relevant theoretical challenges and outlooks are discussed.
Collapse
Affiliation(s)
- Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Xiu-Fang Tang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
10
|
Wu Z, Wang M, Guo Y, Ji F, Wang C, Wang S, Zhang J, Wang Y, Zhang S, Jin B, Zhao G. Nonadiabatic Dynamics Mechanism of Chalcone Analogue Sunscreen FPPO-HBr: Excited State Intramolecular Proton Transfer Followed by Conformation Twisting. J Phys Chem B 2021; 125:9572-9578. [PMID: 34433282 DOI: 10.1021/acs.jpcb.1c05809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nowadays, traditional sunscreen molecules face many adverse problems: single energy relaxation pathway, lack of adequate UVA light protection, and therefore no longer meeting the growing demand for UVA protection. In this work, we reported a novel sunscreen molecule (E)-3-(5-bromofuran-2-yl)-1-(2-hydroxyphenyl)prop-2-en-1-one (hereinafter referred to as FPPO-HBr) which tackled adverse problems of traditional sunscreen molecules as single energy relaxation pathway, lacking effective UVA light protection. Various nonradiative pathways were proposed and verified by combining the steady-state and femtosecond transient absorption (FTA) spectroscopy and theoretical calculation. Upon UV excitation, the FPPO-HBr mainly decays via excited-state intramolecular proton transfer (ESIPT) followed by conformation twist in ultrafast manner. Importantly, 1H NMR spectra proved that the FPPO-HBr could not undergo trans-cis photoisomerization. Additionally, excellent photostability was also observed for newly synthesized FPPO-HBr. The current work could provide new perspectives for sunscreen molecules synthesis and mechanism.
Collapse
Affiliation(s)
- Zibo Wu
- MeChem Group, Molecular Dynamic Chemistry Center, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Mengqi Wang
- MeChem Group, Molecular Dynamic Chemistry Center, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Yurong Guo
- MeChem Group, Molecular Dynamic Chemistry Center, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, School of Science, Tianjin University, Tianjin 300354, China.,New Sunscreens Development and UV Photoprotection Research Center, Tianjin ChenyinSTI Co., Ltd., Xinghua Road at Xeda, Tianjin 300385, China
| | - Feixiang Ji
- MeChem Group, Molecular Dynamic Chemistry Center, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Chao Wang
- MeChem Group, Molecular Dynamic Chemistry Center, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Shiping Wang
- MeChem Group, Molecular Dynamic Chemistry Center, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| | - Jingran Zhang
- MeChem Group, Molecular Dynamic Chemistry Center, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, School of Science, Tianjin University, Tianjin 300354, China.,New Sunscreens Development and UV Photoprotection Research Center, Tianjin ChenyinSTI Co., Ltd., Xinghua Road at Xeda, Tianjin 300385, China
| | - Ye Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Song Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Bing Jin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Guangjiu Zhao
- MeChem Group, Molecular Dynamic Chemistry Center, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, School of Science, Tianjin University, Tianjin 300354, China
| |
Collapse
|
11
|
Non-adiabatic Dynamics Mechanism in Excited State of Novel UV Protective Sunscreen in Rice: Conical Intersection Promotes Internal Conversion. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01819-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Fois E, Oriani M, Tabacchi G. A post-HF approach to the sunscreen octyl methoxycinnamate. J Chem Phys 2021; 154:144304. [PMID: 33858162 DOI: 10.1063/5.0046118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Octyl methoxycinnamate (2-ethylhexyl 4-methoxycinnamate, OMC) is a commercial sunscreen known as octinoxate with excellent UVB filter properties. However, it is known to undergo a series of photodegradation processes that decrease its effectiveness as a UVB filter. In particular, the trans (E) form-which is considered so far as the most stable isomer-converts to the cis (Z) form under the effect of light. In this work, by using post-Hartree-Fock approaches [CCSD, CCSD(t), and CCSD + T(CCSD)] on ground state OMC geometries optimized at the MP2 level, we show that the cis and trans forms of the gas-phase OMC molecule have comparable stability. Test calculations on the same structures with a series of dispersion-corrected density functional theory-based approaches including the B2PLYP double hybrid predict the trans structures to be energetically favored, missing the subtle stabilization of cis-OMC. Our results suggest that the cis form is stabilized by intra-molecular dispersion interactions, leading to a folded more compact structure than the trans isomer.
Collapse
Affiliation(s)
- Ettore Fois
- Department of Science and High Technology, University of Insubria and INSTM UdR Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Mario Oriani
- Department of Science and High Technology, University of Insubria and INSTM UdR Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Gloria Tabacchi
- Department of Science and High Technology, University of Insubria and INSTM UdR Insubria, Via Valleggio 11, I-22100 Como, Italy
| |
Collapse
|
13
|
Chang XP, Zhang TS, Fang YG, Cui G. Quantum Mechanics/Molecular Mechanics Studies on the Photophysical Mechanism of Methyl Salicylate. J Phys Chem A 2021; 125:1880-1891. [PMID: 33645980 DOI: 10.1021/acs.jpca.0c10589] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methyl salicylate (MS) as a subunit of larger salicylates found in commercial sunscreens has been shown to exhibit keto-enol tautomerization and dual fluorescence emission via excited-state intramolecular proton transfer (ESIPT) after the absorption of ultraviolet (UV) radiation. However, its excited-state relaxation mechanism is unclear. Herein, we have employed the quantum mechanics(CASPT2//CASSCF)/molecular mechanics method to explore the ESIPT and excited-state relaxation mechanism of MS in the lowest three electronic states, that is, S0, S1, and T1 states, in a methanol solution. Based on the optimized geometric and electronic structures, conical intersections and crossing points, and minimum-energy paths combined with the computed linearly interpolated Cartesian coordinate paths, the photophysical mechanism of MS has been proposed. The S1 state is a spectroscopically bright 1ππ* state in the Franck-Condon region. From the initially populated S1 state, there exist three nonradiative relaxation paths to repopulate the S0 state. In the first one, the S1 system (i.e., ketoB form) first undergoes an ESIPT path to generate an S1 tautomer (i.e., enol form) that exhibits a large Stokes shift in experiments. The generated S1 enol tautomer further evolves toward the nearby S1/S0 conical intersection and then hops to the S0 state, followed by the backward ground-state intramolecular proton transfer (GSIPT) to the initial ketoB form S0 state. In the second one, the S1 system first hops through the S1 → T1 intersystem crossing (ISC) to the T1 state, which then further decays to the S0 state via T1 → S0 ISC at the T1/S0 crossing point. In the third path, the T1 system that stems from the S1 → T1 ISC process via the S1/T1 crossing point first takes place a T1 ESIPT to generate a T1 enol tautomer, which can further decay to the S0 state via T1-to-S0 ISC. Finally, the GSIPT occurs to back the system to the initial ketoB form S0 state. Our present work could contribute to understanding the photophysics of MS and its derivatives.
Collapse
Affiliation(s)
- Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Teng-Shuo Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ye-Guang Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
14
|
Baker LA, Staniforth M, Flourat AL, Allais F, Stavros VG. Conservation of ultrafast photoprotective mechanisms with increasing molecular complexity in sinapoyl malate derivatives. Chemphyschem 2020; 21:2006-2011. [PMID: 32638475 PMCID: PMC7586465 DOI: 10.1002/cphc.202000429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/24/2020] [Indexed: 11/09/2022]
Abstract
Sinapoyl malate is a natural plant sunscreen molecule which protects leaves from harmful ultraviolet radiation. Here, the ultrafast dynamics of three sinapoyl malate derivatives, sinapoyl L-dimethyl malate, sinapoyl L-diethyl malate and sinapoyl L-di-t-butyl malate, have been studied using transient electronic absorption spectroscopy, in a dioxane and methanol solvent environment to investigate how well preserved these dynamics remain with increasing molecular complexity. In all cases it was found that, upon photoexcitation, deactivation occurs via a trans-cis isomerisation pathway within ∼20-30 ps. This cis-photoproduct, formed during photodeactivation, is stable and longed-lived for all molecules in both solvents. The incredible levels of conservation of the isomerisation pathway with increased molecular complexity demonstrate the efficacy of these molecules as ultraviolet photoprotectors, even in strongly perturbing solvents. As such, we suggest these molecules might be well-suited for augmentations to further improve their photoprotective efficacy or chemical compatibility with other components of sunscreen mixtures, whilst conserving their underlying photodynamic properties.
Collapse
Affiliation(s)
- Lewis A. Baker
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUnited Kingdom
- Faculty of Engineering and Physical SciencesUniversity of Surrey388 Stag HillGuildfordGU2 7XHUnited Kingdom
| | - Michael Staniforth
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUnited Kingdom
| | - Amandine L. Flourat
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech51110PomacleFrance
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech51110PomacleFrance
| | - Vasilios G. Stavros
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUnited Kingdom
| |
Collapse
|
15
|
Shi Y, Zhao X, Wang C, Wang Y, Zhang S, Li P, Feng X, Jin B, Yuan M, Cui S, Sun Y, Zhang B, Sun S, Jin X, Wang H, Zhao G. Ultrafast Nonadiabatic Photoisomerization Dynamics Mechanism for the UV Photoprotection of Stilbenoids in Grape Skin. Chem Asian J 2020; 15:1478-1483. [PMID: 32196972 DOI: 10.1002/asia.202000219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Natural UV photoprotection plays a vital role in physiological protection. It has been reported that UVC radiation can make resveratrol (RSV) and piceatannol (PIC) accumulate in grape skin. In this work, we demonstrated that RSV and PIC could significantly absorb UVA and UVB, and confirmed their satisfactory photostability. Furthermore, we clarified the UV photoprotection mechanism of typical stilbenoids of RSV and PIC for the first time by using combined femtosecond transient absorption (FTA) spectroscopy and time-dependent density functional theory (TD-DFT) calculations. RSV and PIC can be photoexcited to the excited state after UVA and UVB absorption. Subsequently, the photoisomerized RSV and PIC quickly relax to the ground state via nonadiabatic transition from the S1 state at a conical intersection (CI) position between potential energy surfaces (PESs) of S1 and S0 states. This ultrafast trans-cis photoisomerization will take place within a few tens of picoseconds. As a result, the UV energy absorbed by RSV and PIC could be dissipated by an ultrafast nonadiabatic photoisomerization process.
Collapse
Affiliation(s)
- Yanan Shi
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences National Demonstration Center for Experimental Chemistry & Chemical engineering Education National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education Department of Chemistry, School of Science Tianjin University, Tianjin, 300354, P. R. China
| | - Xiaoying Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences National Demonstration Center for Experimental Chemistry & Chemical engineering Education National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education Department of Chemistry, School of Science Tianjin University, Tianjin, 300354, P. R. China
| | - Chao Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences National Demonstration Center for Experimental Chemistry & Chemical engineering Education National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education Department of Chemistry, School of Science Tianjin University, Tianjin, 300354, P. R. China
| | - Ye Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Song Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Peng Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266235, P. R. China
| | - Xia Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences National Demonstration Center for Experimental Chemistry & Chemical engineering Education National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education Department of Chemistry, School of Science Tianjin University, Tianjin, 300354, P. R. China
| | - Bing Jin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Minghu Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shen Cui
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences National Demonstration Center for Experimental Chemistry & Chemical engineering Education National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education Department of Chemistry, School of Science Tianjin University, Tianjin, 300354, P. R. China
| | - Yan Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences National Demonstration Center for Experimental Chemistry & Chemical engineering Education National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education Department of Chemistry, School of Science Tianjin University, Tianjin, 300354, P. R. China
| | - Bing Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shuqing Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences National Demonstration Center for Experimental Chemistry & Chemical engineering Education National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education Department of Chemistry, School of Science Tianjin University, Tianjin, 300354, P. R. China
| | - Xiaoning Jin
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences National Demonstration Center for Experimental Chemistry & Chemical engineering Education National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education Department of Chemistry, School of Science Tianjin University, Tianjin, 300354, P. R. China
| | - Haiyuan Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences National Demonstration Center for Experimental Chemistry & Chemical engineering Education National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education Department of Chemistry, School of Science Tianjin University, Tianjin, 300354, P. R. China
| | - Guangjiu Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences National Demonstration Center for Experimental Chemistry & Chemical engineering Education National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education Department of Chemistry, School of Science Tianjin University, Tianjin, 300354, P. R. China
| |
Collapse
|
16
|
Chan CTL, Ma C, Chan RCT, Ou HM, Xie HX, Wong AKW, Wang ML, Kwok WM. A long lasting sunscreen controversy of 4-aminobenzoic acid and 4-dimethylaminobenzaldehyde derivatives resolved by ultrafast spectroscopy combined with density functional theoretical study. Phys Chem Chem Phys 2020; 22:8006-8020. [PMID: 32239002 DOI: 10.1039/c9cp07014a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
4-Aminobenzoic acid (PABA) is one of the earliest patented and most commonly used sunscreen components. There is however a long-lasting controversy on its photo-protective efficacy owing to the lack of information on its protolytic equilibrium and photo-dynamics after absorption of ultraviolet radiation in physiologically relevant aqueous solution. The excitation dynamics in water also remains largely unknown for analogs of PABA such as 4-dimethylaminoacetophenone (DMAAP) and 4-dimethylaminobenzaldehyde (DMABA) which are recognized as prototypes for photo-induced twisted intramolecular charge transfer (TICT). Herein we report a combined application of femtosecond broadband time-resolved fluorescence and transient absorption coupled with density functional theoretical study for PABA, DMAAP, and DMABA under several solvent conditions with representative properties in terms of the pH, polarity and hydrogen bonding capacity. The results we gained demonstrate that, in a neutral aqueous solution, PABA taking the deprotonated anion form in the ground state undergoes rapid protonation after excitation, producing excited state species in the neutral form that may shift effectively by intersystem crossing (ISC) to the long-lasting triplet state capable of damaging nucleic acids. This provides evidence at the molecular level for the detrimental effect of PABA if used as a sunscreen ingredient. In contrast, our investigation on DMAAP and DMABA unveils an unusual solvent controlled deactivation dynamics rendered by the participation of the carbonyl oxygen associated nOπ* state featuring energy and structure strongly responsive to solvent properties. In particular, these molecules in water exhibit solute-solvent hydrogen bonding at the sites of the carbonyl oxygen and the amino nitrogen which is, respectively, weakened and strengthened after the excitation, leading to state reversal and formation of a nOπ* state with a peculiar non-planar structure. This quenches strongly the excitation, eliminates the TICT, suppresses the ISC and opens up the otherwise inaccessible internal conversion (IC) to account for ∼80% of the entire deactivation. The IC, observed to proceed at a rate of ∼2.5 ps, allows the effective recovery of the ground state, providing substantial protection against ultraviolet irradiation. Moreover, the revelation of highly solvent sensitive fluorescence emission from DMABA and DMAAP implies the potential application of these molecules as the functional element in the design of sensory materials for probing the polarity and hydrogen bonding character of the surrounding environment.
Collapse
Affiliation(s)
- Chris Tsz-Leung Chan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Chensheng Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Ruth Chau-Ting Chan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Hui-Min Ou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Han-Xin Xie
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Allen Ka-Wa Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.
| | - Ming-Liang Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Wai-Ming Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.
| |
Collapse
|
17
|
Dao DQ, Phan TTT, Nguyen TLA, Trinh PTH, Tran TTV, Lee JS, Shin HJ, Choi BK. Insight into Antioxidant and Photoprotective Properties of Natural Compounds from Marine Fungus. J Chem Inf Model 2020; 60:1329-1351. [DOI: 10.1021/acs.jcim.9b00964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Duy Quang Dao
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Thi Thu Trang Phan
- Faculty of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Phan Thi Hoai Trinh
- Nha Trang Institute of Technology Research and Application, Vietnam Academy of Science and Technology (VAST), 02 Hung Vuong, Nha Trang 650000, Vietnam
| | - Thi Thanh Van Tran
- Nha Trang Institute of Technology Research and Application, Vietnam Academy of Science and Technology (VAST), 02 Hung Vuong, Nha Trang 650000, Vietnam
| | - Jong Seok Lee
- Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, Korea
| | - Hee Jae Shin
- Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, Korea
| | - Byeoung-Kyu Choi
- Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, Korea
| |
Collapse
|
18
|
Holt EL, Krokidi KM, Turner MAP, Mishra P, Zwier TS, Rodrigues NDN, Stavros VG. Insights into the photoprotection mechanism of the UV filter homosalate. Phys Chem Chem Phys 2020; 22:15509-15519. [DOI: 10.1039/d0cp02610g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Homosalate has been found to exhibit favourable photophysics for inclusion in sunscreens, using a combination of spectroscopic and computational approaches.
Collapse
Affiliation(s)
- Emily L. Holt
- Department of Chemistry
- University of Warwick
- Coventry
- UK
- Molecular Analytical Science Centre for Doctoral Training
| | | | - Matthew A. P. Turner
- Department of Chemistry
- University of Warwick
- Coventry
- UK
- Molecular Analytical Science Centre for Doctoral Training
| | - Piyush Mishra
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
| | | | | | | |
Collapse
|
19
|
Hanson KM, Cutuli M, Rivas T, Antuna M, Saoub J, Tierce NT, Bardeen CJ. Effects of solvent and micellar encapsulation on the photostability of avobenzone. Photochem Photobiol Sci 2020; 19:390-398. [DOI: 10.1039/c9pp00483a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Avobenzone, the only UVA-absorbing molecule approved for use in sunscreens by the FDA, degrades to its diketone structure under UV light. We found that this photoisomerization is effectively prevented when avobenzone is sequestered in micelles.
Collapse
Affiliation(s)
- Kerry M. Hanson
- Department of Chemistry
- University of California
- Riverside
- Riverside
- USA
| | - Miles Cutuli
- Department of Chemistry
- University of California
- Riverside
- Riverside
- USA
| | - Tiffany Rivas
- Department of Chemistry
- University of California
- Riverside
- Riverside
- USA
| | - Miranda Antuna
- Department of Chemistry
- University of California
- Riverside
- Riverside
- USA
| | - Jessica Saoub
- Department of Chemistry
- University of California
- Riverside
- Riverside
- USA
| | - Nathan T. Tierce
- Department of Chemistry
- University of California
- Riverside
- Riverside
- USA
| | | |
Collapse
|
20
|
Chang XP, Fang YG, Cui G. QM/MM Studies on the Photophysical Mechanism of a Truncated Octocrylene Model. J Phys Chem A 2019; 123:8823-8831. [PMID: 31550143 DOI: 10.1021/acs.jpca.9b07280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Methyl 2-cyano-3,3-diphenylacrylate (MCDPA) shares the same molecular skeleton with octocrylene (OCR) that is one of the most common molecules used in commercially available sunscreens. However, its excited-state relaxation mechanism is unclear. Herein, we have used the QM(CASPT2//CASSCF)/MM method to explore spectroscopic properties, geometric and electronic structures, relevant conical intersections and crossing points, and excited-state relaxation paths of MCDPA in methanol solution. We found that in the Franck-Condon (FC) region, the V(1ππ*) state is energetically lower than the V'(1ππ*) state only by 2.8 kcal/mol and is assigned to experimentally observed maximum absorption band. From these two initially populated singlet states, there exist three nonradiative relaxation paths to repopulate the S0 state. In the first one, when the V(1ππ*) state is populated in the FC region, the system diabatically evolves along the V(1ππ*) state into its minimum where the internal conversion to S0 occurs. In the second one, the V'(1ππ*) state is populated in the FC region and the system adiabatically overcomes a barrier of ca. 3.0 kcal/mol to approach the V(1ππ*) minimum eventually leading to a V(1ππ*)-to-S0 internal conversion. In the third one, the V'(1ππ*) state first hops via the intersystem crossing to the T2 state, which then decays through the internal conversion to the T1 state. The T1 state is finally converted to the S0 state via the T1/S0 crossing point. Our present work contributes to understanding the photophysics of OCR and its variants.
Collapse
Affiliation(s)
- Xue-Ping Chang
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang 464000 , P. R. China
| | - Ye-Guang Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| |
Collapse
|
21
|
Holt EL, Stavros VG. Applications of ultrafast spectroscopy to sunscreen development, from first principles to complex mixtures. INT REV PHYS CHEM 2019. [DOI: 10.1080/0144235x.2019.1663062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emily L. Holt
- Molecular Analytical Science Centre for Doctoral Training, Senate House, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | | |
Collapse
|
22
|
Losantos R, Lamas I, Montero R, Longarte A, Sampedro D. Photophysical characterization of new and efficient synthetic sunscreens. Phys Chem Chem Phys 2019; 21:11376-11384. [PMID: 31111130 DOI: 10.1039/c9cp01267b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The photoprotective capabilities of a family of compounds have been investigated. Their relaxation mechanisms have been explored by fluorescence and transient absorption measurements, and the minimum energy relaxation pathways were modeled by CASSCF/CASPT2 methods. This study demonstrates their excellent properties as sunscreens, and provides novel mechanistic insights for the rational design of new species.
Collapse
Affiliation(s)
- Raúl Losantos
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios, 53, 26006 Logroño, La Rioja, Spain.
| | - Iker Lamas
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apart. 644, 48080 Bilbao, Spain.
| | - Raúl Montero
- SGIker Laser Facility, UPV/EHU, Sarriena, s/n, 48940 Leioa, Spain
| | - Asier Longarte
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apart. 644, 48080 Bilbao, Spain.
| | - Diego Sampedro
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios, 53, 26006 Logroño, La Rioja, Spain.
| |
Collapse
|
23
|
Balevičius V, Wei T, Di Tommaso D, Abramavicius D, Hauer J, Polívka T, Duffy CDP. The full dynamics of energy relaxation in large organic molecules: from photo-excitation to solvent heating. Chem Sci 2019; 10:4792-4804. [PMID: 31183032 PMCID: PMC6521204 DOI: 10.1039/c9sc00410f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/29/2019] [Indexed: 01/04/2023] Open
Abstract
In some molecular systems, such as nucleobases, polyenes or sunscreens, substantial amounts of photo-excitation energy are dissipated on a sub-picosecond time scale. Where does this energy go or among which degrees of freedom it is being distributed at such early times?
In some molecular systems, such as nucleobases, polyenes or the active ingredients of sunscreens, substantial amounts of photo-excitation energy are dissipated on a sub-picosecond time scale, raising questions such as: where does this energy go or among which degrees of freedom it is being distributed at such early times? Here we use transient absorption spectroscopy to track excitation energy dispersing from the optically accessible vibronic subsystem into the remaining vibrational subsystem of the solute and solvent. Monitoring the flow of energy during vibrational redistribution enables quantification of local molecular heating. Subsequent heat dissipation away from the solute molecule is characterized by classical thermodynamics and molecular dynamics simulations. Hence, we present a holistic approach that tracks the internal temperature and vibronic distribution from the act of photo-excitation to the restoration of the global equilibrium. Within this framework internal vibrational redistribution and vibrational cooling are emergent phenomena. We demonstrate the validity of the framework by examining a highly controversial example, carotenoids. We show that correctly accounting for the local temperature unambiguously explains their energetically and temporally congested spectral dynamics without the ad hoc postulation of additional ‘dark’ states. An immediate further application of this approach would be to monitor the excitation and thermal dynamics of pigment–protein systems.
Collapse
Affiliation(s)
- Vytautas Balevičius
- School of Chemical and Biological Sciences , Queen Mary University of London , Mile End Road , London E1 4NS , UK .
| | - Tiejun Wei
- School of Chemical and Biological Sciences , Queen Mary University of London , Mile End Road , London E1 4NS , UK .
| | - Devis Di Tommaso
- School of Chemical and Biological Sciences , Queen Mary University of London , Mile End Road , London E1 4NS , UK .
| | - Darius Abramavicius
- Institute of Chemical Physics , Vilnius University , Sauletekio av. 9 , Vilnius , LT-10222 , Lithuania
| | - Jürgen Hauer
- Fakultät für Chemie , Technical University of Munich , Lichtenbergstraße 4 , D-85748 Garching , Germany.,Photonics Institute , TU Wien , Gußhausstraße 27 , 1040 Vienna , Austria
| | - Tomas Polívka
- Institute of Physics and Biophysics , Faculty of Science , University of South Bohemia , Branišovská 1760 , 37005 České Budějovice , Czech Republic
| | - Christopher D P Duffy
- School of Chemical and Biological Sciences , Queen Mary University of London , Mile End Road , London E1 4NS , UK .
| |
Collapse
|
24
|
Richings G, Robertson C, Habershon S. Can we use on-the-fly quantum simulations to connect molecular structure and sunscreen action? Faraday Discuss 2019; 216:476-493. [DOI: 10.1039/c8fd00228b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Direct MCTDH quantum dynamics simulations, with automatic active coordinate generation, applied to potential molecular sunscreens.
Collapse
Affiliation(s)
- Gareth W. Richings
- Department of Chemistry and Centre for Scientific Computing
- University of Warwick
- Coventry
- UK
| | - Christopher Robertson
- Department of Chemistry and Centre for Scientific Computing
- University of Warwick
- Coventry
- UK
| | - Scott Habershon
- Department of Chemistry and Centre for Scientific Computing
- University of Warwick
- Coventry
- UK
| |
Collapse
|
25
|
Kojić M, Lyskov I, Milovanović B, Marian CM, Etinski M. The UVA response of enolic dibenzoylmethane: beyond the static approach. Photochem Photobiol Sci 2019; 18:1324-1332. [DOI: 10.1039/c9pp00005d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nπ* and ππ* states of dibenzoylmethane are vibronically coupled and their crossing occurs during the excited-state intramolecular proton transfer.
Collapse
Affiliation(s)
- Marko Kojić
- Faculty of Physical Chemistry
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Igor Lyskov
- Chemical and Quantum Physics Group
- ARC Centre of Excellence in Exciton Science
- School of Science
- RMIT University
- Melbourne
| | | | - Christel M. Marian
- Institute of Theoretical and Computational Chemistry
- Heinrich Heine University Düsseldorf
- D-40225 Düsseldorf
- Germany
| | - Mihajlo Etinski
- Faculty of Physical Chemistry
- University of Belgrade
- 11000 Belgrade
- Serbia
| |
Collapse
|
26
|
Wavepacket insights into the photoprotection mechanism of the UV filter methyl anthranilate. Nat Commun 2018; 9:5188. [PMID: 30518753 PMCID: PMC6281654 DOI: 10.1038/s41467-018-07681-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022] Open
Abstract
Meradimate is a broad-spectrum ultraviolet absorber used as a chemical filter in commercial sunscreens. Herein, we explore the ultrafast photodynamics occurring in methyl anthranilate (precursor to Meradimate) immediately after photoexcitation with ultraviolet radiation to understand the mechanisms underpinning Meradimate photoprotection. Using time-resolved photoelectron spectroscopy, signal from the first singlet excited state of methyl anthranilate shows an oscillatory behavior, i.e., quantum beats. Our studies reveal a dependence of the observed beating frequencies on photoexcitation wavelength and photoelectron kinetic energy, unveiling the different Franck-Condon overlaps between the vibrational levels of the ground electronic, first electronic excited, and ground cationic states of methyl anthranilate. By evaluating the behavior of these beats with increasing photon energy, we find evidence for intramolecular vibrational energy redistribution on the first electronic excited state. Such energy redistribution hinders efficient relaxation of the electronic excited state, making methyl anthranilate a poor choice for an efficient, efficacious sunscreen chemical filter. Here, the authors explore the ultrafast photodynamics of methyl anthranilate. From the quantum beat behavior, the authors find evidence for ultrafast energy redistribution processes which hinder excited state relaxation, making methyl anthranilate a poor choice for a sunscreen chemical filter.
Collapse
|
27
|
Asok A, Deshlahra P, Ramachandran AM, Kulkarni AR. Multifunctional Photostable Nanocomplex of ZnO Quantum Dots and Avobenzone via the Promotion of Enolate Tautomer. GLOBAL CHALLENGES (HOBOKEN, NJ) 2018; 2:1800025. [PMID: 31565311 PMCID: PMC6607145 DOI: 10.1002/gch2.201800025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 05/29/2018] [Indexed: 06/10/2023]
Abstract
Ideal multifunctional ultraviolet radiation (UVR) absorbents with excellent photostability, high molar absorptivity, broadband UVR screening, and desired skin sensorial properties remain a significant challenge for the sunscreen industry. The potential of the nanocomplex (NCx) formed by microwave synthesis of ZnO quantum dots (QDs) in the presence of Avobenzone (Av) for achieving these goals is reported. The NCx exhibits unique synergy between ZnO QD and Av components, which enhances the photostability and molar absorptivity, extends UVA filtering range, and provides a visible emission that matches the typical human in vivo skin emission color. Density functional theory (DFT) and time-dependent DFT calculations of ZnO-Av hybrid structures and comparison of their spectroscopic features with experiments suggest that ZnO QDs catalyze the formation of highly photostable surface enolate species via aldol condensation reaction. The combination of experiments and computations used in this study can advance the science and technology of photoprotection.
Collapse
Affiliation(s)
- Adersh Asok
- Materials Science and Technology DivisionNational Institute for Interdisciplinary Science and TechnologyCouncil of Scientific and Industrial ResearchThiruvananthapuram695019India
| | - Prashant Deshlahra
- Department of Chemical and Biological EngineeringTufts University4 Colby St.MedfordMA02155USA
| | - Animesh M. Ramachandran
- Materials Science and Technology DivisionNational Institute for Interdisciplinary Science and TechnologyCouncil of Scientific and Industrial ResearchThiruvananthapuram695019India
| | - Ajit R. Kulkarni
- Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology BombayMumbai400076India
| |
Collapse
|
28
|
Ma C, Chan CTL, Chan RCT, Wong AKW, Chung BPY, Kwok WM. Photoprotection or photodamage: a direct observation of nonradiative dynamics from 2-ethylhexyl 4-dimethylaminobenzoate sunscreen agent. Phys Chem Chem Phys 2018; 20:24796-24806. [PMID: 30229763 DOI: 10.1039/c8cp04447c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Apart from being an analogue of the prototype for photoinduced intramolecular charge transfer (ICT), 2-ethylhexyl 4-dimethylaminobenzoate (EHDMABA) is also one of the earliest patented and most commonly used sunscreen components. There is, however, little documented information about the photophysics and factors affecting the photophysics of this molecule. Such information is of importance for both the understanding of the ICT reaction and assessing the underlying process of photoprotection, especially in view of the "sunscreen controversy" that has arisen from the contrasting in vivo vs. in vitro photobiological results on this and related UV filters. We report herein a femtosecond broadband time-resolved fluorescence (fs-TRF), complemented by transient absorption (fs-TA) to allow a full probe of the excited state cascades for EHDMABA and two of its derivatives in solvents of varied properties. The results provide direct evidence for a nearly solvent independent inner sphere ICT reaction occurring on the sub-picosecond time scale, and an ensuing solvent dictated deactivation of the ICT state. The ICT state in the aprotic solvent acetonitrile decayed solely through the intrinsic intersystem crossing (ISC) to produce a potentially harmful triplet excited state. In the protic solvent, the solvation and formation of ICT-induced solute-solvent hydrogen (H)-bonding opened the originally inaccessible internal conversion (IC) channel of the ICT state, leading to the rapid reformation of the ground state molecule with a unitary efficiency in the aqueous solution. This H-bonding-mediated IC restrained or eliminated the intrinsic ISC, providing a mechanism at the molecular level for the benign dissipation of the electronic excitation. The precise rate of IC was observed to vary with the alkoxy substituent and its efficiency was affected by the H-bonding capacity of the solvent. The findings of this work demonstrate the pivotal role of the microenvironment and the direct participation of solvent molecules through H-bonding in drastically altering the nonradiative dynamics and promoting or inhibiting photostability and photoprotection. This may assist in developing next-generation UV filters and help in improving formulation design for the optimal efficacy of sunscreen products. The pronounced H-bonding-induced fluorescence quenching and variation in the fluorescence wavelength imply that these molecules may also serve as a sensitive fluorescence probe for the H-bonding properties of the microenvironment.
Collapse
Affiliation(s)
- Chensheng Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | | | | | | | | | | |
Collapse
|
29
|
Kinoshita SN, Miyazaki Y, Sumida M, Onitsuka Y, Kohguchi H, Inokuchi Y, Akai N, Shiraogawa T, Ehara M, Yamazaki K, Harabuchi Y, Maeda S, Taketsugu T, Ebata T. Different photoisomerization routes found in the structural isomers of hydroxy methylcinnamate. Phys Chem Chem Phys 2018; 20:17583-17598. [PMID: 29693100 DOI: 10.1039/c8cp00414e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An experimental and theoretical study has been carried out to elucidate the nonradiative decay (NRD) and trans(E) → cis(Z) isomerization from the S1 (1ππ*) state of structural isomers of hydroxy methylcinnamate (HMC); ortho-, meta- and para-HMC (o-, m- and p-HMC). A low temperature matrix-isolation Fourier Transform Infrared (FTIR) spectroscopic study revealed that all the HMCs are cis-isomerized upon UV irradiation. A variety of laser spectroscopic methods have been utilized for jet-cooled gas phase molecules to investigate the vibronic structure and lifetimes of the S1 state, and to detect the transient state appearing in the NRD process. In p-HMC, the zero-point level of the S1 state decays as quickly as 9 ps. A transient electronic state reported by Tan et al. (Faraday Discuss. 2013, 163, 321-340) was reinvestigated by nanosecond UV-tunable deep UV pump-probe spectroscopy and was assigned to the T1 state. For m- and o-HMC, the lifetime at the zero-point energy level of S1 is 10 ns and 6 ns, respectively, but it becomes substantially shorter at an excess energy higher than 1000 cm-1 and 600 cm-1, respectively, indicating the onset of NRD. Different from p-HMC, no transient state (T1) was observed in m- nor o-HMC. These experimental results are interpreted with the aid of TDDFT calculations by considering the excited-state reaction pathways and the radiative/nonradiative rate constants. It is concluded that in p-HMC, the trans → cis isomerization proceeds via a [trans-S1 → 1nπ* → T1 → cis-S0] scheme. On the other hand, in o- and m-HMC, the isomerization proceeds via a [trans-S1 → twisting along the C[double bond, length as m-dash]C double bond by 90° on S1 → cis-S0] scheme. The calculated barrier height along the twisting coordinate agrees well with the observed onset of the NRD channel for both o- and m-HMC.
Collapse
Affiliation(s)
- Shin-Nosuke Kinoshita
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Baker LA, Staniforth M, Flourat AL, Allais F, Stavros VG. Gas-Solution Phase Transient Absorption Study of the Plant Sunscreen Derivative Methyl Sinapate. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lewis A. Baker
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV4 7AL United Kingdom
- Present address: Department of Science; George Abbot School; Woodruff Avenue Guildford, Surrey GU1 1XX United Kingdom
| | - Michael Staniforth
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV4 7AL United Kingdom
| | - Amandine L. Flourat
- Chaire Agro-Biotechnologies Industrielles (ABI); AgroParisTech; CEBB 3 rue des Rouges Terres F-51110 Pomacle France
| | - Florent Allais
- Chaire Agro-Biotechnologies Industrielles (ABI); AgroParisTech; CEBB 3 rue des Rouges Terres F-51110 Pomacle France
| | - Vasilios G. Stavros
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV4 7AL United Kingdom
| |
Collapse
|
31
|
Pijeau S, Foster D, Hohenstein EG. Effect of Nonplanarity on Excited-State Proton Transfer and Internal Conversion in Salicylideneaniline. J Phys Chem A 2018; 122:5555-5562. [DOI: 10.1021/acs.jpca.8b02426] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Shiela Pijeau
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
| | - Donneille Foster
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
| | - Edward G. Hohenstein
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
32
|
Richings GW, Habershon S. MCTDH on-the-fly: Efficient grid-based quantum dynamics without pre-computed potential energy surfaces. J Chem Phys 2018; 148:134116. [DOI: 10.1063/1.5024869] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gareth W. Richings
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Scott Habershon
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
33
|
Baker LA, Marchetti B, Karsili TNV, Stavros VG, Ashfold MNR. Photoprotection: extending lessons learned from studying natural sunscreens to the design of artificial sunscreen constituents. Chem Soc Rev 2018; 46:3770-3791. [PMID: 28580469 DOI: 10.1039/c7cs00102a] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Evolution has ensured that plants and animals have developed effective protection mechanisms against the potentially harmful effects of incident ultraviolet radiation (UVR). Tanning is one such mechanism in humans, but tanning only occurs post-exposure to UVR. Hence, there is ever growing use of commercial sunscreens to pre-empt overexposure to UVR. Key requirements for any chemical filter molecule used in such a photoprotective capacity include a large absorption cross-section in the UV-A and UV-B spectral regions and the availability of one or more mechanisms whereby the absorbed photon energy can be dissipated without loss of the molecular integrity of the chemical filter. Here we summarise recent experimental (mostly ultrafast pump-probe spectroscopy studies) and computational progress towards unravelling various excited state decay mechanisms that afford the necessary photostability in chemical filters found in nature and those used in commercial sunscreens. We also outline ways in which a better understanding of the photophysics and photochemistry of sunscreen molecules selected by nature could aid the design of new and improved commercial sunscreen formulations.
Collapse
Affiliation(s)
- Lewis A Baker
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Barbara Marchetti
- Department of Chemistry, University of Pennsylvania, Philadelphia, USA
| | | | - Vasilios G Stavros
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Michael N R Ashfold
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
34
|
Karsili TNV, Marchetti B, Matsika S. Origins of Photodamage in Pheomelanin Constituents: Photochemistry of 4-Hydroxybenzothiazole. J Phys Chem A 2018; 122:1986-1993. [DOI: 10.1021/acs.jpca.7b09690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tolga N. V. Karsili
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Barbara Marchetti
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Spiridoula Matsika
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
35
|
Fang YG, Li CX, Chang XP, Cui G. Photophysics of a UV-B Filter 4-Methylbenzylidene Camphor: Intersystem Crossing Plays an Important Role. Chemphyschem 2018; 19:744-752. [PMID: 29288547 DOI: 10.1002/cphc.201701230] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/29/2017] [Indexed: 11/07/2022]
Abstract
4-Methylbenzylidene camphor (4MBC) is a frequently used ultraviolet (UV) filter in commercial sunscreens, which is experimentally found to undergo efficient intersystem crossing to triplet manifolds followed by predominant radiationless decay to the ground state. However, its photophysical mechanism is unclear. Herein, we have employed combined CASPT2 and CASSCF methods to study the spectroscopic properties, geometric and electronic structures, conical intersections and crossing points, and excited-state deactivation channels of 4MBC. We have found that the V(1 ππ*) state is populated with large probability in the Franck-Condon region. Starting from this state, there are two efficient nonradiative relaxation processes to populate the 3 ππ* state. In the first one, the V(1 ππ*) state decays to the V'(1 ππ*) state. The resultant V'(1 ππ*) state further jumps to the 1 nπ* state by internal conversion at the 1 ππ*/1 nπ* conical intersection. Then, the 1 nπ* state hops to the 3 ππ* state through an efficient 1 nπ*→3 ππ* intersystem crossing process. In the second one, the V(1 ππ*) state can diabatically relax along the photoisomerization reaction coordinate. In this process, a 1 ππ*/3 nπ* crossing point helps the 1 ππ* system decay to the 3 nπ* state, which further decays to the 3 ππ* state through internal conversion at the 3 nπ*/3 ππ* conical intersection. Once the 3 ππ* state is formed, a nearly barrierless relaxation path drives the 3 ππ* system to hop to the S0 state via the 3 ππ*/S0 crossing point. Our current work not only rationalizes recent experimental observations but also enriches our photophysical knowledge of UV filters.
Collapse
Affiliation(s)
- Ye-Guang Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Chun-Xiang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
36
|
Böhnke H, Bahrenburg J, Ma X, Röttger K, Näther C, Rode MF, Sobolewski AL, Temps F. Ultrafast dynamics of the ESIPT photoswitch N-(3-pyridinyl)-2-pyridinecarboxamide. Phys Chem Chem Phys 2018; 20:2646-2655. [PMID: 29319075 DOI: 10.1039/c7cp06145e] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular switches based on proton transfer that are photochromic and can be interconverted by light at different wavelengths back and forth between two thermodynamically stable tautomeric states in solution at room temperature are rare to date. We report on a study of the ultrafast conversion of the bistable proton transfer switch N-(3-pyridinyl)-2-pyridinecarboxamide (NPPCA) to a corresponding iminol after photoexcitation at λpump ≈ 265 nm by means of femtosecond time-resolved broad-band and single-colour transient electronic absorption spectroscopy (TEAS), transient fluorescence spectroscopy (TFLS), and transient vibrational absorption spectroscopy (TVAS) in acetonitrile solution. The interpretation of the data was accompanied by ab initio quantum chemical calculations of the excited electronic states and the vibrational frequencies of the reactant and product in their ground electronic state. The TEAS experiments provided four time constants, τ1 = 0.09 ± 0.01 ps, τ2 = 0.61 ± 0.01 ps, τ3 = 5.10 ± 0.80 ps, and τ4 = 20.0 ± 1.0 ps. The first two agree well with the measured TFLS lifetimes, τ1,TFL < 0.18 ps and τ2,TFL = 0.50 ± 0.01 ps. τ1 is related to the relaxation of the initially excited Franck-Condon (FC) state of the pyridinecarboxamide, followed by the excited-state intramolecular proton transfer (ESIPT) step to the neighbouring pyridine. The subsequent return of the molecules to the electronic ground state takes place within τ2, mediated by a conical intersection (CI) at a twisted configuration of the pyridinecarboxamide moiety. The main components in all TEAS time profiles feature a rise with τ2 and a decay with τ4 and describe subsequent molecular transformations in the electronic ground state. τ3 is ascribed to vibrational cooling of the molecules. The final iminol exhibits a permanent UV absorption at λ = 247 nm, where its absorbance is stronger than that of the carboxamide reactant. The iminol structure is unambiguously identified by the TVA spectra, which show the build-up of corresponding vibrational bands with τ4,TVA = 23 ± 2 ps after the initial bleach of the reactant vibrational bands, in excellent agreement with the TEAS data. Its lifetime is >10 ns.
Collapse
Affiliation(s)
- Hendrik Böhnke
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098 Kiel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang S, Schatz S, Stuhldreier MC, Böhnke H, Wiese J, Schröder C, Raeker T, Hartke B, Keppler JK, Schwarz K, Renth F, Temps F. Ultrafast dynamics of UV-excited trans- and cis-ferulic acid in aqueous solutions. Phys Chem Chem Phys 2018; 19:30683-30694. [PMID: 29119980 DOI: 10.1039/c7cp05301k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The ultrafast UV-induced processes of the neutral, anionic and dianionic forms of trans- and cis-ferulic acid (FA) in aqueous solution were studied by static and femtosecond time-resolved emission and absorption spectroscopy combined with quantum chemical calculations. In all cases, initial excitation populates the first 1ππ* state. For the dianionic cis-isomer cFA2-, electronic deactivation takes place with a time constant of only 1.4 ps, whereas in all other cases, excited-state deactivation happens more than ten times slower, on a time scale of ≈20 ps. The data suggest sequential de-excitation pathways, where initial sub-picosecond solvent rearrangement and structural changes are followed by internal conversion to an intermediate excited electronic state from which deactivation to the ground state proceeds. Considering the time scales, barrierless excited-state pathways are suggested only in the case of cFA2-, where the observed formation of the isomerisation photoproduct tFA2- provides clear evidence for a cis ⇄ trans isomerisation coordinate. In the other cases, pathways with an excited-state energy barrier, presumably along the same coordinate, are likely, given the longer excited-state lifetimes.
Collapse
Affiliation(s)
- Shuangqing Wang
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098 Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ma C, Ou YQ, Chan CTL, Wong AKW, Chan RCT, Chung BPY, Jiang C, Wang ML, Kwok WM. Nonradiative dynamics determined by charge transfer induced hydrogen bonding: a combined femtosecond time-resolved fluorescence and density functional theoretical study of methyl dimethylaminobenzoate in water. Phys Chem Chem Phys 2018; 20:1240-1251. [DOI: 10.1039/c7cp05140a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen bonding with water alters nonradiative pathway of a twisted charge transfer state in methyl dimethylaminobenzoate.
Collapse
Affiliation(s)
- Chensheng Ma
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Yue-Qun Ou
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Chris Tsz-Leung Chan
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Allen Ka-Wa Wong
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Ruth Chau-Ting Chan
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Bowie Po-Yee Chung
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Chao Jiang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Ming-Liang Wang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Wai-Ming Kwok
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| |
Collapse
|
39
|
Sherin PS, Tsentalovich YP, Vauthey E, Benassi E. Ultrafast excited state decay of natural UV filters: from intermolecular hydrogen bonds to a conical intersection. Phys Chem Chem Phys 2018; 20:15074-15085. [DOI: 10.1039/c8cp02183j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unsaturated bond in the side chain leads to the ultrafast decay of the excited statesviaa conical intersection independent of solvent properties.
Collapse
Affiliation(s)
- Peter S. Sherin
- International Tomography Center SB RAS
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| | - Yuri P. Tsentalovich
- International Tomography Center SB RAS
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| | - Eric Vauthey
- Department of Physical Chemistry
- University of Geneva
- Geneva
- Switzerland
| | - Enrico Benassi
- Novosibirsk State University
- Novosibirsk
- Russia
- School of Science and Technology
- Nazarbayev University
| |
Collapse
|
40
|
Beckstead AA, Zhang Y, Hilmer JK, Smith HJ, Bermel E, Foreman CM, Kohler B. Ultrafast Excited-State Deactivation of the Bacterial Pigment Violacein. J Phys Chem B 2017; 121:7855-7861. [PMID: 28792753 DOI: 10.1021/acs.jpcb.7b05769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The photophysical properties of the natural pigment violacein extracted from an Antarctic organism adapted to high exposure levels of UV radiation were measured in a combined steady-state and time-resolved spectroscopic study for the first time. In the low-viscosity solvents methanol and acetone, violacein exhibits low fluorescence quantum yields on the order of 1 × 10-4, and femtosecond transient absorption measurements reveal excited-state lifetimes of 3.2 ± 0.2 and 4.5 ± 0.2 ps in methanol and acetone, respectively. As solvent viscosity is increased, both the fluorescence quantum yield and excited-state lifetime of this intensely colored pigment increase dramatically, and stimulated emission decays 30-fold more slowly in glycerol than in methanol at room temperature. Excited-state deactivation is suggested to occur via a molecular-rotor mechanism in which torsion about an interring bond leads to a conical intersection with the ground state.
Collapse
Affiliation(s)
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, The Ohio State University , 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | | | | | | | | | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University , 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
41
|
Pijeau S, Foster D, Hohenstein EG. Excited-State Dynamics of a Benzotriazole Photostabilizer: 2-(2′-Hydroxy-5′-methylphenyl)benzotriazole. J Phys Chem A 2017; 121:6377-6387. [DOI: 10.1021/acs.jpca.7b04504] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Shiela Pijeau
- Department
of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
| | - Donneille Foster
- Department
of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
| | - Edward G. Hohenstein
- Department
of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
42
|
Richings GW, Habershon S. Direct Quantum Dynamics Using Grid-Based Wave Function Propagation and Machine-Learned Potential Energy Surfaces. J Chem Theory Comput 2017; 13:4012-4024. [DOI: 10.1021/acs.jctc.7b00507] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gareth W. Richings
- Department of Chemistry and
Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Scott Habershon
- Department of Chemistry and
Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
43
|
Beckstead AA, Zhang Y, Hilmer JK, Smith HJ, Bermel E, Foreman CM, Kohler B. Ultrafast Excited-State Deactivation of the Bacterial Pigment Violacein. J Phys Chem A 2017:acs.jpca.7b05769. [PMID: 28753006 DOI: 10.1021/acs.jpca.7b05769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photophysical properties of the natural pigment violacein extracted from an Antarctic organism adapted to high exposure levels of UV radiation were measured in a combined steady-state and time-resolved spectroscopic study for the first time. In the low-viscosity solvents methanol and acetone, violacein exhibits low fluorescence quantum yields on the order of 10-4, and femtosecond transient absorption measurements reveal excited-state lifetimes of 3.2 ± 0.2 and 4.5 ± 0.2 picoseconds in methanol and acetone, respectively. As solvent viscosity is increased, both the fluorescence quantum yield and excited-state lifetime of this intensely colored pigment increase dramatically and stimulated emission decays 30-fold more slowly in glycerol than in methanol at room temperature. Excited-state deactivation is suggested to occur via a molecular-rotor mechanism in which torsion about an interring bond leads to a conical intersection with the ground state.
Collapse
|
44
|
Slavov C, Yang C, Schweighauser L, Wegner HA, Dreuw A, Wachtveitl J. Ultrafast Excited-State Deactivation Dynamics of Cyclotrisazobenzene-A Novel Type of UV-B Absorber. Chemphyschem 2017; 18:2137-2141. [DOI: 10.1002/cphc.201700384] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/01/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Chavdar Slavov
- Institute of Physical and Theoretical Chemistry; Goethe University; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Chong Yang
- Interdisciplinary Center for Scientific Computing, IWR; University of Heidelberg; Im Neuenheimer Feld 205 69120 Heidelberg Germany
| | - Luca Schweighauser
- Institute of Organic Chemistry; Justus Liebig University; Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Hermann A. Wegner
- Institute of Organic Chemistry; Justus Liebig University; Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, IWR; University of Heidelberg; Im Neuenheimer Feld 205 69120 Heidelberg Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry; Goethe University; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| |
Collapse
|
45
|
Pijeau S, Foster D, Hohenstein EG. Excited-State Dynamics of 2-(2′-Hydroxyphenyl)benzothiazole: Ultrafast Proton Transfer and Internal Conversion. J Phys Chem A 2017; 121:4595-4605. [DOI: 10.1021/acs.jpca.7b01215] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shiela Pijeau
- Department
of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
| | - Donneille Foster
- Department
of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
| | - Edward G. Hohenstein
- Department
of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
46
|
Baker LA, Clark SL, Habershon S, Stavros VG. Ultrafast Transient Absorption Spectroscopy of the Sunscreen Constituent Ethylhexyl Triazone. J Phys Chem Lett 2017; 8:2113-2118. [PMID: 28437110 DOI: 10.1021/acs.jpclett.7b00633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ultrafast photoprotection mechanisms in operation in ethylhexyl triazone (EHT, octyl triazone), an approved ultraviolet-B (UV-B) chemical filter for commercial sunscreens, remain elusive, with a notable absence of ultrafast time-resolved measurements. These large organic molecules are of increasing interest as they are suspected to be less likely to penetrate the skin than some of the smaller approved filters, thereby reducing the possible adverse effects from sunscreen products. We apply femtosecond transient absorption spectroscopy with electronic structure calculations to unravel the complete photodeactivation mechanism that EHT undergoes after UV-B irradiation. We propose that this involves ultrafast internal conversion of the initially photoexcited n1ππ* state that couples to the ground state via a 11ππ*/S0 conical intersection, enabling multiple absorption and recovery cycles, as one would anticipate from a highly efficient filter. We also observe long-lived photoproducts which, based on previous studies along with present electronic structure calculations, we attribute to trapped excited populations in the S1 and T1 states.
Collapse
Affiliation(s)
- Lewis A Baker
- Department of Chemistry and ‡Centre for Scientific Computing, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Sarah L Clark
- Department of Chemistry and ‡Centre for Scientific Computing, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Scott Habershon
- Department of Chemistry and ‡Centre for Scientific Computing, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Vasilios G Stavros
- Department of Chemistry and ‡Centre for Scientific Computing, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|