1
|
Meng WH, Zhang X, Pan BB, Tan X, Zhao JL, Liu Y, Yang Y, Goldfarb D, Su XC. Efficient Orthogonal Spin Labeling of Proteins via Aldehyde Cyclization for Pulsed Dipolar EPR Distance Measurements. J Am Chem Soc 2025; 147:234-246. [PMID: 39731614 DOI: 10.1021/jacs.4c09139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Pulsed dipolar electron paramagnetic resonance (PD-EPR) measurement is a powerful technique for characterizing the interactions and conformational changes of biomolecules. The extraction of these distance restraints from PD-EPR experiments relies on manipulation of spin-spin pairs. The orthogonal spin labeling approach offers unique advantages by providing multiple distances between different spin-spin pairs. Here, we report an efficient orthogonal labeling approach based on exploiting the cyclization between the 1,2-aminothiol moiety in a protein (e.g., the N-terminal cysteine) with the aldehyde group in a spin label and a thiol substitution (or addition) reaction with a different spin label. We demonstrated that this orthogonal spin labeling method enables high accuracy and precision of multiple protein distance constraints through the PD-EPR measurement from a single sample. This spin labeling approach was applied to characterize the oligomeric state of the trigger factor (TF) protein of Escherichia coli, an important protein chaperone, in solution and cell lysates by distance measurements between different spin-spin pairs. Contrary to popular belief, TF exists mainly in the monomeric state and not as a dimer in the cell lysate.
Collapse
Affiliation(s)
- Wei-Han Meng
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xing Zhang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin-Bin Pan
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical, Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jia-Long Zhao
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical, Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yin Yang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Pierro A, Bonucci A, Magalon A, Belle V, Mileo E. Impact of Cellular Crowding on Protein Structural Dynamics Investigated by EPR Spectroscopy. Chem Rev 2024; 124:9873-9898. [PMID: 39213496 DOI: 10.1021/acs.chemrev.3c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The study of how the intracellular medium influences protein structural dynamics and protein-protein interactions is a captivating area of research for scientists aiming to comprehend biomolecules in their native environment. As the cellular environment can hardly be reproduced in vitro, direct investigation of biomolecules within cells has attracted growing interest in the past two decades. Among magnetic resonances, site-directed spin labeling coupled to electron paramagnetic resonance spectroscopy (SDSL-EPR) has emerged as a powerful tool for studying the structural properties of biomolecules directly in cells. Since the first in-cell EPR experiment was reported in 2010, substantial progress has been made, and this Review provides a detailed overview of the developments and applications of this spectroscopic technique. The strategies available for preparing a cellular sample and the EPR methods that can be applied to cells will be discussed. The array of spin labels available, along with their strengths and weaknesses in cellular contexts, will also be described. Several examples will illustrate how in-cell EPR can be applied to different biological systems and how the cellular environment affects the structural and dynamic properties of different proteins. Lastly, the Review will focus on the future developments expected to expand the capabilities of this promising technique.
Collapse
Affiliation(s)
- Annalisa Pierro
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Alessio Bonucci
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| | - Axel Magalon
- Aix Marseille University, CNRS, Laboratoire de Chimie Bactérienne (LCB), IMM, IM2B, Marseille, France
| | - Valérie Belle
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| | - Elisabetta Mileo
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| |
Collapse
|
3
|
Ackermann K, Heubach CA, Schiemann O, Bode BE. Pulse Dipolar Electron Paramagnetic Resonance Spectroscopy Distance Measurements at Low Nanomolar Concentrations: The Cu II-Trityl Case. J Phys Chem Lett 2024; 15:1455-1461. [PMID: 38294197 PMCID: PMC10860127 DOI: 10.1021/acs.jpclett.3c03311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
Recent sensitivity enhancements in pulse dipolar electron paramagnetic resonance spectroscopy (PDS) have afforded distance measurements at submicromolar spin concentrations. This development opens the path for new science as more biomolecular systems can be investigated at their respective physiological concentrations. Here, we demonstrate that the combination of orthogonal spin-labeling using CuII ions and trityl yields a >3-fold increase in sensitivity compared to that of the established CuII-nitroxide labeling strategy. Application of the recently developed variable-time relaxation-induced dipolar modulation enhancement (RIDME) method yields a further ∼2.5-fold increase compared to the commonly used constant-time RIDME. This overall increase in sensitivity of almost an order of magnitude makes distance measurements in the range of 3 nm with protein concentrations as low as 10 nM feasible, >2 times lower than the previously reported concentration. We expect that experiments at single-digit nanomolar concentrations are imminent, which have the potential to transform biological PDS applications.
Collapse
Affiliation(s)
- Katrin Ackermann
- EaStCHEM
School of Chemistry and Biomedical Sciences Research Complex, Centre
of Magnetic Resonance, University of St
Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Caspar A. Heubach
- Clausius-Institute
of Physical and Theoretical Chemistry, University
of Bonn, Wegelerstrasse 12, 53115 Bonn, Germany
| | - Olav Schiemann
- Clausius-Institute
of Physical and Theoretical Chemistry, University
of Bonn, Wegelerstrasse 12, 53115 Bonn, Germany
| | - Bela E. Bode
- EaStCHEM
School of Chemistry and Biomedical Sciences Research Complex, Centre
of Magnetic Resonance, University of St
Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| |
Collapse
|
4
|
Pierro A, Tamburrini KC, Leguenno H, Gerbaud G, Etienne E, Guigliarelli B, Belle V, Zambelli B, Mileo E. In-cell investigation of the conformational landscape of the GTPase UreG by SDSL-EPR. iScience 2023; 26:107855. [PMID: 37766968 PMCID: PMC10520941 DOI: 10.1016/j.isci.2023.107855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/07/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
UreG is a cytosolic GTPase involved in the maturation network of urease, an Ni-containing bacterial enzyme. Previous investigations in vitro showed that UreG features a flexible tertiary organization, making this protein the first enzyme discovered to be intrinsically disordered. To determine whether this heterogeneous behavior is maintained in the protein natural environment, UreG structural dynamics was investigated directly in intact bacteria by in-cell EPR. This approach, based on site-directed spin labeling coupled to electron paramagnetic resonance (SDSL-EPR) spectroscopy, enables the study of proteins in their native environment. The results show that UreG maintains heterogeneous structural landscape in-cell, existing in a conformational ensemble of two major conformers, showing either random coil-like or compact properties. These data support the physiological relevance of the intrinsically disordered nature of UreG and indicates a role of protein flexibility for this specific enzyme, possibly related to the regulation of promiscuous protein interactions for metal ion delivery.
Collapse
Affiliation(s)
- Annalisa Pierro
- Aix Marseille Univ, CNRS, BIP, IMM, 13009 Marseille, France
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Ketty Concetta Tamburrini
- Aix Marseille Univ, CNRS, AFMB, 13009 Marseille, France
- INRAE, Aix Marseille Univ, BBF, 13009 Marseille, France
| | - Hugo Leguenno
- Aix Marseille Univ, CNRS, IMM, Microscopy Core Facility, 13009 Marseille, France
| | | | | | | | - Valérie Belle
- Aix Marseille Univ, CNRS, BIP, IMM, 13009 Marseille, France
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | | |
Collapse
|
5
|
Gerbaud G, Barbat B, Tribout M, Etienne E, Belle V, Douzi B, Voulhoux R, Bonucci A. Refining the Dynamic Network of T2SS Endopilus Tip Heterocomplex Combining cw-EPR and Nitroxide-Gd III Distance Measurements. Chembiochem 2023; 24:e202300099. [PMID: 36999435 DOI: 10.1002/cbic.202300099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/01/2023]
Abstract
The type 2 secretion system (T2SS) is a bacterial nanomachine composed of an inner membrane assembly platform, an outer membrane pore and a dynamic endopilus. T2SS endopili are organized into a homo-multimeric body formed by the major pilin capped by a heterocomplex of four minor pilins. The first model of the T2SS endopilus was recently released, even if structural dynamics insights are still required to decipher the role of each protein in the full tetrameric complex. Here, we applied continuous-wave and pulse EPR spectroscopy using nitroxide-gadolinium orthogonal labelling strategies to investigate the hetero-oligomeric assembly of the minor pilins. Overall, our data are in line with the endopilus model even if they evidenced conformational flexibility and alternative orientations at local scale of specific regions of minor pilins. The integration of different labelling strategies and EPR experiments demonstrates the pertinence of this approach to investigate protein-protein interactions in such multiprotein heterocomplexes.
Collapse
Affiliation(s)
- Guillaume Gerbaud
- BIP-Bioénérgetique et Ingénierie es Protéines, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| | - Brice Barbat
- LCB-Laboratoire de Chimie Bactérienne, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| | - Mathilde Tribout
- LCB-Laboratoire de Chimie Bactérienne, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| | - Emilien Etienne
- BIP-Bioénérgetique et Ingénierie es Protéines, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| | - Valérie Belle
- BIP-Bioénérgetique et Ingénierie es Protéines, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| | - Badreddine Douzi
- LCB-Laboratoire de Chimie Bactérienne, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
- Present address: INRAE, DynAMic, Université de Lorraine, 54000, Nancy, France
| | - Romé Voulhoux
- LCB-Laboratoire de Chimie Bactérienne, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| | - Alessio Bonucci
- BIP-Bioénérgetique et Ingénierie es Protéines, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| |
Collapse
|
6
|
Dunleavy R, Chandrasekaran S, Crane BR. Enzymatic Spin-Labeling of Protein N- and C-Termini for Electron Paramagnetic Resonance Spectroscopy. Bioconjug Chem 2023:10.1021/acs.bioconjchem.3c00029. [PMID: 36921260 PMCID: PMC10502183 DOI: 10.1021/acs.bioconjchem.3c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for investigating the structure and dynamics of proteins. The introduction of paramagnetic moieties at specific positions in a protein enables precise measurement of local structure and dynamics. This technique, termed site-directed spin-labeling, has traditionally been performed using cysteine-reactive radical-containing probes. However, large proteins are more likely to contain multiple cysteine residues and cysteine labeling at specific sites may be infeasible or impede function. To address this concern, we applied three peptide-ligating enzymes (sortase, asparaginyl endopeptidase, and inteins) for nitroxide labeling of N- and C-termini of select monomeric and dimeric proteins. Continuous wave and pulsed EPR (double electron electron resonance) experiments reveal specific attachment of nitroxide probes to ether N-termini (OaAEP1) or C-termini (sortase and intein) across three test proteins (CheY, CheA, and iLOV), thereby enabling a straightforward, highly specific, and general method for protein labeling. Importantly, the linker length (3, 5, and 9 residues for OaAEP1, intein, and sortase reactions, respectively) between the probe and the target protein has a large impact on the utility of distance measurements by pulsed EPR, with longer linkers leading to broader distributions. As these methods are only dependent on accessible N- and C-termini, we anticipate application to a wide range of protein targets for biomolecular EPR spectroscopy.
Collapse
Affiliation(s)
- Robert Dunleavy
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Scherer A, Yao X, Qi M, Wiedmaier M, Godt A, Drescher M. Increasing the Modulation Depth of Gd III-Based Pulsed Dipolar EPR Spectroscopy (PDS) with Porphyrin-Gd III Laser-Induced Magnetic Dipole Spectroscopy. J Phys Chem Lett 2022; 13:10958-10964. [PMID: 36399541 PMCID: PMC9720741 DOI: 10.1021/acs.jpclett.2c02138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Distance determination with pulsed EPR has become an important technique for the structural investigation of biomacromolecules, with double electron-electron resonance spectroscopy (DEER) as the most important method. GdIII-based spin labels are one of the most frequently used spin labels for DEER owing to their stability against reduction, high magnetic moment, and absence of orientation selection. A disadvantage of GdIII-GdIII DEER is the low modulation depth due to the broad EPR spectrum of GdIII. Here, we introduce laser-induced magnetic dipole spectroscopy (LaserIMD) with a spin pair consisting of GdIII(PymiMTA) and a photoexcited porphyrin as an alternative technique. We show that the excited state of the porphyrin is not disturbed by the presence of the GdIII complex and that herewith modulation depths of almost 40% are possible. This is significantly higher than the value of 7.2% that was achieved with GdIII-GdIII DEER.
Collapse
Affiliation(s)
- Andreas Scherer
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Xuemei Yao
- Faculty
of Chemistry and Center of Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Mian Qi
- Faculty
of Chemistry and Center of Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Max Wiedmaier
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Adelheid Godt
- Faculty
of Chemistry and Center of Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Malte Drescher
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
8
|
Abstract
Different types of spin labels are currently available for structural studies of biomolecules both in vitro and in cells using Electron Paramagnetic Resonance (EPR) and pulse dipolar spectroscopy (PDS). Each type of label has its own advantages and disadvantages, that will be addressed in this chapter. The spectroscopically distinct properties of the labels have fostered new applications of PDS aimed to simultaneously extract multiple inter-label distances on the same sample. In fact, combining different labels and choosing the optimal strategy to address their inter-label distances can increase the information content per sample, and this is pivotal to better characterize complex multi-component biomolecular systems. In this review, we provide a brief background of the spectroscopic properties of the four most common orthogonal spin labels for PDS measurements and focus on the various methods at disposal to extract homo- and hetero-label distances in proteins. We also devote a section to possible artifacts arising from channel crosstalk and provide few examples of applications in structural biology.
Collapse
|
9
|
Giannoulis A, Ben-Ishay Y, Goldfarb D. Characteristics of Gd(III) spin labels for the study of protein conformations. Methods Enzymol 2021; 651:235-290. [PMID: 33888206 DOI: 10.1016/bs.mie.2021.01.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gd(III) complexes are currently established as spin labels for structural studies of biomolecules using pulse dipolar electron paramagnetic resonance (PD-EPR) techniques. This has been achieved by the availability of medium- and high-field spectrometers, understanding the spin physics underlying the spectroscopic properties of high spin Gd(III) (S=7/2) pairs and their dipolar interaction, the design of well-defined model compounds and optimization of measurement techniques. In addition, a variety of Gd(III) chelates and labeling schemes have allowed a broad scope of applications. In this review, we provide a brief background of the spectroscopic properties of Gd(III) pertinent for effective PD-EPR measurements and focus on the various labels available to date. We report on their use in PD-EPR applications and highlight their pros and cons for particular applications. We also devote a section to recent in-cell structural studies of proteins using Gd(III), which is an exciting new direction for Gd(III) spin labeling.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Yasmin Ben-Ishay
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
10
|
Torricella F, Pierro A, Mileo E, Belle V, Bonucci A. Nitroxide spin labels and EPR spectroscopy: A powerful association for protein dynamics studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140653. [PMID: 33757896 DOI: 10.1016/j.bbapap.2021.140653] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/01/2023]
Abstract
Site-Directed Spin Labelling (SDSL) technique is based on the attachment of a paramagnetic label onto a specific position of a protein (or other bio-molecules) and the subsequent study by Electron Paramagnetic Resonance (EPR) spectroscopy. In particular, continuous-wave EPR (cw-EPR) spectra can detect the local conformational dynamics for proteins under various conditions. Moreover, pulse-EPR experiments on doubly spin-labelled proteins allow measuring distances between spin centres in the 1.5-8 nm range, providing information about structures and functions. This review focuses on SDSL-EPR spectroscopy as a structural biology tool to investigate proteins using nitroxide labels. The versatility of this spectroscopic approach for protein structural characterization has been demonstrated through the choice of recent studies. The main aim is to provide a general overview of the technique, particularly for non-experts, to spread the applicability of this technique in various fields of structural biology.
Collapse
Affiliation(s)
- F Torricella
- CERM-Magnetic Resonance Center, Department of Chemistry, University of Florence, via L.Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - A Pierro
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - E Mileo
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - V Belle
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - A Bonucci
- CERM-Magnetic Resonance Center, Department of Chemistry, University of Florence, via L.Sacconi 6, 50019 Sesto Fiorentino, Italy; Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France.
| |
Collapse
|
11
|
Teucher M, Qi M, Cati N, Hintz H, Godt A, Bordignon E. Strategies to identify and suppress crosstalk signals in double electron-electron resonance (DEER) experiments with gadolinium III and nitroxide spin-labeled compounds. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:285-299. [PMID: 37904822 PMCID: PMC10500692 DOI: 10.5194/mr-1-285-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/31/2020] [Indexed: 11/01/2023]
Abstract
Double electron-electron resonance (DEER) spectroscopy applied to orthogonally spin-labeled biomolecular complexes simplifies the assignment of intra- and intermolecular distances, thereby increasing the information content per sample. In fact, various spin labels can be addressed independently in DEER experiments due to spectroscopically nonoverlapping central transitions, distinct relaxation times, and/or transition moments; hence, they are referred to as spectroscopically orthogonal. Molecular complexes which are, for example, orthogonally spin-labeled with nitroxide (NO) and gadolinium (Gd) labels give access to three distinct DEER channels that are optimized to selectively probe NO-NO, NO-Gd, and Gd-Gd distances. Nevertheless, it has been previously recognized that crosstalk signals between individual DEER channels can occur, for example, when a Gd-Gd distance appears in a DEER channel optimized to detect NO-Gd distances. This is caused by residual spectral overlap between NO and Gd spins which, therefore, cannot be considered as perfectly orthogonal. Here, we present a systematic study on how to identify and suppress crosstalk signals that can appear in DEER experiments using mixtures of NO-NO, NO-Gd, and Gd-Gd molecular rulers characterized by distinct, nonoverlapping distance distributions. This study will help to correctly assign the distance peaks in homo- and heterocomplexes of biomolecules carrying not perfectly orthogonal spin labels.
Collapse
Affiliation(s)
- Markus Teucher
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Ninive Cati
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Henrik Hintz
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
12
|
EPR of site-directed spin-labeled proteins: A powerful tool to study structural flexibility. Arch Biochem Biophys 2020; 684:108323. [DOI: 10.1016/j.abb.2020.108323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022]
|
13
|
Bonucci A, Ouari O, Guigliarelli B, Belle V, Mileo E. In‐Cell EPR: Progress towards Structural Studies Inside Cells. Chembiochem 2019; 21:451-460. [DOI: 10.1002/cbic.201900291] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Alessio Bonucci
- Magnetic Resonance CenterCERMUniversity of Florence 50019 Sesto Fiorentino Italy
| | - Olivier Ouari
- Aix Marseille UnivCNRSICRInstitut de Chimie Radicalaire 13013 Marseille France
| | - Bruno Guigliarelli
- Aix Marseille UnivCNRSBIPBioénergétique et Ingénierie des ProtéinesIMM 13009 Marseille France
| | - Valérie Belle
- Aix Marseille UnivCNRSBIPBioénergétique et Ingénierie des ProtéinesIMM 13009 Marseille France
| | - Elisabetta Mileo
- Aix Marseille UnivCNRSBIPBioénergétique et Ingénierie des ProtéinesIMM 13009 Marseille France
| |
Collapse
|
14
|
Jassoy JJ, Heubach CA, Hett T, Bernhard F, Haege FR, Hagelueken G, Schiemann O. Site Selective and Efficient Spin Labeling of Proteins with a Maleimide-Functionalized Trityl Radical for Pulsed Dipolar EPR Spectroscopy. Molecules 2019; 24:E2735. [PMID: 31357628 PMCID: PMC6696014 DOI: 10.3390/molecules24152735] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/18/2023] Open
Abstract
Pulsed dipolar electron paramagnetic resonance spectroscopy (PDS) in combination with site-directed spin labeling (SDSL) of proteins and oligonucleotides is a powerful tool in structural biology. Instead of using the commonly employed gem-dimethyl-nitroxide labels, triarylmethyl (trityl) spin labels enable such studies at room temperature, within the cells and with single-frequency electron paramagnetic resonance (EPR) experiments. However, it has been repeatedly reported that labeling of proteins with trityl radicals led to low labeling efficiencies, unspecific labeling and label aggregation. Therefore, this work introduces the synthesis and characterization of a maleimide-functionalized trityl spin label and its corresponding labeling protocol for cysteine residues in proteins. The label is highly cysteine-selective, provides high labeling efficiencies and outperforms the previously employed methanethiosulfonate-functionalized trityl label. Finally, the new label is successfully tested in PDS measurements on a set of doubly labeled Yersinia outer protein O (YopO) mutants.
Collapse
Affiliation(s)
- J Jacques Jassoy
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Caspar A Heubach
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Tobias Hett
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Frédéric Bernhard
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Florian R Haege
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Gregor Hagelueken
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegelerstr. 12, 53115 Bonn, Germany.
| |
Collapse
|
15
|
Shah A, Roux A, Starck M, Mosely JA, Stevens M, Norman DG, Hunter RI, El Mkami H, Smith GM, Parker D, Lovett JE. A Gadolinium Spin Label with Both a Narrow Central Transition and Short Tether for Use in Double Electron Electron Resonance Distance Measurements. Inorg Chem 2019; 58:3015-3025. [DOI: 10.1021/acs.inorgchem.8b02892] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Anokhi Shah
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
- BSRC, University of St Andrews, St Andrews KY16 9ST, U.K
| | - Amandine Roux
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Matthieu Starck
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Jackie A. Mosely
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Michael Stevens
- College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - David G. Norman
- College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Robert I. Hunter
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
| | - Hassane El Mkami
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
| | - Graham M. Smith
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
| | - David Parker
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Janet E. Lovett
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
- BSRC, University of St Andrews, St Andrews KY16 9ST, U.K
| |
Collapse
|
16
|
Ritsch I, Hintz H, Jeschke G, Godt A, Yulikov M. Improving the accuracy of Cu(ii)–nitroxide RIDME in the presence of orientation correlation in water-soluble Cu(ii)–nitroxide rulers. Phys Chem Chem Phys 2019; 21:9810-9830. [DOI: 10.1039/c8cp06573j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Detailed analysis of artefacts in the Cu(ii)–nitroxide RIDME experiments, related to orientation averaging, echo-crossing, ESEEM and background-correction is presented.
Collapse
Affiliation(s)
- Irina Ritsch
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Henrik Hintz
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
17
|
Giannoulis A, Yang Y, Gong YJ, Tan X, Feintuch A, Carmieli R, Bahrenberg T, Liu Y, Su XC, Goldfarb D. DEER distance measurements on trityl/trityl and Gd(iii)/trityl labelled proteins. Phys Chem Chem Phys 2019; 21:10217-10227. [DOI: 10.1039/c8cp07249c] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Trityl–trityl and trityl–Gd(iii) DEER distance measurements in proteins are performed using a new trityl spin label affording thioether–protein conjugation.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Yin Yang
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
- China
| | - Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Akiva Feintuch
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Raanan Carmieli
- Department of Chemical Research Support
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Thorsten Bahrenberg
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
- China
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| |
Collapse
|
18
|
Le Breton N, Longhi S, Rockenbauer A, Guigliarelli B, Marque SRA, Belle V, Martinho M. Probing the dynamic properties of two sites simultaneously in a protein–protein interaction process: a SDSL-EPR study. Phys Chem Chem Phys 2019; 21:22584-22588. [DOI: 10.1039/c9cp04660g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Probing two sites simultaneously in a protein–protein interaction process combining spin labels of different EPR signatures.
Collapse
Affiliation(s)
| | - S. Longhi
- Aix Marseille Univ
- CNRS
- AFMB
- Marseille
- France
| | - A. Rockenbauer
- Research Center of Natural Sciences
- Budapest University of Technology and Economics
- Budapest
- Hungary
| | | | | | - V. Belle
- Aix Marseille Univ., CNRS, BIP
- Marseille
- France
| | - M. Martinho
- Aix Marseille Univ., CNRS, BIP
- Marseille
- France
| |
Collapse
|
19
|
Keller K, Qi M, Gmeiner C, Ritsch I, Godt A, Jeschke G, Savitsky A, Yulikov M. Intermolecular background decay in RIDME experiments. Phys Chem Chem Phys 2019; 21:8228-8245. [DOI: 10.1039/c8cp07815g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Theoretical and experimental studies of the RIDME background reveal electron and nuclear spectral diffusion contributions.
Collapse
Affiliation(s)
- Katharina Keller
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Christoph Gmeiner
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Irina Ritsch
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Anton Savitsky
- Physics Department
- Technical University Dortmund
- Dortmund
- Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
20
|
Muok AR, Chua TK, Le H, Crane BR. Nucleotide Spin Labeling for ESR Spectroscopy of ATP-Binding Proteins. APPLIED MAGNETIC RESONANCE 2018; 49:1385-1395. [PMID: 30686862 PMCID: PMC6342010 DOI: 10.1007/s00723-018-1070-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/12/2018] [Indexed: 06/09/2023]
Abstract
Site-directed spin labeling of proteins by chemical modification of engineered cysteine residues with the molecule MTSSL (1-Oxyl-2,2,5,5-tetramethylpyrroline-3-methyl methanethiosulfonate) has been an invaluable tool for conducting double electron electron resonance (DEER) spectroscopy experiments. However, this method is generally limited to recombinant proteins with a limited number of reactive Cys residues that when modified will not impair protein function. Here we present a method that allows for spin-labeling of protein nucleotide binding sites by adenosine diphosphate (ADP) modified with a nitroxide moiety on the β-phosphate (ADP-β-S-SL). The synthesis of this ADP analog is straightforward and isolation of pure product is readily achieved on a standard reverse-phase high-performance liquid chromatography (HPLC) system. Furthermore, analyses of isolated ADP-β-S-SL by LC-mass spectrometry confirm that the molecule is extremely stable under ambient conditions. The crystal structure of ADP-β-S-SL bound to the ATP pocket of the histidine kinase CheA reveals specific targeting of the probe, whose nitroxide moiety is mobile on the protein surface. Continuous wave and pulsed ESR measurements demonstrate the capability of ADP-β-S-SL to report on active site environment and provide reliable DEER distance constraints.
Collapse
|
21
|
Weickert S, Seitz T, Myers WK, Timmel CR, Drescher M, Wittmann V. Conformationally Unambiguous Spin Label for Exploring the Binding Site Topology of Multivalent Systems. J Phys Chem Lett 2018; 9:6131-6135. [PMID: 30284834 DOI: 10.1021/acs.jpclett.8b02243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multivalent carbohydrate-lectin interactions are a key concept in biological processes mediating, for example, signaling and adhesion. Binding affinities of multivalent ligands often increase by orders of magnitude compared to a monovalent binding situation. Thus, the design of multivalent ligands as potent inhibitors is a highly active field of research, where knowledge about the binding site topology is crucial. Here, we report a general strategy for precise distance measurements between the binding sites of multivalent target proteins using monovalent ligands. We designed and synthesized Monovalent, conformationally Unambiguously Spin-labeled LIgands (MUeSLI). Distances between the binding sites of the multivalent model lectin wheat germ agglutinin in complex with a GlcNAc-derived MUeSLI were determined using pulsed electron paramagnetic resonance spectroscopy. This approach is an efficient method for exploring multivalent systems with monovalent ligands, and it is readily transferable to other target proteins, allowing the targeted design of multivalent ligands without structural information available.
Collapse
Affiliation(s)
- Sabrina Weickert
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB) , University of Konstanz , 78457 Konstanz , Germany
| | - Torben Seitz
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB) , University of Konstanz , 78457 Konstanz , Germany
| | - William K Myers
- Department of Chemistry and Centre for Advanced Electron Spin Resonance (CAESR) , University of Oxford , South Parks Road , Oxford OX1 3QR , United Kingdom
| | - Christiane R Timmel
- Department of Chemistry and Centre for Advanced Electron Spin Resonance (CAESR) , University of Oxford , South Parks Road , Oxford OX1 3QR , United Kingdom
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB) , University of Konstanz , 78457 Konstanz , Germany
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB) , University of Konstanz , 78457 Konstanz , Germany
| |
Collapse
|
22
|
Vogler S, Savasci G, Ludwig M, Ochsenfeld C. Selected-Nuclei Method for the Computation of Hyperfine Coupling Constants within Second-Order Møller-Plesset Perturbation Theory. J Chem Theory Comput 2018; 14:3014-3024. [PMID: 29762028 DOI: 10.1021/acs.jctc.8b00116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We introduce a new ansatz to compute hyperfine coupling constants of selected nuclei at the level of second-order Møller-Plesset perturbation (MP2) and double-hybrid density functional theory with reduced computational effort, opening the route to the analyis of hyperfine coupling constants of large molecular structures. Our approach is based on a reformulation of the canonical MP2 term in atomic orbitals, thus exploiting the locality of electron correlation. We show that a perturbation-including integral screening reduces the scaling behavior of the number of significant two-electron integrals to sublinear. This selected-nuclei approach allows for an efficient computation within scaled-opposite spin (SOS) RI-MP2 on massively parallelized architectures such as graphical processor units (GPUs), thus enabling studies on the influence of the environment on hyperfine coupling constants.
Collapse
Affiliation(s)
- Sigurd Vogler
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry , University of Munich (LMU) , Butenandtstrasse 7 , 81377 Munich , Germany
| | - Gökcen Savasci
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry , University of Munich (LMU) , Butenandtstrasse 7 , 81377 Munich , Germany.,Max Planck Institute for Solid State Research, Heisenbergstrasse 1 , 70569 Stuttgart , Germany
| | - Martin Ludwig
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry , University of Munich (LMU) , Butenandtstrasse 7 , 81377 Munich , Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry , University of Munich (LMU) , Butenandtstrasse 7 , 81377 Munich , Germany.,Max Planck Institute for Solid State Research, Heisenbergstrasse 1 , 70569 Stuttgart , Germany
| |
Collapse
|
23
|
Shevelev GY, Gulyak EL, Lomzov AA, Kuzhelev AA, Krumkacheva OA, Kupryushkin MS, Tormyshev VM, Fedin MV, Bagryanskaya EG, Pyshnyi DV. A Versatile Approach to Attachment of Triarylmethyl Labels to DNA for Nanoscale Structural EPR Studies at Physiological Temperatures. J Phys Chem B 2018; 122:137-143. [PMID: 29206458 DOI: 10.1021/acs.jpcb.7b10689] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Triarylmethyl (trityl, TAM) radicals are a promising class of spin labels for nanometer-scale distance measurements in biomolecules at physiological temperatures. However, to date, existing approaches to site-directed TAM labeling of DNA have been limited to label attachment at the termini of oligonucleotides, thus hindering a majority of demanded applications. Herein, we report a new versatile strategy for TAM attachment at arbitrary sites of nucleic acids. It utilizes an achiral non-nucleoside phosphoramidite monomer for automated solid-phase synthesis of oligonucleotides, which are then postsynthetically functionalized with TAM. We demonstrate a synthesis of a set of oligonucleotide complexes that are TAM-labeled at internal or terminal sites, as well as the possibility of measuring interspin distances up to ∼5-6 nm at 298 K using double quantum coherence electron paramagnetic resonance (EPR). Implementation of the developed approach strongly broadens the scope of nucleic acids and nucleoprotein complexes available for nanoscale structural EPR studies at room temperatures.
Collapse
Affiliation(s)
- Georgiy Yu Shevelev
- Institute of Chemical Biology and Fundamental Medicine SB RAS , Novosibirsk 630090, Russia
- Novosibirsk State University , Novosibirsk 630090, Russia
| | - Evgeny L Gulyak
- Institute of Chemical Biology and Fundamental Medicine SB RAS , Novosibirsk 630090, Russia
- Novosibirsk State University , Novosibirsk 630090, Russia
| | - Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine SB RAS , Novosibirsk 630090, Russia
- Novosibirsk State University , Novosibirsk 630090, Russia
| | - Andrey A Kuzhelev
- Novosibirsk State University , Novosibirsk 630090, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS , Novosibirsk 630090, Russia
| | - Olesya A Krumkacheva
- Novosibirsk State University , Novosibirsk 630090, Russia
- International Tomography Center SB RAS , Novosibirsk 630090, Russia
| | - Maxim S Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine SB RAS , Novosibirsk 630090, Russia
| | - Victor M Tormyshev
- Novosibirsk State University , Novosibirsk 630090, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS , Novosibirsk 630090, Russia
| | - Matvey V Fedin
- Novosibirsk State University , Novosibirsk 630090, Russia
- International Tomography Center SB RAS , Novosibirsk 630090, Russia
| | - Elena G Bagryanskaya
- Novosibirsk State University , Novosibirsk 630090, Russia
- International Tomography Center SB RAS , Novosibirsk 630090, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS , Novosibirsk 630090, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine SB RAS , Novosibirsk 630090, Russia
- Novosibirsk State University , Novosibirsk 630090, Russia
| |
Collapse
|