1
|
Thosar AU, Cai Y, Marks SM, Vicars Z, Choi J, Pallath A, Patel AJ. On the engulfment of antifreeze proteins by ice. Proc Natl Acad Sci U S A 2024; 121:e2320205121. [PMID: 38833468 PMCID: PMC11181090 DOI: 10.1073/pnas.2320205121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/16/2024] [Indexed: 06/06/2024] Open
Abstract
Antifreeze proteins (AFPs) are remarkable biomolecules that suppress ice formation at trace concentrations. To inhibit ice growth, AFPs must not only bind to ice crystals, but also resist engulfment by ice. The highest supercooling, [Formula: see text], for which AFPs are able to resist engulfment is widely believed to scale as the inverse of the separation, [Formula: see text], between bound AFPs, whereas its dependence on the molecular characteristics of the AFP remains poorly understood. By using specialized molecular simulations and interfacial thermodynamics, here, we show that in contrast with conventional wisdom, [Formula: see text] scales as [Formula: see text] and not as [Formula: see text]. We further show that [Formula: see text] is proportional to AFP size and that diverse naturally occurring AFPs are optimal at resisting engulfment by ice. By facilitating the development of AFP structure-function relationships, we hope that our findings will pave the way for the rational design of AFPs.
Collapse
Affiliation(s)
- Aniket U. Thosar
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Yusheng Cai
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Sean M. Marks
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Zachariah Vicars
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Jeongmoon Choi
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Akash Pallath
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| | - Amish J. Patel
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
2
|
Midya US, Bandyopadhyay S. Ice Recrystallization Unveils the Binding Mechanism Operating at a Diffused Interface. J Phys Chem B 2024; 128:1170-1178. [PMID: 38287221 DOI: 10.1021/acs.jpcb.3c05934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Recrystallization of ice is a natural phenomenon that causes adverse effects in cryopreservation, agriculture, and in frozen food industry. It has long been recognized that ice recrystallization occurs through the Ostwald ripening and accretion processes. However, neither of these processes has been explored in microscopic detail by state-of-the-art experimental techniques. We carried out atomistic molecular dynamics (MD) simulations to explore ice recrystallization through the accretion process. Attempts have been made to elucidate the binding mechanism that is operating at the diffused ice-water interface. It is demonstrated that two ice crystals spontaneously recognize each other and bind together to form a large crystal in liquid water, resulting in ice recrystallization by accretion. Interestingly, the study reveals that the binding occurs due to the freezing of the interfacial water layer present between the two ice planes, even at a temperature above the melting point of the ice crystal. The synergistically enhanced ordering effect of two ice surfaces on the interfacial water leads to such freezing occurring during the binding process. However, proper crystallographic alignment is not necessarily required for the binding of the two crystals. Simulations have also been carried out to study the binding between an ice crystal and the model ice-binding surface (IBS) of an antifreeze protein above the melting point of the ice crystal. It is found that such binding at the IBS is accompanied by freezing of the interfacial water. This establishes that the synergetic ordering-driven freezing of interfacial water is a common binding mechanism at the diffused surfaces of ice crystals. We believe that this mechanism will provide a microscopic understanding of the process of recrystallization inhibition and thus help in designing suitable materials for potent applications in recrystallization inhibition.
Collapse
Affiliation(s)
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
3
|
Kharal SP, Louf JF. Unidirectional Freezing of Polymer Solution Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:118-124. [PMID: 38154147 DOI: 10.1021/acs.langmuir.3c02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Ice templating provides a means of generating textures with a well-defined topography. Recent applications involve the freezing of water droplets, with or without colloids, on flat or textured surfaces. An interesting feature of water droplets freezing on a substrate is the formation of a pointy tip at a constant angle, regardless of the substrate temperature, surface energy, or droplet volume. Here, by adding the polymer to water, we demonstrate how to manipulate and even prevent the formation of such an icy tip. We find that the sharpness of the tip decreases with increasing polymer concentration until completely disappearing above the overlap concentration, while the total freezing time increases concomitantly. Building on these observations, we combined simple geometrical arguments with heat flux measurements to model and connect the spatial and temporal evolution of polymer droplets under unidirectional freezing. Together our results provide new ways to control the shape of frozen droplets for ice templating or microstructure fabrication, with applications in tissue engineering, separation membranes, and soft robotics.
Collapse
Affiliation(s)
- Shankar Prasad Kharal
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Jean-François Louf
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
4
|
Bhendale M, Indra A, Singh JK. Does freezing induce self-assembly of polymers? A molecular dynamics study. SOFT MATTER 2023; 19:7570-7579. [PMID: 37751160 DOI: 10.1039/d3sm00892d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
This work investigates the freezing-induced self-assembly (FISA) of polyvinyl alcohol (PVA) and PVA-like polymers using molecular dynamics simulations. In particular, the effect of the degree of supercooling, degree of polymerization, polymer type, and initial local concentration on the FISA was studied. It was found that the preeminent factor responsible for FISA is not the diffusion of the polymers away from the nucleating ice front, but the increase in the polymer's local concentration upon freezing of the solvent (water). At a higher degree of supercooling, the polymers are engulfed by the growing ice front, impeding their diffusion into the supercooled solution and finally inhibiting their self-assembly. Conversely, at a relatively lower degree of supercooling, the rate of diffusion of the polymers into the supercooled solution is higher, which increases their local concentration and results in FISA. FISA was also observed to depend on the polymer-solvent interactions. Strongly favorable solute-solvent interactions hinder the self-assembly, whereas unfavorable solute-solvent interactions promote the self-assembly. The polymer and aggregate morphology were investigated using the radius of gyration, end-to-end distance, and asphericity analysis. This study brings molecular insights into the quintessential factors governing self-assembly via freezing of the solvent, which is a novel self-assembly technique especially suitable for biomedical applications.
Collapse
Affiliation(s)
- Mangesh Bhendale
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India.
| | - Aindrila Indra
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India.
| | - Jayant K Singh
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India.
- Prescience Insilico Private Limited, 5th floor, Novel MSR Building, Marathalli, Bengaluru, Karnataka 560037, India
| |
Collapse
|
5
|
Farag H, Peters B. Engulfment Avalanches and Thermal Hysteresis for Antifreeze Proteins on Supercooled Ice. J Phys Chem B 2023. [PMID: 37294871 DOI: 10.1021/acs.jpcb.3c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antifreeze proteins (AFPs) bind to the ice-water surface and prevent ice growth at temperatures below 0 °C through a Gibbs-Thomson effect. Each adsorbed AFP creates a metastable depression on the surface that locally resists ice growth, until ice engulfs the AFP. We recently predicted the susceptibility to engulfment as a function of AFP size, distance between AFPs, and supercooling [ J. Chem. Phys. 2023, 158, 094501]. For an ensemble of AFPs adsorbed on the ice surface, the most isolated AFPs are the most susceptible, and when an isolated AFP gets engulfed, its former neighbors become more isolated and more susceptible to engulfment. Thus, an initial engulfment event can trigger an avalanche of subsequent engulfment events, leading to a sudden surge of unrestrained ice growth. This work develops a model to predict the supercooling at which the first engulfment event will occur for an ensemble of randomly distributed AFP pinning sites on an ice surface. Specifically, we formulate an inhomogeneous survival probability that accounts for the AFP coverage, the distribution of AFP neighbor distances, the resulting ensemble of engulfment rates, the ice surface area, and the cooling rate. We use the model to predict thermal hysteresis trends and compare with experimental data.
Collapse
Affiliation(s)
- Hossam Farag
- Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Baron Peters
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Farag H, Peters B. Free energy barriers for anti-freeze protein engulfment in ice: Effects of supercooling, footprint size, and spatial separation. J Chem Phys 2023; 158:094501. [PMID: 36889941 DOI: 10.1063/5.0131983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Anti-freeze proteins (AFPs) protect organisms at freezing conditions by attaching to the ice surface and arresting its growth. Each adsorbed AFP locally pins the ice surface, resulting in a metastable dimple for which the interfacial forces counteract the driving force for growth. As supercooling increases, these metastable dimples become deeper, until metastability is lost in an engulfment event where the ice irreversibly swallows the AFP. Engulfment resembles nucleation in some respects, and this paper develops a model for the "critical profile" and free energy barrier for the engulfment process. Specifically, we variationally optimize the ice-water interface and estimate the free energy barrier as a function of the supercooling, the AFP footprint size, and the distance to neighboring AFPs on the ice surface. Finally, we use symbolic regression to derive a simple closed-form expression for the free energy barrier as a function of two physically interpretable, dimensionless parameters.
Collapse
Affiliation(s)
- Hossam Farag
- Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Baron Peters
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
7
|
Kamat K, Naullage PM, Molinero V, Peters B. Oriented attachment kinetics for rod-like particles at a flat surface: Buffon's needle at the nanoscale. J Chem Phys 2022; 157:214113. [PMID: 36511557 DOI: 10.1063/5.0124531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The adsorption of large rod-like molecules or crystallites on a flat crystal face, similar to Buffon's needle, requires the rods to "land," with their binding sites in precise orientational alignment with matching sites on the surface. An example is provided by long, helical antifreeze proteins (AFPs), which bind at specific facets and orientations on the ice surface. The alignment constraint for adsorption, in combination with the loss in orientational freedom as the molecule diffuses toward the surface, results in an entropic barrier that hinders the adsorption. Prior kinetic models do not factor in the complete geometry of the molecule, nor explicitly enforce orientational constraints for adsorption. Here, we develop a diffusion-controlled adsorption theory for AFP molecules binding at specific orientations to flat ice surfaces. We formulate the diffusion equation with relevant boundary conditions and present analytical solutions to the attachment rate constant. The resulting rate constant is a function of the length and aspect ratio of the AFP, the distance threshold associated with binding, and solvent conditions such as temperature and viscosity. These results and methods of calculation may also be useful for predicting the kinetics of crystal growth through oriented attachment.
Collapse
Affiliation(s)
- Kartik Kamat
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Pavithra M Naullage
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112, USA
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112, USA
| | - Baron Peters
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
8
|
Takeno H, Hashimoto R, Lu Y, Hsieh WC. Structural and Mechanical Properties of Konjac Glucomannan Gels and Influence of Freezing-Thawing Treatments on Them. Polymers (Basel) 2022; 14:polym14183703. [PMID: 36145848 PMCID: PMC9506355 DOI: 10.3390/polym14183703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Freezing has been widely used for long-term food preservation. However, freezing-thawing (FT) treatment usually influences the texture and structure of food gels such as konjac. For their texture control after FT treatment, it is important to clarify the structural change of food gels during the FT process. In this study, we investigated the aggregated structures of konjac glucomannan (GM) gels during the FT process using simultaneous synchrotron small-angle X-ray/wide-angle X-ray scattering (SAXS/WAXS) techniques. The FT treatment resulted in more crystallization of GM, and consequently, a large increase in compressive stress. In-situ SAXS/WAXS measurements revealed the following findings: on freezing, water molecules came out of the aggregated phase of GM and after the thawing, they came back into the aggregated phase, but the aggregated structure did not return to the one before the freezing; the gel network enhanced the inhomogeneity due to the growth of ice crystals during freezing. Furthermore, we examined the influence of additives such as polyvinyl (alcohol) (PVA) and antifreeze glycoprotein (AFGP) on the mechanical and structural properties of freeze-thawed GM gels. Although the addition of PVA and AFGP suppressed the crystallization of GM, it could not prevent the growth of ice crystals and the increase in the inhomogeneity of the gel network. As a result, the compressive stresses for freeze-thawed GM gels containing PVA or AFGP were significantly higher compared with those of GM gels without FT treatments, although they were lower than those of freeze-thawed GM gels. The findings of this study may be useful for not only the texture control of freeze-thawed foods but also the improvement of the mechanical performance of the biomaterials.
Collapse
Affiliation(s)
- Hiroyuki Takeno
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan
- Gunma University Center for Food Science and Wellness, 4-2 Aramaki, Maebashi 371-8510, Gunma, Japan
- Correspondence:
| | - Ryuki Hashimoto
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan
| | - Yunqiao Lu
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan
| | - Wen-Chuan Hsieh
- Department of Biological Science and Technology, College of Medicine, I-SHOU University, No. 8, Yida, Yanchao, Kaohsiung 82445, Taiwan
| |
Collapse
|
9
|
Martelli F, Palmer JC. Signatures of sluggish dynamics and local structural ordering during ice nucleation. J Chem Phys 2022; 156:114502. [DOI: 10.1063/5.0083638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the microscopic pathway of spontaneous crystallization in the ST2 model of water under deeply supercooled conditions via unbiased classical molecular dynamics simulations. After quenching below the liquid–liquid critical point, the ST2 model spontaneously separates into low-density liquid (LDL) and high-density liquid phases, respectively. The LDL phase, which is characterized by lower molecular mobility and enhanced structural order, fosters the formation of a sub-critical ice nucleus that, after a stabilization time, develops into the critical nucleus and grows. Polymorphic selection coincides with the development of the sub-critical nucleus and favors the formation of cubic (Ic) over hexagonal (Ih) ice. We rationalize polymorphic selection in terms of geometric arguments based on differences in the symmetry of second neighbor shells of ice Ic and Ih, which are posited to favor formation of the former. The rapidly growing critical nucleus absorbs both Ic and Ih crystallites dispersed in the liquid phase, a crystal with stacking faults. Our results are consistent with, and expand upon, recent observations of non-classical nucleation pathways in several systems.
Collapse
Affiliation(s)
- Fausto Martelli
- IBM Research Europe, Hartree Centre, Daresbury WA4 4AD, United Kingdom
| | - Jeremy C. Palmer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
10
|
Warren M, Galpin I, Bachtiger F, Gibson MI, Sosso GC. Ice Recrystallization Inhibition by Amino Acids: The Curious Case of Alpha- and Beta-Alanine. J Phys Chem Lett 2022; 13:2237-2244. [PMID: 35238571 PMCID: PMC9007522 DOI: 10.1021/acs.jpclett.1c04080] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Extremophiles produce macromolecules which inhibit ice recrystallization, but there is increasing interest in discovering and developing small molecules that can modulate ice growth. Realizing their potential requires an understanding of how these molecules function at the atomistic level. Here, we report the discovery that the amino acid l-α-alanine demonstrates ice recrystallization inhibition (IRI) activity, functioning at 100 mM (∼10 mg/mL). We combined experimental assays with molecular simulations to investigate this IRI agent, drawing comparison to β-alanine, an isomer of l-α-alanine which displays no IRI activity. We found that the difference in the IRI activity of these molecules does not originate from their ice binding affinity, but from their capacity to (not) become overgrown, dictated by the degree of structural (in)compatibility within the growing ice lattice. These findings shed new light on the microscopic mechanisms of small molecule cryoprotectants, particularly in terms of their molecular structure and overgrowth by ice.
Collapse
Affiliation(s)
- Matthew
T. Warren
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Warwick
Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Iain Galpin
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Fabienne Bachtiger
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Warwick
Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Gabriele C. Sosso
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
11
|
Kamat K, Naullage PM, Molinero V, Peters B. Diffusion Attachment Model for Long Helical Antifreeze Proteins to Ice. Biomacromolecules 2021; 23:513-519. [PMID: 34928587 DOI: 10.1021/acs.biomac.1c01247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Some of the most potent antifreeze proteins (AFPs) are approximately rigid helical structures that bind with one side in contact with the ice surface at specific orientations. These AFPs take random orientations in solution; however, most orientations become sterically inaccessible as the AFP approaches the ice surface. The effect of these inaccessible orientations on the rate of adsorption of AFP to ice has never been explored. Here, we present a diffusion-controlled theory of adsorption kinetics that accounts for these orientational restrictions to predict a rate constant for adsorption (kon, in m/s) as a function of the length and width of the AFP molecules. We find that kon decreases with length and diameter of the AFP and is almost proportional to the inverse of the area of the binding surface. We demonstrate that the restricted orientations create an entropic barrier to AFP adsorption, which we compute to be approximately 7 kBT for most AFPs and up to 9 kBT for Maxi, the largest known AFP. We compare the entropic resistance 1/kon to resistances for diffusion through boundary layers and across typical distances in the extracellular matrix and find that these entropic and diffusion resistances could become comparable in the small confined spaces of biological environments.
Collapse
Affiliation(s)
- Kartik Kamat
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Pavithra M Naullage
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112, United States
| | - Baron Peters
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry and Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Gerhäuser J, Gaukel V. Detailed Analysis of the Ice Surface after Binding of an Insect Antifreeze Protein and Correlation with the Gibbs-Thomson Equation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11716-11725. [PMID: 34585573 DOI: 10.1021/acs.langmuir.1c01620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Antifreeze proteins (AFPs) are able to influence the ice crystal growth and the recrystallization process due to the Gibbs-Thomson effect. The binding of the AFP leads to the formation of a curved ice surface and it is generally assumed that there is a critical radius between the proteins on the ice surface that determines the maximal thermal hysteresis. Up to now, this critical radius has not yet been proven beyond doubt or only in poor agreement with the Gibbs-Thomson equation. Using molecular dynamics (MD) simulations, the resulting three-dimensional surface structure is analyzed and the location of the critical radius is identified. Our results demonstrate that the correct analysis of the geometry of the ice surface is extremely important and cannot be guessed upfront a simulation. In contrary to earlier expectations from the literature, we could show that the critical radius is not located directly between the adsorbed proteins. In addition, we showed that the minimum temperature at which the system does not freeze is in very good agreement with the value calculated with the Gibbs-Thomson equation at the critical radius, as long as dynamic system conditions are taken into account. This proves on the one hand that the Gibbs-Thomson effect is the basis of thermal hysteresis and that MD simulations are suitable for the prediction of the melting point depression.
Collapse
Affiliation(s)
- Julian Gerhäuser
- Section I: Food Process Engineering, KIT (Karlsruhe Institute of Technology), Institute of Process Engineering in Life Sciences, Kaiserstraße 12, Karlsruhe 76131, Germany
| | - Volker Gaukel
- Section I: Food Process Engineering, KIT (Karlsruhe Institute of Technology), Institute of Process Engineering in Life Sciences, Kaiserstraße 12, Karlsruhe 76131, Germany
| |
Collapse
|
13
|
Zhang T, Wang Z, Wang L, Li J, Wang J. Tilting Behavior of Lamellar Ice Tip during Unidirectional Freezing of Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10579-10587. [PMID: 34427093 DOI: 10.1021/acs.langmuir.1c01820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Freezing of ice has been largely reported from many aspects, especially its complex pattern formation. Ice grown from liquid phase is usually characteristic of lamellar morphology that plays a significant role in various domains. However, tilted growth of ice via transition from coplanar to noncoplanar in directional solidification has been paid little attention in previous studies and there was a misleading explanation of the formation of tilted lamellar ice. Here, we in situ investigated the variations of tilting behavior of lamellar ice tips under different conditions within a single ice crystal of manipulated orientation via unidirectional freezing of aqueous solutions. It is found that tilted growth of ice tips is sensitive to pulling velocity and solute type. These experimental results reveal intrinsic tilted growth behavior of lamellar ice, which is suggested to enrich our understanding of pattern formation of ice in relevant physical processes.
Collapse
Affiliation(s)
- Tongxin Zhang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhijun Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lilin Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Junjie Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jincheng Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
14
|
Ahmed M, Blum M, Crumlin EJ, Geissler PL, Head-Gordon T, Limmer DT, Mandadapu KK, Saykally RJ, Wilson KR. Molecular Properties and Chemical Transformations Near Interfaces. J Phys Chem B 2021; 125:9037-9051. [PMID: 34365795 DOI: 10.1021/acs.jpcb.1c03756] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The properties of bulk water and aqueous solutions are known to change in the vicinity of an interface and/or in a confined environment, including the thermodynamics of ion selectivity at interfaces, transition states and pathways of chemical reactions, and nucleation events and phase growth. Here we describe joint progress in identifying unifying concepts about how air, liquid, and solid interfaces can alter molecular properties and chemical reactivity compared to bulk water and multicomponent solutions. We also discuss progress made in interfacial chemistry through advancements in new theory, molecular simulation, and experiments.
Collapse
Affiliation(s)
- Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Monika Blum
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ethan J Crumlin
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Phillip L Geissler
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David T Limmer
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kranthi K Mandadapu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Richard J Saykally
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Metya AK, Molinero V. Is Ice Nucleation by Organic Crystals Nonclassical? An Assessment of the Monolayer Hypothesis of Ice Nucleation. J Am Chem Soc 2021; 143:4607-4624. [PMID: 33729789 DOI: 10.1021/jacs.0c12012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Potent ice nucleating organic crystals display an increase in nucleation efficiency with pressure and memory effect after pressurization that set them apart from inorganic nucleants. These characteristics were proposed to arise from an ordered water monolayer at the organic-water interface. It was interpreted that ordering of the monolayer is the limiting step for ice nucleation on organic crystals, rendering their mechanism of nucleation nonclassical. Despite the importance of organics in atmospheric ice nucleation, that explanation has never been investigated. Here we elucidate the structure of interfacial water and its role in ice nucleation at ambient pressure on phloroglucinol dihydrate, the paradigmatic example of outstanding ice nucleating organic crystal, using molecular simulations. The simulations confirm the existence of an interfacial monolayer that orders on cooling and becomes fully ordered upon ice formation. The monolayer does not resemble any ice face but seamlessly connects the distinct hydrogen-bonding orders of ice and the organic surface. Although large ordered patches develop in the monolayer before ice nucleates, we find that the critical step is the formation of the ice crystallite, indicating that the mechanism is classical. We predict that the fully ordered, crystalline monolayer nucleates ice above -2 °C and could be responsible for the exceptional ice nucleation by the organic crystal at high pressures. The lifetime of the fully ordered monolayer around 0 °C, however, is too short to account for the memory effect reported in the experiments. The latter could arise from an increase in the melting temperature of ice confined by strongly ice-binding surfaces.
Collapse
Affiliation(s)
- Atanu K Metya
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
16
|
Zhang T, Wang L, Wang Z, Li J, Wang J. Single Ice Crystal Growth with Controlled Orientation during Directional Freezing. J Phys Chem B 2021; 125:970-979. [PMID: 33459018 DOI: 10.1021/acs.jpcb.0c11028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ice growth has attracted great attention for its capability of fabricating hierarchically porous microstructure. However, the formation of tilted lamellar microstructure during freezing needs to be reconsidered due to the limited control of ice orientation with respect to the thermal gradient during in situ observations, which can greatly enrich our insight into architectural control of porous biomaterials. This paper provides an in situ study of the solid/liquid interface morphology evolution of directionally solidified single crystal ice with its C-axis (optical axis) perpendicular to directions of both the thermal gradient and the incident light in poly(vinyl alcohol, PVA) solutions. Multifaceted morphology and V-shaped lamellar morphology were clearly observed in situ for the first time. Quantitative characterizations on lamellar spacing, tilt angle, and tip undercooling of lamellar ice platelets provide a clearer insight into the inherent ice growth habit in polymeric aqueous systems and are suggested to exert significant impact on future design and optimization in porous biomaterials.
Collapse
Affiliation(s)
- Tongxin Zhang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lilin Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhijun Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Junjie Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jincheng Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
17
|
Kozuch DJ, Stillinger FH, Debenedetti PG. Genetic Algorithm Approach for the Optimization of Protein Antifreeze Activity Using Molecular Simulations. J Chem Theory Comput 2020; 16:7866-7873. [PMID: 33201707 DOI: 10.1021/acs.jctc.0c00773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antifreeze proteins (AFPs) are of much interest for their ability to inhibit ice growth at low concentrations. In this work, we present a genetic algorithm for the in silico design of AFP mutants with improved antifreeze activity, measured as the predicted thermal hysteresis at a fixed concentration, ΔTC. Central to the algorithm is our recently developed neural network method for predicting ΔTC from molecular simulations [Kozuch et al., PNAS, 115, 13252 (2018)]. Applying the algorithm to three structurally diverse AFPs, wfAFP, rQAE, and RiAFP, we find that significantly improved mutants are discovered for rQAE and RiAFP. Testing of the optimized mutants shows an increase in ΔTC of 0.572 ± 0.11 K (262 ± 50.6%) and 1.33 ± 0.14 K (39.9 ± 4.19%) over the native structures for rQAE and RiAFP, respectively. Structural analysis of the optimized mutants reveals that the algorithm is able to exploit two pathways for enhancing the predicted antifreeze activity of the mutants: (1) increasing the local order of surface waters by encouraging the formation of internal water channels in the protein and (2) increasing the total ice-binding area by improving the planar structure of the ice-binding surface. Additionally, analysis of all mutants explored by the algorithm reveals that a subset of residues, mainly nonpolar, are particularly helpful in improving antifreeze activity at the ice-binding surface.
Collapse
Affiliation(s)
- Daniel J Kozuch
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Frank H Stillinger
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
18
|
Naullage PM, Metya AK, Molinero V. Computationally efficient approach for the identification of ice-binding surfaces and how they bind ice. J Chem Phys 2020; 153:174106. [DOI: 10.1063/5.0021631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pavithra M. Naullage
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, USA
| | - Atanu K. Metya
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, USA
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, USA
| |
Collapse
|
19
|
Huang Z, Kaur S, Ahmed M, Prasher R. Water Freezes at Near-Zero Temperatures Using Carbon Nanotube-Based Electrodes under Static Electric Fields. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45525-45532. [PMID: 32914956 DOI: 10.1021/acsami.0c11694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although static electric fields have been effective in controlling ice nucleation, the highest freezing temperature (Tf) of water that can be achieved in an electric field (E) is still uncertain. We performed a systematic study of the effect of an electric field on water freezing by varying the thickness of a dielectric layer and the voltage across it in an electrowetting system. Results show that Tf first increases sharply with E and then reaches saturation at -3.5 °C after a critical value E of 6 × 106 V/m. Using classical heterogeneous nucleation theory, it is revealed that this behavior is due to saturation in the contact angle of the ice embryo with the underlying substrate. Finally, we show that it is possible to overcome this freezing saturation by controlling the uniformity of the electric field using carbon nanotubes. We achieve a Tf of -0.6 °C using carbon nanotube-based electrodes with an E of 3 × 107 V/m. This work sheds new light on the control of ice nucleation and has the potential to impact many applications ranging from food freezing to ice production.
Collapse
Affiliation(s)
- Zhi Huang
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sumanjeet Kaur
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ravi Prasher
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Mechanical Engineeing, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Bianco V, Espinosa JR, Vega C. Antifreeze proteins and homogeneous nucleation: On the physical determinants impeding ice crystal growth. J Chem Phys 2020; 153:091102. [PMID: 32891082 DOI: 10.1063/5.0023211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Antifreeze proteins (AFPs) are biopolymers capable of interfering with ice growth. Their antifreeze action is commonly understood considering that the AFPs, by pinning the ice surface, force the crystal-liquid interface to bend forming an ice meniscus, causing an increase in the surface free energy and resulting in a decrease in the freezing point ΔTmax. Here, we present an extensive computational study for a model protein adsorbed on a TIP4P/Ice crystal, computing ΔTmax as a function of the average distance d between AFPs, with simulations spanning over 1 µs. First, we show that the lower the d, the larger the ΔTmax. Then, we find that the water-ice-protein contact angle along the line ΔTmax(d) is always larger than 0°, and we provide a theoretical interpretation. We compute the curvature radius of the stable solid-liquid interface at a given supercooling ΔT ≤ ΔTmax, connecting it with the critical ice nucleus at ΔT. Finally, we discuss the antifreeze capability of AFPs in terms of the protein-water and protein-ice interactions. Our findings establish a unified description of the AFPs in the contest of homogeneous ice nucleation, elucidating key aspects of the antifreeze mechanisms and paving the way for the design of novel ice-controlling materials.
Collapse
Affiliation(s)
- Valentino Bianco
- Faculty of Chemistry, Chemical Physics Department, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0H3, United Kingdom
| | - Carlos Vega
- Faculty of Chemistry, Chemical Physics Department, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| |
Collapse
|
21
|
Gandini E, Sironi M, Pieraccini S. Modelling of short synthetic antifreeze peptides: Insights into ice-pinning mechanism. J Mol Graph Model 2020; 100:107680. [PMID: 32738619 DOI: 10.1016/j.jmgm.2020.107680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 10/23/2022]
Abstract
Organisms living in icy environments produce antifreeze proteins to control ice growth and recrystallization. It has been proposed that these molecules pin the surface of ice crystals, thus inducing the formation of a curved surface that arrests crystal growth. Such proteins are very appealing for many potential applications in food industry, material science and cryoconservation of organs and tissues. Unfortunately, their structural complexity has seriously hampered their practical use, while efficient and accessible synthetic analogues are highly desirable. In this paper, we used molecular dynamics based techniques to model the interaction of three short antifreeze synthetic peptides with an ice surface. The employed protocols succeeded in reproducing the ice pinning action of antifreeze peptides and the consequent ice growth arrest, as well as in distinguishing between antifreeze and control peptides, for which no such effect was observed. Principal components analysis of peptides trajectories in different simulation settings permitted to highlight the main structural features associated to antifreeze activity. Modeling results are highly correlated with experimentally measured properties, and insights on ice-peptide interactions and on conformational patterns favoring antifreeze activity will prompt the design of new and improved antifreeze peptides.
Collapse
Affiliation(s)
- Enrico Gandini
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Maurizio Sironi
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy; Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC-CNR), CNR, INSTM, UdR Milano, Via Golgi 19, 20133, Milano, Italy.
| | - Stefano Pieraccini
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy; Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC-CNR), CNR, INSTM, UdR Milano, Via Golgi 19, 20133, Milano, Italy.
| |
Collapse
|
22
|
Naullage PM, Molinero V. Slow Propagation of Ice Binding Limits the Ice-Recrystallization Inhibition Efficiency of PVA and Other Flexible Polymers. J Am Chem Soc 2020; 142:4356-4366. [DOI: 10.1021/jacs.9b12943] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pavithra M. Naullage
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
23
|
Hassanpouryouzband A, Joonaki E, Vasheghani Farahani M, Takeya S, Ruppel C, Yang J, English NJ, Schicks JM, Edlmann K, Mehrabian H, Aman ZM, Tohidi B. Gas hydrates in sustainable chemistry. Chem Soc Rev 2020; 49:5225-5309. [DOI: 10.1039/c8cs00989a] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review includes the current state of the art understanding and advances in technical developments about various fields of gas hydrates, which are combined with expert perspectives and analyses.
Collapse
Affiliation(s)
- Aliakbar Hassanpouryouzband
- Hydrates, Flow Assurance & Phase Equilibria Research Group
- Institute of GeoEnergy Engineering
- School of Energy
- Geoscience, Infrastructure and Society
- Heriot-Watt University
| | - Edris Joonaki
- Hydrates, Flow Assurance & Phase Equilibria Research Group
- Institute of GeoEnergy Engineering
- School of Energy
- Geoscience, Infrastructure and Society
- Heriot-Watt University
| | - Mehrdad Vasheghani Farahani
- Hydrates, Flow Assurance & Phase Equilibria Research Group
- Institute of GeoEnergy Engineering
- School of Energy
- Geoscience, Infrastructure and Society
- Heriot-Watt University
| | - Satoshi Takeya
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba 305-8565
- Japan
| | | | - Jinhai Yang
- Hydrates, Flow Assurance & Phase Equilibria Research Group
- Institute of GeoEnergy Engineering
- School of Energy
- Geoscience, Infrastructure and Society
- Heriot-Watt University
| | - Niall J. English
- School of Chemical and Bioprocess Engineering
- University College Dublin
- Dublin 4
- Ireland
| | | | - Katriona Edlmann
- School of Geosciences
- University of Edinburgh
- Grant Institute
- Edinburgh
- UK
| | - Hadi Mehrabian
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Zachary M. Aman
- Fluid Science & Resources
- School of Engineering
- University of Western Australia
- Perth
- Australia
| | - Bahman Tohidi
- Hydrates, Flow Assurance & Phase Equilibria Research Group
- Institute of GeoEnergy Engineering
- School of Energy
- Geoscience, Infrastructure and Society
- Heriot-Watt University
| |
Collapse
|
24
|
Surís-Valls R, Voets IK. Peptidic Antifreeze Materials: Prospects and Challenges. Int J Mol Sci 2019; 20:E5149. [PMID: 31627404 PMCID: PMC6834126 DOI: 10.3390/ijms20205149] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 12/28/2022] Open
Abstract
Necessitated by the subzero temperatures and seasonal exposure to ice, various organisms have developed a remarkably effective means to survive the harsh climate of their natural habitats. Their ice-binding (glyco)proteins keep the nucleation and growth of ice crystals in check by recognizing and binding to specific ice crystal faces, which arrests further ice growth and inhibits ice recrystallization (IRI). Inspired by the success of this adaptive strategy, various approaches have been proposed over the past decades to engineer materials that harness these cryoprotective features. In this review we discuss the prospects and challenges associated with these advances focusing in particular on peptidic antifreeze materials both identical and akin to natural ice-binding proteins (IBPs). We address the latest advances in their design, synthesis, characterization and application in preservation of biologics and foods. Particular attention is devoted to insights in structure-activity relations culminating in the synthesis of de novo peptide analogues. These are sequences that resemble but are not identical to naturally occurring IBPs. We also draw attention to impactful developments in solid-phase peptide synthesis and 'greener' synthesis routes, which may aid to overcome one of the major bottlenecks in the translation of this technology: unavailability of large quantities of low-cost antifreeze materials with excellent IRI activity at (sub)micromolar concentrations.
Collapse
Affiliation(s)
- Romà Surís-Valls
- Laboratory of Self-Organizing Soft Matter, Laboratory of Macro-Organic Chemistry, Department of Chemical Engineering and Chemistry & Institute for Complex Molecular Systems, Eindhoven University of Technology, Post Office Box 513, 5600 MD Eindhoven, The Netherlands.
| | - Ilja K Voets
- Laboratory of Self-Organizing Soft Matter, Laboratory of Macro-Organic Chemistry, Department of Chemical Engineering and Chemistry & Institute for Complex Molecular Systems, Eindhoven University of Technology, Post Office Box 513, 5600 MD Eindhoven, The Netherlands.
| |
Collapse
|
25
|
Grabowska J, Kuffel A, Zielkiewicz J. Role of the Solvation Water in Remote Interactions of Hyperactive Antifreeze Proteins with the Surface of Ice. J Phys Chem B 2019; 123:8010-8018. [PMID: 31513398 DOI: 10.1021/acs.jpcb.9b05664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Most protein molecules do not adsorb onto ice, one of the exceptions being so-called antifreeze proteins. In this paper, we describe that there is a force pushing an antifreeze protein molecule away from the ice surface when it is not oriented with its ice-binding plane toward the ice and that this pushing force may be also present even when the protein is oriented with its ice-binding plane toward the ice. This force is absent only when certain specific distance criteria are met, regarding the surface of ice and the protein. It acts at early stages of adsorption, prior to the solidification of water between the ice and the protein molecule nearby. We propose the water-originating mechanism of the generation of this force and also the mechanism of remote attachment of an antifreeze molecule to the ice surface. In liquid water, there exist locally favored structures, ordered and of high specific volume. The presence of a protein molecule usually shifts the equilibrium that exists in liquid water toward increasing the number of high-density, disordered structures and diminishing the number of low-density structures. Creation of the locally favored structures may be hampered not only near the non-ice-binding surfaces but also between the ice surface and the protein surface, if the distance between these surfaces does not allow these structures to develop because the available space is not sufficient for their proper formation. This conclusion is supported by the analysis of the mean geometry of a single hydrogen bond, as well as of the hydrogen bond network in the solvation layer and a structural order parameter that characterizes the separation between the first and second solvation shells of a water molecule.
Collapse
Affiliation(s)
- Joanna Grabowska
- Faculty of Chemistry, Department of Physical Chemistry , Gdańsk University of Technology , Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Anna Kuffel
- Faculty of Chemistry, Department of Physical Chemistry , Gdańsk University of Technology , Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Jan Zielkiewicz
- Faculty of Chemistry, Department of Physical Chemistry , Gdańsk University of Technology , Narutowicza 11/12 , 80-233 Gdańsk , Poland
| |
Collapse
|
26
|
Factorovich MH, Naullage PM, Molinero V. Can clathrates heterogeneously nucleate ice? J Chem Phys 2019; 151:114707. [DOI: 10.1063/1.5119823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Matías H. Factorovich
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| | - Pavithra M. Naullage
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| |
Collapse
|
27
|
Biggs CI, Stubbs C, Graham B, Fayter AER, Hasan M, Gibson MI. Mimicking the Ice Recrystallization Activity of Biological Antifreezes. When is a New Polymer "Active"? Macromol Biosci 2019; 19:e1900082. [PMID: 31087781 PMCID: PMC6828557 DOI: 10.1002/mabi.201900082] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/26/2019] [Indexed: 01/16/2023]
Abstract
Antifreeze proteins and ice-binding proteins have been discovered in a diverse range of extremophiles and have the ability to modulate the growth and formation of ice crystals. Considering the importance of cryoscience across transport, biomedicine, and climate science, there is significant interest in developing synthetic macromolecular mimics of antifreeze proteins, in particular to reproduce their property of ice recrystallization inhibition (IRI). This activity is a continuum rather than an "on/off" property and there may be multiple molecular mechanisms which give rise to differences in this observable property; the limiting concentrations for ice growth vary by more than a thousand between an antifreeze glycoprotein and poly(vinyl alcohol), for example. The aim of this article is to provide a concise comparison of a range of natural and synthetic materials that are known to have IRI, thus providing a guide to see if a new synthetic mimic is active or not, including emerging materials which are comparatively weak compared to antifreeze proteins, but may have technological importance. The link between activity and the mechanisms involving either ice binding or amphiphilicity is discussed and known materials assigned into classes based on this.
Collapse
Affiliation(s)
- Caroline I Biggs
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Ben Graham
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Alice E R Fayter
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Muhammad Hasan
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Medical School, , University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
28
|
Chasnitsky M, Braslavsky I. Ice-binding proteins and the applicability and limitations of the kinetic pinning model. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180391. [PMID: 30982449 PMCID: PMC6501913 DOI: 10.1098/rsta.2018.0391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Ice-binding proteins (IBPs) are unique molecules that bind to and are active on the interface between two phases of water: ice and liquid water. This property allows them to affect ice growth in multiple ways: shaping ice crystals, suppressing the freezing point, inhibiting recrystallization and promoting nucleation. Advances in the protein's production technologies make these proteins promising agents for medical applications among others. Here, we focus on a special class of IBPs that suppress freezing by causing thermal hysteresis (TH): antifreeze proteins (AFPs). The kinetic pinning model describes the dynamics of a growing ice face with proteins binding to it, which eventually slow it down to a halt. We use the kinetic pinning model, with some adjustments made, to study the TH dependence on the solution's concentration of AFPs by fitting the model to published experimental data. We find this model describes the activity of (moderate) type III AFPs well, but is inadequate for the (hyperactive) Tenebrio molitor AFPs. We also find the engulfment resistance to be a key parameter, which depends on the protein's size. Finally, we explain intuitively how TH depends on the seeding time of the ice crystal in the protein solution. Using this insight, we explain the discrepancy in TH measurements between different assays. This article is part of the theme issue 'The physics and chemistry of ice: scaffolding across scales, from the viability of life to the formation of planets'.
Collapse
Affiliation(s)
| | - Ido Braslavsky
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, Institute of Biochemistry, Food Science, and Nutrition, and Harvey M. Kruger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
29
|
Hudait A, Qiu Y, Odendahl N, Molinero V. Hydrogen-Bonding and Hydrophobic Groups Contribute Equally to the Binding of Hyperactive Antifreeze and Ice-Nucleating Proteins to Ice. J Am Chem Soc 2019; 141:7887-7898. [DOI: 10.1021/jacs.9b02248] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Arpa Hudait
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Yuqing Qiu
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Nathan Odendahl
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
30
|
Qiu Y, Hudait A, Molinero V. How Size and Aggregation of Ice-Binding Proteins Control Their Ice Nucleation Efficiency. J Am Chem Soc 2019; 141:7439-7452. [DOI: 10.1021/jacs.9b01854] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuqing Qiu
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0580, United States
| | - Arpa Hudait
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0580, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0580, United States
| |
Collapse
|
31
|
Naullage P, Bertolazzo AA, Molinero V. How Do Surfactants Control the Agglomeration of Clathrate Hydrates? ACS CENTRAL SCIENCE 2019; 5:428-439. [PMID: 30937370 PMCID: PMC6439454 DOI: 10.1021/acscentsci.8b00755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Indexed: 05/14/2023]
Abstract
Clathrate hydrates can spontaneously form under typical conditions found in oil and gas pipelines. The agglomeration of clathrates into large solid masses plugs the pipelines, posing adverse safety, economic, and environmental threats. Surfactants are customarily used to prevent the aggregation of clathrate particles and their coalescence with water droplets. It is generally assumed that a large contact angle between the surfactant-covered clathrate and water is a key predictor of the antiagglomerant performance of the surfactant. Here we use molecular dynamic simulations to investigate the structure and dynamics of surfactant films at the clathrate-oil interface, and their impact on the contact angle and coalescence between water droplets and hydrate particles. In agreement with the experiments, the simulations predict that surfactant-covered clathrate-oil interfaces are oil wet but super-hydrophobic to water. Although the water contact angle determines the driving force for coalescence, we find that a large contact angle is not sufficient to predict good antiagglomerant performance of a surfactant. We conclude that the length of the surfactant molecules, the density of the interfacial film, and the strength of binding of its molecules to the clathrate surface are the main factors in preventing the coalescence and agglomeration of clathrate particles with water droplets in oil. Our analysis provides a molecular foundation to guide the molecular design of effective clathrate antiagglomerants.
Collapse
Affiliation(s)
- Pavithra
M. Naullage
- Department
of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Andressa A. Bertolazzo
- Department
of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
- Departamento
de Ciências Exatas e Educação, Universidade Federal de Santa Catarina, Blumenau, Santa Catarina, Brazil
| | - Valeria Molinero
- Department
of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
- E-mail:
| |
Collapse
|
32
|
Combined molecular dynamics and neural network method for predicting protein antifreeze activity. Proc Natl Acad Sci U S A 2018; 115:13252-13257. [PMID: 30530650 DOI: 10.1073/pnas.1814945115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antifreeze proteins (AFPs) are a diverse class of proteins that depress the kinetically observable freezing point of water. AFPs have been of scientific interest for decades, but the lack of an accurate model for predicting AFP activity has hindered the logical design of novel antifreeze systems. To address this, we perform molecular dynamics simulation for a collection of well-studied AFPs. By analyzing both the dynamic behavior of water near the protein surface and the geometric structure of the protein, we introduce a method that automatically detects the ice binding face of AFPs. From these data, we construct a simple neural network that is capable of quantitatively predicting experimentally observed thermal hysteresis from a trio of relevant physical variables. The model's accuracy is tested against data for 17 known AFPs and 5 non-AFP controls.
Collapse
|
33
|
Bertolazzo AA, Naullage PM, Peters B, Molinero V. The Clathrate-Water Interface Is Oleophilic. J Phys Chem Lett 2018; 9:3224-3231. [PMID: 29812945 DOI: 10.1021/acs.jpclett.8b01210] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The slow nucleation of clathrate hydrates is a central challenge for their use in the storage and transportation of natural gas. Molecules that strongly adsorb to the clathrate-water interface decrease the crystal-water surface tension, lowering the barrier for clathrate nucleation. Surfactants are widely used to promote the nucleation and growth of clathrate hydrates. It has been proposed that these amphiphilic molecules bind to the clathrate surface via hydrogen bonding. However, recent studies reveal that PVCap, an amphiphilic polymer, binds to clathrates through hydrophobic moieties. Here we use molecular dynamic simulations and theory to investigate the mode and strength of binding of surfactants to the clathrate-water interface and their effect on the nucleation rate. We find that the surfactants bind to the clathrate-water interface exclusively through their hydrophobic tails. The binding is strong, driven by the entropy of dehydration of the alkyl chain, as it penetrates empty cavities at the hydrate surface. The hydrophobic attraction of alkyl groups to the clathrate surface also results in strong adsorption of alkanes. We identify two regimes for the binding of surfactants as a function of their density at the hydrate surface, which we interpret to correspond to the two steps of the Langmuir adsorption isotherm observed in experiments. Our results indicate that hydrophobic attraction to the clathrate-water interface is key for the design of soluble additives that promote the nucleation of hydrates. We use the calculated adsorption coefficients to estimate the concentration of sodium dodecyl sulfate (SDS) required to reach nucleation rates for methane hydrate consistent with those measured in experiments. To our knowledge, this study is the first to quantify the effect of surfactant concentration in the nucleation rate of clathrate hydrates.
Collapse
Affiliation(s)
- Andressa A Bertolazzo
- Department of Chemistry , The University of Utah , Salt Lake City , Utah 84112-0580 , United States
- Departamento de Ciências Exatas e Educação , Universidade Federal de Santa Catarina , Blumenau , State of Santa Catarina 88040-900 , Brazil
| | - Pavithra M Naullage
- Department of Chemistry , The University of Utah , Salt Lake City , Utah 84112-0580 , United States
| | - Baron Peters
- Department of Chemical Engineering , University of California , Santa Barbara , California 93106 , United States
| | - Valeria Molinero
- Department of Chemistry , The University of Utah , Salt Lake City , Utah 84112-0580 , United States
| |
Collapse
|
34
|
Hudait A, Odendahl N, Qiu Y, Paesani F, Molinero V. Ice-Nucleating and Antifreeze Proteins Recognize Ice through a Diversity of Anchored Clathrate and Ice-like Motifs. J Am Chem Soc 2018; 140:4905-4912. [PMID: 29564892 DOI: 10.1021/jacs.8b01246] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cold-adapted organisms produce antifreeze and ice-nucleating proteins to prevent and promote ice formation. The crystal structure of hyperactive bacterial antifreeze protein (AFP) MpAFP suggests that this protein binds ice through an anchored clathrate motif. It is not known whether other hyperactive AFPs and ice-nucleating proteins (INPs) use the same motif to recognize or nucleate ice. Here we use molecular simulations to elucidate the ice-binding motifs of hyperactive insect AFPs and a model INP of Pseudomonas syringae. We find that insect AFPs recognize ice through anchored clathrate motifs distinct from that of MpAFP. By performing simulations of ice nucleation by PsINP, we identify two distinct ice-binding sites on opposite sides of the β-helix. The ice-nucleating sequences identified in the simulations agree with those previously proposed for the closely related INP of Pseudomonas borealis based on the structure of the protein. The simulations indicate that these sites have comparable ice-nucleating efficiency, but distinct binding motifs, controlled by the amino acid sequence: one is an anchored clathrate and the other ice-like. We conclude that anchored clathrate and ice-like motifs can be equally effective for binding proteins to ice and promoting ice nucleation.
Collapse
Affiliation(s)
- Arpa Hudait
- Department of Chemistry , 315 South 1400 East , The University of Utah , Salt Lake City , Utah 84112-0580 , United States
| | - Nathan Odendahl
- Department of Chemistry , 315 South 1400 East , The University of Utah , Salt Lake City , Utah 84112-0580 , United States
| | - Yuqing Qiu
- Department of Chemistry , 315 South 1400 East , The University of Utah , Salt Lake City , Utah 84112-0580 , United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Valeria Molinero
- Department of Chemistry , 315 South 1400 East , The University of Utah , Salt Lake City , Utah 84112-0580 , United States
| |
Collapse
|