1
|
Guo J, Chen PA, Yang S, Wei H, Liu Y, Xia J, Chen C, Chen H, Wang S, Li W, Hu Y. Dopant-induced Morphology of Organic Semiconductors Resulting in High Doping Performance. SMALL METHODS 2025; 9:e2400084. [PMID: 38738733 DOI: 10.1002/smtd.202400084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/21/2024] [Indexed: 05/14/2024]
Abstract
Doping plays a crucial role in modulating and enhancing the performance of organic semiconductor (OSC) devices. In this study, the critical role of dopants is underscored in shaping the morphology and structure of OSC films, which in turn profoundly influences their properties. Two dopants, trityl tetrakis(pentafluorophenyl) (TrTPFB) and N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate (DMA-TPFB), are examined for their doping effects on poly(3-hexylthiophene) (P3HT) and PBBT-2T host OSCs. It is found that although TrTPFB exhibits higher doping efficiency, OSCs doped with DMA-TPFB achieve comparable or even enhanced electrical conductivity. Indeed, the electrical conductivity of DMA-TPFB-doped P3HT reaches over 67 S cm-1, which is a record-high value for mixed-solution-doped P3HT. This can be attributed to DMA-TPFB inducing a higher degree of crystallinity and reduced structural disorder. Moreover, the beneficial impact of DMA-TPFB on the OSC films' morphology and structure results in superior thermoelectric performance in the doped OSCs. These findings highlight the significance of dopant-induced morphological and structural considerations in enhancing the film characteristics of OSCs, opening up a new avenue for optimization of dopant performance.
Collapse
Affiliation(s)
- Jing Guo
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan, 031000, China
| | - Ping-An Chen
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Shuzhang Yang
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Huan Wei
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Yu Liu
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jiangnan Xia
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Chen Chen
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410000, China
| | - Huajie Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Suhao Wang
- Unité de Dynamique et Structure des Matériaux Moléculaires (UDSMM), Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, Dunkerque, 59140, France
| | - Wenwu Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yuanyuan Hu
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| |
Collapse
|
2
|
Nguyen PH, Callan D, Plunkett E, Gruschka M, Alizadeh N, Landsman MR, Su GM, Gann E, Bates CM, DeLongchamp DM, Chabinyc ML. Resonant Soft X-ray Scattering Reveals the Distribution of Dopants in Semicrystalline Conjugated Polymers. J Phys Chem B 2024; 128:12597-12611. [PMID: 39637190 DOI: 10.1021/acs.jpcb.4c05774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The distribution of counterions and dopants within electrically doped semicrystalline conjugated polymers, such as poly(3-hexylthiophene-2,5-diyl) (P3HT), plays a pivotal role in charge transport. The distribution of counterions in doped films of P3HT with controlled crystallinity was examined using polarized resonant soft X-ray scattering (P-RSoXS). The changes in scattering of doped P3HT films containing trifluoromethanesulfonimide (TFSI-) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ•-) as counterions to the charge carriers revealed distinct differences in their nanostructure. The scattering anisotropy of P-RSoXS from doped blends of P3HT was examined as a function of the soft X-ray absorption edge and found to vary systematically with the composition of crystalline and amorphous domains and by the identity of the counterion. A computational methodology was developed and used to simulate the soft X-ray scattering as a function of morphology and molecular orientation of the counterions. Modeling of the P-RSoXS at N and F K-edges was consistent with a structure where the conjugated plane of F4TCNQ•- aligns perpendicularly to that of the P3HT backbone in ordered domains. In contrast, TFSI- was distributed more uniformly between domains with no significant molecular alignment. The approach developed here demonstrates the capabilities of P-RSoXS in identifying orientation, structural, and compositional distributions within doped conjugated polymers using a computational workflow that is broadly extendable to other soft matter systems.
Collapse
Affiliation(s)
- Phong H Nguyen
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93117, United States
| | - Devon Callan
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93117, United States
| | - Evan Plunkett
- Materials Department, University of California at Santa Barbara, Santa Barbara, California 93117, United States
| | - Max Gruschka
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93117, United States
| | - Nima Alizadeh
- Materials Department, University of California at Santa Barbara, Santa Barbara, California 93117, United States
| | - Matthew R Landsman
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Gregory M Su
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 92720, United States
| | - Eliot Gann
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Christopher M Bates
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93117, United States
- Materials Department, University of California at Santa Barbara, Santa Barbara, California 93117, United States
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93117, United States
| | - Dean M DeLongchamp
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Michael L Chabinyc
- Materials Department, University of California at Santa Barbara, Santa Barbara, California 93117, United States
| |
Collapse
|
3
|
Wu Y, Salamat CZ, León Ruiz A, Simafranca AF, Akmanşen-Kalayci N, Wu EC, Doud E, Mehmedović Z, Lindemuth JR, Phan MD, Spokoyny AM, Schwartz BJ, Tolbert SH. Using Bulky Dodecaborane-Based Dopants to Produce Mobile Charge Carriers in Amorphous Semiconducting Polymers. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:5552-5562. [PMID: 38883433 PMCID: PMC11171275 DOI: 10.1021/acs.chemmater.4c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 06/18/2024]
Abstract
Conjugated polymers are a versatile class of electronic materials featured in a variety of next-generation electronic devices. The utility of such polymers is contingent in large part on their electrical conductivity, which depends both on the density of charge carriers (polarons) and on the carrier mobility. Carrier mobility, in turn, is largely controlled by the separation between the polarons and dopant counterions, as counterions can produce Coulombic traps. In previous work, we showed that large dopants based on dodecaborane (DDB) clusters were able to reduce Coulombic binding and thus increase carrier mobility in regioregular (RR) poly(3-hexylthiophene-2,5-diyl) (P3HT). Here, we use a DDB-based dopant to study the effects of polaron-counterion separation in chemically doped regiorandom (RRa) P3HT, which is highly amorphous. X-ray scattering shows that the DDB dopants, despite their large size, can partially order the RRa P3HT during doping and produce a doped polymer crystal structure similar to that of DDB-doped RR P3HT; Alternating Field (AC) Hall measurements also confirm a similar hole mobility. We also show that use of the large DDB dopants successfully reduces Coulombic binding of polarons and counterions in amorphous polymer regions, resulting in a 77% doping efficiency in RRa P3HT films. The DDB dopants are able to produce RRa P3HT films with a 4.92 S/cm conductivity, a value that is ∼200× higher than that achieved with 3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), the traditional dopant molecule. These results show that tailoring dopants to produce mobile carriers in both the amorphous and semicrystalline regions of conjugated polymers is an effective strategy for increasing achievable polymer conductivities, particularly in low-cost polymers with random regiochemistry. The results also emphasize the importance of dopant size and shape for producing Coulombically unbound, mobile polarons capable of electrical conduction in less-ordered materials.
Collapse
Affiliation(s)
- Yutong Wu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
| | - Charlene Z Salamat
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
| | - Alex León Ruiz
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
| | - Alexander F Simafranca
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
| | - Nesibe Akmanşen-Kalayci
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
| | - Eric C Wu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
| | - Evan Doud
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
| | - Zerina Mehmedović
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
| | | | - Minh D Phan
- Center for Neutron Science, Department of Chemical and Biochemical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J Schwartz
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
| | - Sarah H Tolbert
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095-1595, United States
| |
Collapse
|
4
|
Chang Y, Huang YH, Lin PS, Hong SH, Tung SH, Liu CL. Enhanced Electrical Conductivity and Mechanical Properties of Stretchable Thermoelectric Generators Formed by Doped Semiconducting Polymer/Elastomer Blends. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3764-3777. [PMID: 38226590 DOI: 10.1021/acsami.3c15651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Recent research efforts have concentrated on the development of flexible and stretchable thermoelectric (TE) materials. However, significant challenges have emerged, including increased resistance and reduced electrical conductivity when subjected to strain. To address these issues, rigid semiconducting polymers and elastic insulating polymers have been incorporated and nanoconfinement effects have been exploited to enhance the charge mobility. Herein, a feasible approach is presented for fabricating stretchable TE materials by using a doped semiconducting polymer blend consisting of either poly(3-hexylthiophene) (P3HT) or poly(3,6-dithiophen-2-yl-2,5-di(2-decyltetradecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-thienylenevinylene-2,5-yl) (PDVT-10) as the rigid polymer with styrene-ethylene-butylene-styrene (SEBS) as the elastic polymer. In particular, the blend composition is optimized to achieve a continuous network structure with SEBS, thereby improving the stretchability. The optimized polymer films exhibit well-ordered microstructural aggregates, indicative of good miscibility with FeCl3 and enhanced doping efficiency. Notably, a lower activation energy and higher charge-carrier concentration contribute to an improved electrical conductivity under high tensile strain, with a maximum output power of 1.39 nW at a ΔT of 22.4 K. These findings offer valuable insights and serve as guidelines for the development of stretchable p-n junction thermoelectric generators based on doped semiconducting polymer blends with potential applications in wearable electronics and energy harvesting.
Collapse
Affiliation(s)
- Yun Chang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hsuan Huang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Shen Lin
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shao-Huan Hong
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Duhandžić M, Lu-Dìaz M, Samanta S, Venkataraman D, Akšamija Z. Carrier Screening Controls Transport in Conjugated Polymers at High Doping Concentrations. PHYSICAL REVIEW LETTERS 2023; 131:248101. [PMID: 38181141 DOI: 10.1103/physrevlett.131.248101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/03/2023] [Indexed: 01/07/2024]
Abstract
Transport properties of doped conjugated polymers (CPs) have been widely analyzed with the Gaussian disorder model (GDM) in conjunction with hopping transport between localized states. These models reveal that even in highly doped CPs, a majority of carriers are still localized because dielectric permittivity of CPs is well below that of inorganic materials, making Coulomb interactions between carriers and dopant counterions much more pronounced. However, previous studies within the GDM did not consider the role of screening the dielectric interactions by carriers. Here we implement carrier screening in the Debye-Hückel formalism in our calculations of dopant-induced energetic disorder, which modifies the Gaussian density of states (DOS). Then we solve the Pauli master equation using Miller-Abrahams hopping rates with states from the resulting screened DOS to obtain conductivity and Seebeck coefficient across a broad range of carrier concentrations and compare them to measurements. Our results show that screening has significant impact on the shape of the DOS and consequently on carrier transport, particularly at high doping. We prove that the slope of Seebeck coefficient versus electric conductivity, which was previously thought to be universal, is impacted by screening and decreases for systems with small dopant-carrier separation, explaining our measurements. We also show that thermoelectric power factor is underestimated by a factor of ∼10 at higher doping concentrations if screening is neglected. We conclude that carrier screening plays a crucial role in curtailing dopant-induced energetic disorder, particularly at high carrier concentrations.
Collapse
Affiliation(s)
- Muhamed Duhandžić
- Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Michael Lu-Dìaz
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Subhayan Samanta
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Dhandapani Venkataraman
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Zlatan Akšamija
- Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
6
|
Le VN, Bombile JH, Rupasinghe GS, Baustert KN, Li R, Maria IP, Shahi M, Alarcon Espejo P, McCulloch I, Graham KR, Risko C, Paterson AF. New Chemical Dopant and Counterion Mechanism for Organic Electrochemical Transistors and Organic Mixed Ionic-Electronic Conductors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207694. [PMID: 37466175 PMCID: PMC10520668 DOI: 10.1002/advs.202207694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Indexed: 07/20/2023]
Abstract
Organic mixed ionic-electronic conductors (OMIECs) have varied performance requirements across a diverse application space. Chemically doping the OMIEC can be a simple, low-cost approach for adapting performance metrics. However, complex challenges, such as identifying new dopant materials and elucidating design rules, inhibit its realization. Here, these challenges are approached by introducing a new n-dopant, tetrabutylammonium hydroxide (TBA-OH), and identifying a new design consideration underpinning its success. TBA-OH behaves as both a chemical n-dopant and morphology additive in donor acceptor co-polymer naphthodithiophene diimide-based polymer, which serves as an electron transporting material in organic electrochemical transistors (OECTs). The combined effects enhance OECT transconductance, charge carrier mobility, and volumetric capacitance, representative of the key metrics underpinning all OMIEC applications. Additionally, when the TBA+ counterion adopts an "edge-on" location relative to the polymer backbone, Coulombic interaction between the counterion and polaron is reduced, and polaron delocalization increases. This is the first time such mechanisms are identified in doped-OECTs and doped-OMIECs. The work herein therefore takes the first steps toward developing the design guidelines needed to realize chemical doping as a generic strategy for tailoring performance metrics in OECTs and OMIECs.
Collapse
Affiliation(s)
- Vianna N. Le
- Department of Chemical and Materials EngineeringDepartment of Electrical EngineeringCentre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Joel H. Bombile
- Department of Chemistryand Centre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Gehan S. Rupasinghe
- Department of Chemical and Materials EngineeringDepartment of Electrical EngineeringCentre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Kyle N. Baustert
- Department of ChemistryUniversity of KentuckyLexingtonKY40506USA
| | | | - Iuliana P. Maria
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordOxfordOX1 3TAUK
| | - Maryam Shahi
- Department of Chemical and Materials EngineeringDepartment of Electrical EngineeringCentre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Paula Alarcon Espejo
- Department of Chemical and Materials EngineeringDepartment of Electrical EngineeringCentre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Iain McCulloch
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordOxfordOX1 3TAUK
- King Abdullah University of Science and TechnologyKAUST Solar CentreThuwal23955‐6900Saudi Arabia
| | | | - Chad Risko
- Department of Chemistryand Centre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Alexandra F. Paterson
- Department of Chemical and Materials EngineeringDepartment of Electrical EngineeringCentre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| |
Collapse
|
7
|
Mkawi EM, Al-Hadeethi Y, Arkook B, Bekyarova E. Doping with Niobium Nanoparticles as an Approach to Increase the Power Conversion Efficiency of P3HT:PCBM Polymer Solar Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2218. [PMID: 36984098 PMCID: PMC10057393 DOI: 10.3390/ma16062218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Metal additive processing in polymer: fullerene bulk heterojunction systems is recognized as a viable way for improving polymer photovoltage performance. In this study, the effect of niobium (Nb) metal nanoparticles at concentrations of 2, 4, 6, and 8 mg/mL on poly(3-hexylthiophene-2,5-diyl) (P3HT)-6,6]-phenyl C61-butyric acid methyl ester (PCBM) blends was analyzed. The effect of Nb volume concentration on polymer crystallinity, optical properties, and surface structure of P3HT and PCBM, as well as the enhancement of the performance of P3HT:PC61BM solar cells, are investigated. Absorption of the P3HT:PC61BM mix is seen to have a high intensity and a red shift at 500 nm. The reduction in PL intensity with increasing Nb doping concentrations indicates an increase in PL quenching, suggesting that the domain size of P3HT or conjugation length increases. With a high Nb concentration, crystallinity, material composition, surface roughness, and phase separation are enhanced. Nb enhances PCBM's solubility in P3HT and decreases the size of amorphous P3HT domains. Based on the J-V characteristics and the optoelectronic study of the thin films, the improvement results from a decreased recombination current, changes in morphology and crystallinity, and an increase in the effective exciton lifespan. At high doping concentrations of Nb nanoparticles, the development of the short-circuit current (JSC) is associated with alterations in the crystalline structure of P3HT. The highest-performing glass/ITO/PEDOT:PSS/P3HT:PCBM:Nb/MoO3/Au structures have short-circuit current densities (JSC) of 16.86 mA/cm2, open-circuit voltages (VOC) of 466 mV, fill factors (FF) of 65.73%, and power conversion efficiency (µ) of 5.16%.
Collapse
Affiliation(s)
- Elmoiz Merghni Mkawi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Nanotechnology, King Abdulaziz University, Jeddah 42806, Saudi Arabia
| | - Yas Al-Hadeethi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bassim Arkook
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Elena Bekyarova
- Department of Chemistry, University of California at Riverside, Riverside, CA 92521, USA
| |
Collapse
|
8
|
Wang C, Jing Y, Chen L, Xiong W. Direct Interfacial Charge Transfer in All-Polymer Donor-Acceptor Heterojunctions. J Phys Chem Lett 2022; 13:8733-8739. [PMID: 36095150 PMCID: PMC9511559 DOI: 10.1021/acs.jpclett.2c02130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Direct charge transfer at wet-processed organic/organic heterojunction interfaces is observed using femtosecond interfacial sensitive spectroscopy. UV-vis absorption and ultraviolet photoelectron spectroscopy both indicate that a new interfacial energy gap (∼1.2 eV) exists when an interface is formed between regioregular poly(3-hexylthiophene-2,5-diyl) and poly(benzimidazobenzophenanthroline). Resonant pumping at 1.2 eV creates an electric field-induced second-order optical signal, suggesting the existence of a transient electric field due to separated electrons and holes at interfaces, which recombine through a nongeminate process. The fact that direct charge transfer exists at wet-processed organic/organic heterojunctions provides a physical foundation for the previously reported ground-state charge transfer phenomenon. Also, it creates new opportunities to better control charge transfer with preserved momentum and spins at organic material interfaces for spintronic applications.
Collapse
|
9
|
Wu ECK, Salamat CZ, Tolbert SH, Schwartz BJ. Molecular Dynamics Study of the Thermodynamics of Integer Charge Transfer vs Charge-Transfer Complex Formation in Doped Conjugated Polymers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26988-27001. [PMID: 35657331 DOI: 10.1021/acsami.2c06449] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular dopants such as 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) can interact with conjugated polymers such as poly(3-hexylthiophene-2,5-diyl) (P3HT) in two different ways: they can undergo integer charge transfer (ICT) or they can form a partial-charge-transfer complex (CTC). Both are seen experimentally, but the CTC has been challenging to characterize, making it difficult to answer questions such as the following. Which polymorph is more stable? Do they have similar barriers for formation? Is there a thermodynamic route to convert one to the other? Here, we study the structure and the thermodynamics of bulk F4TCNQ-doped P3HT with all-atom molecular dynamics simulations, using thermodynamic integration to calculate the relative free energies. We find that the ICT and CTC polymorphs have similar thermodynamic stabilities. The barrier to create the ICT polymorph, however, is lower than that to make the CTC polymorph, because the ICT polymorph has a small critical nucleus, but the critical nucleus for the CTC polymorph is larger than what we can simulate. Moreover, simulated thermal annealing shows that the activation barrier for converting the CTC polymorph to the ICT polymorph is relatively modest. Overall, the simulations explain both the observed structures and the thermodynamics of F4TCNQ-doped P3HT and offer guidelines for targeting the production of a desired polymorph for different applications.
Collapse
Affiliation(s)
- Eric Chih-Kuan Wu
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles, California 90095-1569, United States
| | - Charlene Z Salamat
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles, California 90095-1569, United States
| | - Sarah H Tolbert
- Departments of Chemistry and Biochemistry and Materials Science and Engineering University of California, Los Angeles Los Angeles, California 90095-1569, United States
| | - Benjamin J Schwartz
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles, California 90095-1569, United States
| |
Collapse
|
10
|
Lau MT, Li Z, Sun Z, Wong WY. Synthesis, characterization and thermoelectric properties of new non-conjugated nitroxide radical-containing metallopolymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Kondratenko K, Guérin D, Wallart X, Lenfant S, Vuillaume D. Thermal and electrical cross-plane conductivity at the nanoscale in poly(3,4-ethylenedioxythiophene):trifluoromethanesulfonate thin films. NANOSCALE 2022; 14:6075-6084. [PMID: 35383814 DOI: 10.1039/d2nr00819j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cross-plane electrical and thermal transport in thin films of a conducting polymer (poly(3,4-ethylenedioxythiophene), PEDOT) stabilized with trifluoromethanesulfonate (OTf) is investigated in this study. We explore their electrical properties by conductive atomic force microscopy (C-AFM), which reveals the presence of highly conductive nano-domains. Thermal conductivity in the cross-plane direction is measured by null-point scanning thermal microscopy (NP-SThM). PEDOT:OTf indeed demonstrates a non-negligible electronic contribution to the thermal transport. We further investigate the correlation between electrical and thermal conductivity by applying post-treatment: chemical reduction (de-doping) to lower charge carrier concentration and hence, electrical conductivity and acid treatment (over-doping) to increase the latter. From our measurements, we find a vibrational thermal conductivity of 0.34 ± 0.04 W m-1 K-1. From the linear dependence or the electronic contribution of thermal conductivity vs. the electronic conductivity (Wiedemann-Franz law), we infer a Lorenz number 6 times larger than the classical Sommerfeld value as also observed in many organic materials for in-plane thermal transport. By applying the recently proposed molecular Wiedemann-Franz law, we deduced a reorganization energy of 0.53 ± 0.06 eV.
Collapse
Affiliation(s)
- Kirill Kondratenko
- Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS, Av. Poincaré, 59652, Villeneuve d'Ascq, France.
| | - David Guérin
- Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS, Av. Poincaré, 59652, Villeneuve d'Ascq, France.
| | - Xavier Wallart
- Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS, Av. Poincaré, 59652, Villeneuve d'Ascq, France.
| | - Stéphane Lenfant
- Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS, Av. Poincaré, 59652, Villeneuve d'Ascq, France.
| | - Dominique Vuillaume
- Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS, Av. Poincaré, 59652, Villeneuve d'Ascq, France.
| |
Collapse
|
12
|
Mansour AE, Valencia AM, Lungwitz D, Wegner B, Tanaka N, Shoji Y, Fukushima T, Opitz A, Cocchi C, Koch N. Understanding the evolution of the Raman spectra of molecularly p-doped poly(3-hexylthiophene-2,5-diyl): signatures of polarons and bipolarons. Phys Chem Chem Phys 2022; 24:3109-3118. [PMID: 35040854 DOI: 10.1039/d1cp04985b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular doping is a key process to increase the density of charge carriers in organic semiconductors. Doping-induced charges in polymer semiconductors result in the formation of polarons and/or bipolarons due to the strong electron-vibron coupling in conjugated organic materials. Identifying the nature of charge carriers in doped polymers is essential to optimize the doping process for applications. In this work, we use Raman spectroscopy to investigate the formation of charge carriers in molecularly doped poly(3-hexylthiophene-2,5-diyl) (P3HT) for increasing dopant concentration, with the organic salt dimesityl borinium tetrakis(penta-fluorophenyl)borate (Mes2B+ [B(C6F5)4]-) and the Lewis acid tris(pentafluorophenyl)borane [B(C6F5)3]. While the Raman signatures of neutral P3HT and singly charged P3HT segments (polarons) are known, the Raman spectra of doubly charged P3HT segments (bipolarons) are not yet sufficiently understood. Combining Raman spectroscopy measurements on doped P3HT thin films with first-principles calculations on oligomer models, we explain the evolution of the Raman spectra from neutral P3HT to increasingly doped P3HT featuring polarons and eventually bipolarons at high doping levels. We identify and explain the origin of the spectral features related to bipolarons by tracing the Raman signature of the symmetric collective vibrations along the polymer backbone, which - compared to neutral P3HT - redshifts for polarons and blueshifts for bipolarons. This is explained by a planarization of the singly charged P3HT segments with polarons and rather high order in thin films, while the doubly charged segments with bipolarons are located in comparably disordered regions of the P3HT film due to the high dopant concentration. Furthermore, we identify additional Raman peaks associated with vibrations in the quinoid doubly charged segments of the polymer. Our results offer the opportunity for readily identifying the nature of charge carriers in molecularly doped P3HT while taking advantage of the simplicity, versatility, and non-destructive nature of Raman spectroscopy.
Collapse
Affiliation(s)
- Ahmed E Mansour
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany. .,Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Ana M Valencia
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany. .,Carl von Ossietzky Universität Oldenburg, Institute of Physics, 26129 Oldenburg, Germany
| | - Dominique Lungwitz
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany.
| | - Berthold Wegner
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany. .,Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Naoki Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Andreas Opitz
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany.
| | - Caterina Cocchi
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany. .,Carl von Ossietzky Universität Oldenburg, Institute of Physics, 26129 Oldenburg, Germany
| | - Norbert Koch
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany. .,Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| |
Collapse
|
13
|
Kurioka T, Komamura T, Shida N, Hayakawa T, Tomita I, Inagi S. Ordered‐Structure‐Induced Electrochemical Post‐Functionalization of Poly(3‐(2‐ethylhexyl)thiophene). MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tomoyuki Kurioka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta‐cho Midori‐ku Yokohama 226–8502 Japan
| | - Takahiro Komamura
- Department of Materials Science and Engineering, School of Materials and Chemical Technology Tokyo Institute of Technology 2‐12‐1 Ookayama Meguro‐ku Tokyo 152–8552 Japan
| | - Naoki Shida
- Graduate School of Science and Engineering Yokohama National University 79‐5 Tokiwadai Hodogaya‐ku Yokohama 240–8501 Japan
| | - Teruaki Hayakawa
- Department of Materials Science and Engineering, School of Materials and Chemical Technology Tokyo Institute of Technology 2‐12‐1 Ookayama Meguro‐ku Tokyo 152–8552 Japan
| | - Ikuyoshi Tomita
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta‐cho Midori‐ku Yokohama 226–8502 Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta‐cho Midori‐ku Yokohama 226–8502 Japan
- PRESTO Japan Science and Technology Agency (JST) 4‐1‐8 Honcho Kawaguchi Saitama 332‐0012 Japan
| |
Collapse
|
14
|
Zokaei S, Kim D, Järsvall E, Fenton AM, Weisen AR, Hultmark S, Nguyen PH, Matheson AM, Lund A, Kroon R, Chabinyc ML, Gomez ED, Zozoulenko I, Müller C. Tuning of the elastic modulus of a soft polythiophene through molecular doping. MATERIALS HORIZONS 2022; 9:433-443. [PMID: 34787612 DOI: 10.1039/d1mh01079d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular doping of a polythiophene with oligoethylene glycol side chains is found to strongly modulate not only the electrical but also the mechanical properties of the polymer. An oxidation level of up to 18% results in an electrical conductivity of more than 52 S cm-1 and at the same time significantly enhances the elastic modulus from 8 to more than 200 MPa and toughness from 0.5 to 5.1 MJ m-3. These changes arise because molecular doping strongly influences the glass transition temperature Tg and the degree of π-stacking of the polymer, as indicated by both X-ray diffraction and molecular dynamics simulations. Surprisingly, a comparison of doped materials containing mono- or dianions reveals that - for a comparable oxidation level - the presence of multivalent counterions has little effect on the stiffness. Evidently, molecular doping is a powerful tool that can be used for the design of mechanically robust conducting materials, which may find use within the field of flexible and stretchable electronics.
Collapse
Affiliation(s)
- Sepideh Zokaei
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 41296, Sweden.
| | - Donghyun Kim
- Laboratory of Organic Electronics, Linköping University, Norrköping 60174, Sweden
| | - Emmy Järsvall
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 41296, Sweden.
| | - Abigail M Fenton
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Albree R Weisen
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sandra Hultmark
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 41296, Sweden.
| | - Phong H Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Amanda M Matheson
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Anja Lund
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 41296, Sweden.
| | - Renee Kroon
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 41296, Sweden.
- Laboratory of Organic Electronics, Linköping University, Norrköping 60174, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping 60174, Sweden
| | - Michael L Chabinyc
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Enrique D Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Igor Zozoulenko
- Laboratory of Organic Electronics, Linköping University, Norrköping 60174, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping 60174, Sweden
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 41296, Sweden.
- Wallenberg Wood Science Center, Chalmers University of Technology, Göteborg 41296, Sweden
| |
Collapse
|
15
|
Scaccabarozzi AD, Basu A, Aniés F, Liu J, Zapata-Arteaga O, Warren R, Firdaus Y, Nugraha MI, Lin Y, Campoy-Quiles M, Koch N, Müller C, Tsetseris L, Heeney M, Anthopoulos TD. Doping Approaches for Organic Semiconductors. Chem Rev 2021; 122:4420-4492. [PMID: 34793134 DOI: 10.1021/acs.chemrev.1c00581] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electronic doping in organic materials has remained an elusive concept for several decades. It drew considerable attention in the early days in the quest for organic materials with high electrical conductivity, paving the way for the pioneering work on pristine organic semiconductors (OSCs) and their eventual use in a plethora of applications. Despite this early trend, however, recent strides in the field of organic electronics have been made hand in hand with the development and use of dopants to the point that are now ubiquitous. Here, we give an overview of all important advances in the area of doping of organic semiconductors and their applications. We first review the relevant literature with particular focus on the physical processes involved, discussing established mechanisms but also newly proposed theories. We then continue with a comprehensive summary of the most widely studied dopants to date, placing particular emphasis on the chemical strategies toward the synthesis of molecules with improved functionality. The processing routes toward doped organic films and the important doping-processing-nanostructure relationships, are also discussed. We conclude the review by highlighting how doping can enhance the operating characteristics of various organic devices.
Collapse
Affiliation(s)
- Alberto D Scaccabarozzi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Aniruddha Basu
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Filip Aniés
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K
| | - Jian Liu
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Osnat Zapata-Arteaga
- Materials Science Institute of Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Ross Warren
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Yuliar Firdaus
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia.,Research Center for Electronics and Telecommunication, Indonesian Institute of Science, Jalan Sangkuriang Komplek LIPI Building 20 level 4, Bandung 40135, Indonesia
| | - Mohamad Insan Nugraha
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Yuanbao Lin
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Mariano Campoy-Quiles
- Materials Science Institute of Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Norbert Koch
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Kekulé-Strasse 5, 12489 Berlin, Germany.,Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Leonidas Tsetseris
- Department of Physics, National Technical University of Athens, Athens GR-15780, Greece
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| |
Collapse
|
16
|
Sahu H, Li H, Chen L, Rajan AC, Kim C, Stingelin N, Ramprasad R. An Informatics Approach for Designing Conducting Polymers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53314-53322. [PMID: 34038635 DOI: 10.1021/acsami.1c04017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Doping conjugated polymers, which are potential candidates for the next generation of organic electronics, is an effective strategy for manipulating their electrical conductivity. However, selecting a suitable polymer-dopant combination is exceptionally challenging because of the vastness of the chemical, configurational, and morphological spaces one needs to search. In this work, high-performance surrogate models, trained on available experimentally measured data, are developed to predict the p-type electrical conductivity and are used to screen a large candidate hypothetical data set of more than 800 000 polymer-dopant combinations. Promising candidates are identified for synthesis and device fabrication. Additionally, new design guidelines are extracted that verify and extend knowledge on important molecular fragments that correlate to high conductivity. Conductivity prediction models are also deployed at www.polymergenome.org for broader open-access community use.
Collapse
Affiliation(s)
- Harikrishna Sahu
- Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hongmo Li
- Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lihua Chen
- Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Arunkumar Chitteth Rajan
- Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chiho Kim
- Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Natalie Stingelin
- Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rampi Ramprasad
- Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
17
|
Yu S, Ratcliff EL. Tuning Organic Electrochemical Transistor (OECT) Transconductance toward Zero Gate Voltage in the Faradaic Mode. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50176-50186. [PMID: 34644052 DOI: 10.1021/acsami.1c13009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, we investigate material design criteria for low-powered/self-powered and efficient organic electrochemical transistors (OECTs) to be operated in the faradaic mode (detection at the gate electrode occurs via electron transfer events). To rationalize device design principles, we adopt a Marcus-Gerischer perspective for electrochemical processes at both the gate and channel interfaces. This perspective considers density of states (DOS) for the semiconductor channel, the gate electrode, and the electrolyte. We complement our approach with energy band offsets of relevant electrochemical potentials that can be independently measured from transistor geometry using conventional electrochemical methods as well as an approach to measure electrolyte potential in an operating OECT. By systematically changing the relative redox property offsets between the redox-active electrolyte and semiconducting polymer channel, we demonstrate a first-order design principle that necessary gate voltage is minimized by good DOS overlap of the two redox processes at the gate and channel. Specifically, for p-type turn-on OECTs, the voltage-dependent, electrochemically active semiconductor DOS should overlap with the oxidant form of the electrolyte to minimize the onset voltage for transconductance. A special case where the electrolyte can be used to spontaneously dope the polymer via charge transfer is also considered. Collectively, our results provide material design pathways toward the development of simple, robust, power-saving, and high-throughput OECT biosensors.
Collapse
Affiliation(s)
- Songyan Yu
- Department of Materials Science and Engineering, The University of Arizona, 1235 E. James E Rogers Way, Tucson, Arizona 85721, United States
| | - Erin L Ratcliff
- Department of Materials Science and Engineering, The University of Arizona, 1235 E. James E Rogers Way, Tucson, Arizona 85721, United States
- Department of Chemical and Environmental Engineering, The University of Arizona, 1133 E. James E Rogers Way, Tucson, Arizona 85721, United States
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Way, Tucson, Arizona 85721, United States
| |
Collapse
|
18
|
Nagamatsu S, Pandey SS. Ordered arrangement of F4TCNQ anions in three-dimensionally oriented P3HT thin films. Sci Rep 2020; 10:20020. [PMID: 33208776 PMCID: PMC7674482 DOI: 10.1038/s41598-020-77022-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/04/2020] [Indexed: 11/25/2022] Open
Abstract
An ordered arrangement of electron-accepting molecular dopant, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), in three-dimensionally (3D) oriented poly(3-hexylthiophene) (P3HT) film was clarified. The 3D oriented P3HT thin films prepared by the friction-transfer technique were doped with F4TCNQ by dipping into an acetonitrile solution. The presence of F4TCNQ anions in the 3D oriented P3HT thin films was investigated by polarized ultraviolet/visible/near-infrared absorption spectroscopy, grazing incidence X-ray diffractometry, polarized Fourier transform infrared spectroscopy (FT-IR), and infrared p-polarized multiple-angle incidence resolution spectroscopy (pMAIRS). The F4TCNQ-doped 3D oriented P3HT films showed anisotropic properties in all characterizations. In particular, the anisotropic molecular vibrations from polarized FT-IR and pMAIRS have clearly revealed orientations of polymeric chains and molecular dopant molecules. Considering the results from several independent techniques indicated that F4TCNQ anions in the 3D oriented P3HT were orderly arranged in a 3D manner with respect to the 3D oriented P3HT such that their molecular long-axis parallel to the P3HT backbone, with in-plane molecular orientation. Additionally, the direction of the optical transition moment of the F4TCNQ anion was found to be parallel to the molecular short-axis.
Collapse
Affiliation(s)
- Shuichi Nagamatsu
- Department of Physics and Information Technology, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan.
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan
| |
Collapse
|
19
|
Aubry TJ, Winchell KJ, Salamat CZ, Basile VM, Lindemuth JR, Stauber JM, Axtell JC, Kubena RM, Phan MD, Bird MJ, Spokoyny AM, Tolbert SH, Schwartz BJ. Tunable Dopants with Intrinsic Counterion Separation Reveal the Effects of Electron Affinity on Dopant Intercalation and Free Carrier Production in Sequentially Doped Conjugated Polymer Films. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2001800. [PMID: 32684909 PMCID: PMC7357248 DOI: 10.1002/adfm.202001800] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Carrier mobility in doped conjugated polymers is limited by Coulomb interactions with dopant counterions. This complicates studying the effect of the dopant's oxidation potential on carrier generation because different dopants have different Coulomb interactions with polarons on the polymer backbone. Here, dodecaborane (DDB)-based dopants are used, which electrostatically shield counterions from carriers and have tunable redox potentials at constant size and shape. DDB dopants produce mobile carriers due to spatial separation of the counterion, and those with greater energetic offsets produce more carriers. Neutron reflectometry indicates that dopant infiltration into conjugated polymer films is redox-potential-driven. Remarkably, X-ray scattering shows that despite their large 2-nm size, DDBs intercalate into the crystalline polymer lamellae like small molecules, indicating that this is the preferred location for dopants of any size. These findings elucidate why doping conjugated polymers usually produces integer, rather than partial charge transfer: dopant counterions effectively intercalate into the lamellae, far from the polarons on the polymer backbone. Finally, it is shown that the IR spectrum provides a simple way to determine polaron mobility. Overall, higher oxidation potentials lead to higher doping efficiencies, with values reaching 100% for driving forces sufficient to dope poorly crystalline regions of the film.
Collapse
Affiliation(s)
- Taylor J. Aubry
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095‐1569USA
| | - K. J. Winchell
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095‐1569USA
| | - Charlene Z. Salamat
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095‐1569USA
| | - Victoria M. Basile
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095‐1569USA
| | | | - Julia M. Stauber
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095‐1569USA
| | - Jonathan C. Axtell
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095‐1569USA
| | - Rebecca M. Kubena
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095‐1569USA
| | - Minh D. Phan
- Neutron Scattering DivisionOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Matthew J. Bird
- Chemistry DepartmentBrookhaven National LaboratoryUptonNY11973USA
| | - Alexander M. Spokoyny
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095‐1569USA
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095‐7227USA
| | - Sarah H. Tolbert
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095‐1569USA
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095‐7227USA
- Department of Materials Science and EngineeringUniversity of California, Los AngelesLos AngelesCA90095‐1595USA
| | - Benjamin J. Schwartz
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095‐1569USA
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095‐7227USA
| |
Collapse
|
20
|
Arvind M, Tait CE, Guerrini M, Krumland J, Valencia AM, Cocchi C, Mansour AE, Koch N, Barlow S, Marder SR, Behrends J, Neher D. Quantitative Analysis of Doping-Induced Polarons and Charge-Transfer Complexes of Poly(3-hexylthiophene) in Solution. J Phys Chem B 2020; 124:7694-7708. [DOI: 10.1021/acs.jpcb.0c03517] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Malavika Arvind
- Institut für Physik und Astronomie, Universität Potsdam, 14476 Potsdam, Germany
| | - Claudia E. Tait
- Institut für Experimentalphysik, Berlin Joint EPR Lab, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michele Guerrini
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Jannis Krumland
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Ana M. Valencia
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Caterina Cocchi
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Ahmed E. Mansour
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Norbert Koch
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Stephen Barlow
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Seth R. Marder
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Jan Behrends
- Institut für Experimentalphysik, Berlin Joint EPR Lab, Freie Universität Berlin, 14195 Berlin, Germany
| | - Dieter Neher
- Institut für Physik und Astronomie, Universität Potsdam, 14476 Potsdam, Germany
| |
Collapse
|