1
|
Juanes-Velasco P, Arias-Hidalgo C, García-Vaquero ML, Sotolongo-Ravelo J, Paíno T, Lécrevisse Q, Landeira-Viñuela A, Góngora R, Hernández ÁP, Fuentes M. Crucial Parameters for Immunopeptidome Characterization: A Systematic Evaluation. Int J Mol Sci 2024; 25:9564. [PMID: 39273511 PMCID: PMC11395153 DOI: 10.3390/ijms25179564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Immunopeptidomics is the area of knowledge focused on the study of peptides assembled in the major histocompatibility complex (MHC), or human leukocyte antigen (HLA) in humans, which could activate the immune response via specific and selective T cell recognition. Advances in high-sensitivity mass spectrometry have enabled the detailed identification and quantification of the immunopeptidome, significantly impacting fields like oncology, infections, and autoimmune diseases. Current immunopeptidomics approaches primarily focus on workflows to identify immunopeptides from HLA molecules, requiring the isolation of the HLA from relevant cells or tissues. Common critical steps in these workflows, such as cell lysis, HLA immunoenrichment, and peptide isolation, significantly influence outcomes. A systematic evaluation of these steps led to the creation of an 'Immunopeptidome Score' to enhance the reproducibility and robustness of these workflows. This score, derived from LC-MS/MS datasets (ProteomeXchange identifier PXD038165), in combination with available information from public databases, aids in optimizing the immunopeptidome characterization process. The 'Immunopeptidome Score' has been applied in a systematic analysis of protein extraction, HLA immunoprecipitation, and peptide recovery yields across several tumor cell lines enabling the selection of peptides with optimal features and, therefore, the identification of potential biomarker and therapeutic targets.
Collapse
Affiliation(s)
- Pablo Juanes-Velasco
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlota Arias-Hidalgo
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marina L García-Vaquero
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Janet Sotolongo-Ravelo
- Oncohematology Group, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| | - Teresa Paíno
- Oncohematology Group, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
- Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain
| | - Quentin Lécrevisse
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alicia Landeira-Viñuela
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Góngora
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ángela-Patricia Hernández
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Pharmaceutical Sciences, Organic Chemistry, Faculty of Pharmacy, University of Salamanca, CIETUS, IBSAL, 37007 Salamanca, Spain
| | - Manuel Fuentes
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Universidad de Salamanca), 37008 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Proteomics Unit-IBSAL, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, (IBSAL/USAL), 37007 Salamanca, Spain
| |
Collapse
|
2
|
Flender D, Vilenne F, Adams C, Boonen K, Valkenborg D, Baggerman G. Exploring the dynamic landscape of immunopeptidomics: Unravelling posttranslational modifications and navigating bioinformatics terrain. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39152539 DOI: 10.1002/mas.21905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
Immunopeptidomics is becoming an increasingly important field of study. The capability to identify immunopeptides with pivotal roles in the human immune system is essential to shift the current curative medicine towards personalized medicine. Throughout the years, the field has matured, giving insight into the current pitfalls. Nowadays, it is commonly accepted that generalizing shotgun proteomics workflows is malpractice because immunopeptidomics faces numerous challenges. While many of these difficulties have been addressed, the road towards the ideal workflow remains complicated. Although the presence of Posttranslational modifications (PTMs) in the immunopeptidome has been demonstrated, their identification remains highly challenging despite their significance for immunotherapies. The large number of unpredictable modifications in the immunopeptidome plays a pivotal role in the functionality and these challenges. This review provides a comprehensive overview of the current advancements in immunopeptidomics. We delve into the challenges associated with identifying PTMs within the immunopeptidome, aiming to address the current state of the field.
Collapse
Affiliation(s)
- Daniel Flender
- Centre for Proteomics, University of Antwerp, Antwerpen, Belgium
- Health Unit, VITO, Mol, Belgium
| | - Frédérique Vilenne
- Health Unit, VITO, Mol, Belgium
- Data Science Institute, University of Hasselt, Hasselt, Belgium
| | - Charlotte Adams
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Kurt Boonen
- Centre for Proteomics, University of Antwerp, Antwerpen, Belgium
- ImmuneSpec, Niel, Belgium
| | - Dirk Valkenborg
- Data Science Institute, University of Hasselt, Hasselt, Belgium
| | - Geert Baggerman
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
- ImmuneSpec, Niel, Belgium
| |
Collapse
|
3
|
Hesnard L, Thériault C, Cahuzac M, Durette C, Vincent K, Hardy MP, Lanoix J, Lavallée GO, Humeau J, Thibault P, Perreault C. Immunogenicity of Non-Mutated Ovarian Cancer-Specific Antigens. Curr Oncol 2024; 31:3099-3121. [PMID: 38920720 PMCID: PMC11203340 DOI: 10.3390/curroncol31060236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Epithelial ovarian cancer (EOC) has not significantly benefited from advances in immunotherapy, mainly because of the lack of well-defined actionable antigen targets. Using proteogenomic analyses of primary EOC tumors, we previously identified 91 aberrantly expressed tumor-specific antigens (TSAs) originating from unmutated genomic sequences. Most of these TSAs derive from non-exonic regions, and their expression results from cancer-specific epigenetic changes. The present study aimed to evaluate the immunogenicity of 48 TSAs selected according to two criteria: presentation by highly prevalent HLA allotypes and expression in a significant fraction of EOC tumors. Using targeted mass spectrometry analyses, we found that pulsing with synthetic TSA peptides leads to a high-level presentation on dendritic cells. TSA abundance correlated with the predicted binding affinity to the HLA allotype. We stimulated naïve CD8 T cells from healthy blood donors with TSA-pulsed dendritic cells and assessed their expansion with two assays: MHC-peptide tetramer staining and TCR Vβ CDR3 sequencing. We report that these TSAs can expand sizeable populations of CD8 T cells and, therefore, represent attractive targets for EOC immunotherapy.
Collapse
Affiliation(s)
- Leslie Hesnard
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Catherine Thériault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Maxime Cahuzac
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Chantal Durette
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Krystel Vincent
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Joël Lanoix
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Gabriel Ouellet Lavallée
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Juliette Humeau
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
- Department of Chemistry, University of Montreal, Montreal, QC H2V 0B3, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
- Department of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
4
|
Larson AC, Knoche SM, Brumfield GL, Doty KR, Gephart BD, Moore-Saufley PR, Solheim JC. Gemcitabine Modulates HLA-I Regulation to Improve Tumor Antigen Presentation by Pancreatic Cancer Cells. Int J Mol Sci 2024; 25:3211. [PMID: 38542184 PMCID: PMC10970070 DOI: 10.3390/ijms25063211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Pancreatic cancer is a lethal disease, harboring a five-year overall survival rate of only 13%. Current treatment approaches thus require modulation, with attention shifting towards liberating the stalled efficacy of immunotherapies. Select chemotherapy drugs which possess inherent immune-modifying behaviors could revitalize immune activity against pancreatic tumors and potentiate immunotherapeutic success. In this study, we characterized the influence of gemcitabine, a chemotherapy drug approved for the treatment of pancreatic cancer, on tumor antigen presentation by human leukocyte antigen class I (HLA-I). Gemcitabine increased pancreatic cancer cells' HLA-I mRNA transcripts, total protein, surface expression, and surface stability. Temperature-dependent assay results indicated that the increased HLA-I stability may be due to reduced binding of low affinity peptides. Mass spectrometry analysis confirmed changes in the HLA-I-presented peptide pool post-treatment, and computational predictions suggested improved affinity and immunogenicity of peptides displayed solely by gemcitabine-treated cells. Most of the gemcitabine-exclusive peptides were derived from unique source proteins, with a notable overrepresentation of translation-related proteins. Gemcitabine also increased expression of select immunoproteasome subunits, providing a plausible mechanism for its modulation of the HLA-I-bound peptidome. Our work supports continued investigation of immunotherapies, including peptide-based vaccines, to be used with gemcitabine as new combination treatment modalities for pancreatic cancer.
Collapse
Affiliation(s)
- Alaina C. Larson
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shelby M. Knoche
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gabrielle L. Brumfield
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kenadie R. Doty
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin D. Gephart
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Joyce C. Solheim
- Eppley Institute for Research in Cancer & Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Wang F, Zhang Z, Mao M, Yang Y, Xu P, Lu S. COSMIC-based mutation database enhances identification efficiency of HLA-I immunopeptidome. J Transl Med 2024; 22:144. [PMID: 38336780 PMCID: PMC10858511 DOI: 10.1186/s12967-023-04821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/20/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Neoantigens have emerged as a promising area of focus in tumor immunotherapy, with several established strategies aiming to enhance their identification. Human leukocyte antigen class I molecules (HLA-I), which present intracellular immunopeptides to T cells, provide an ideal source for identifying neoantigens. However, solely relying on a mutation database generated through commonly used whole exome sequencing (WES) for the identification of HLA-I immunopeptides, may result in potential neoantigens being missed due to limitations in sequencing depth and sample quality. METHOD In this study, we constructed and evaluated an extended database for neoantigen identification, based on COSMIC mutation database. This study utilized mass spectrometry-based proteogenomic profiling to identify the HLA-I immunopeptidome enriched from HepG2 cell. HepG2 WES-based and the COSMIC-based mutation database were generated and utilized to identify HepG2-specific mutant immunopeptides. RESULT The results demonstrated that COSMIC-based database identified 5 immunopeptides compared to only 1 mutant peptide identified by HepG2 WES-based database, indicating its effectiveness in identifying mutant immunopeptides. Furthermore, HLA-I affinity of the mutant immunopeptides was evaluated through NetMHCpan and peptide-docking modeling to validate their binding to HLA-I molecules, demonstrating the potential of mutant peptides identified by the COSMIC-based database as neoantigens. CONCLUSION Utilizing the COSMIC-based mutation database is a more efficient strategy for identifying mutant peptides from HLA-I immunopeptidome without significantly increasing the false positive rate. HepG2 specific WES-based database may exclude certain mutant peptides due to WES sequencing depth or sample heterogeneity. The COSMIC-based database can effectively uncover potential neoantigens within the HLA-I immunopeptidomes.
Collapse
Affiliation(s)
- Fangzhou Wang
- Medical School of Chinese People's Liberation Army (PLA), Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhenpeng Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics and Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, 38 Life Science Park Road, Changping District, Beijing, 102206, China
| | - Mingsong Mao
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics and Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, 38 Life Science Park Road, Changping District, Beijing, 102206, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yudai Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics and Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, 38 Life Science Park Road, Changping District, Beijing, 102206, China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ping Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics and Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, 38 Life Science Park Road, Changping District, Beijing, 102206, China.
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- School of Medicine, Guizhou University, Guiyang, China.
| | - Shichun Lu
- Medical School of Chinese People's Liberation Army (PLA), Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Key Laboratory of Digital Hepatobiliary Surgery PLA, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
6
|
Nelde A, Schuster H, Heitmann JS, Bauer J, Maringer Y, Zwick M, Volkmer JP, Chen JY, Stanger AMP, Lehmann A, Appiah B, Märklin M, Rücker-Braun E, Salih HR, Roerden M, Schroeder SM, Häring MF, Schlosser A, Schetelig J, Schmitz M, Boerries M, Köhler N, Lengerke C, Majeti R, Weissman IL, Rammensee HG, Walz JS. Immune Surveillance of Acute Myeloid Leukemia Is Mediated by HLA-Presented Antigens on Leukemia Progenitor Cells. Blood Cancer Discov 2023; 4:468-489. [PMID: 37847741 PMCID: PMC10618727 DOI: 10.1158/2643-3230.bcd-23-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/13/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Therapy-resistant leukemia stem and progenitor cells (LSC) are a main cause of acute myeloid leukemia (AML) relapse. LSC-targeting therapies may thus improve outcome of patients with AML. Here we demonstrate that LSCs present HLA-restricted antigens that induce T-cell responses allowing for immune surveillance of AML. Using a mass spectrometry-based immunopeptidomics approach, we characterized the antigenic landscape of patient LSCs and identified AML- and AML/LSC-associated HLA-presented antigens absent from normal tissues comprising nonmutated peptides, cryptic neoepitopes, and neoepitopes of common AML driver mutations of NPM1 and IDH2. Functional relevance of shared AML/LSC antigens is illustrated by presence of their cognizant memory T cells in patients. Antigen-specific T-cell recognition and HLA class II immunopeptidome diversity correlated with clinical outcome. Together, these antigens shared among AML and LSCs represent prime targets for T cell-based therapies with potential of eliminating residual LSCs in patients with AML. SIGNIFICANCE The elimination of therapy-resistant leukemia stem and progenitor cells (LSC) remains a major challenge in the treatment of AML. This study identifies and functionally validates LSC-associated HLA class I and HLA class II-presented antigens, paving the way to the development of LSC-directed T cell-based immunotherapeutic approaches for patients with AML. See related commentary by Ritz, p. 430 . This article is featured in Selected Articles from This Issue, p. 419.
Collapse
Affiliation(s)
- Annika Nelde
- Department of Peptide-Based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Heiko Schuster
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Jonas S. Heitmann
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Jens Bauer
- Department of Peptide-Based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Yacine Maringer
- Department of Peptide-Based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Melissa Zwick
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens-Peter Volkmer
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California
| | - James Y. Chen
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California
| | - Anna M. Paczulla Stanger
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Ariane Lehmann
- Faculty of Medicine, Medical Center, Institute of Medical Bioinformatics and Systems Medicine (IBSM), University of Freiburg, Germany
| | - Bismark Appiah
- Faculty of Medicine, Medical Center, Institute of Medical Bioinformatics and Systems Medicine (IBSM), University of Freiburg, Germany
| | - Melanie Märklin
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Elke Rücker-Braun
- Department of Medicine I, University Hospital of Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Helmut R. Salih
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Malte Roerden
- Department of Peptide-Based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Sarah M. Schroeder
- Department of Peptide-Based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Max-Felix Häring
- Department of Peptide-Based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | | | - Johannes Schetelig
- Department of Medicine I, University Hospital of Dresden, Dresden, Germany
- German Bone Marrow Donor Center (DKMS), Clinical Trials Unit, Dresden, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Boerries
- Faculty of Medicine, Medical Center, Institute of Medical Bioinformatics and Systems Medicine (IBSM), University of Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site, Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Natalie Köhler
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Claudia Lengerke
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
- Clinic for Hematology, University of Basel and University Hospital Basel, Basel, Switzerland
- German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Germany
| | - Ravindra Majeti
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Germany
| | - Juliane S. Walz
- Department of Peptide-Based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Buonaguro L, Tagliamonte M. Peptide-based vaccine for cancer therapies. Front Immunol 2023; 14:1210044. [PMID: 37654484 PMCID: PMC10467431 DOI: 10.3389/fimmu.2023.1210044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Different strategies based on peptides are available for cancer treatment, in particular to counter-act the progression of tumor growth and disease relapse. In the last decade, in the context of therapeutic strategies against cancer, peptide-based vaccines have been evaluated in different tumor models. The peptides selected for cancer vaccine development can be classified in two main type: tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs), which are captured, internalized, processed and presented by antigen-presenting cells (APCs) to cell-mediated immunity. Peptides loaded onto MHC class I are recognized by a specific TCR of CD8+ T cells, which are activated to exert their cytotoxic activity against tumor cells presenting the same peptide-MHC-I complex. This process is defined as active immunotherapy as the host's immune system is either de novo activated or restimulated to mount an effective, tumor-specific immune reaction that may ultimately lead to tu-mor regression. However, while the preclinical data have frequently shown encouraging results, therapeutic cancer vaccines clinical trials, including those based on peptides have not provided satisfactory data to date. The limited efficacy of peptide-based cancer vaccines is the consequence of several factors, including the identification of specific target tumor antigens, the limited immunogenicity of peptides and the highly immunosuppressive tumor microenvironment (TME). An effective cancer vaccine can be developed only by addressing all such different aspects. The present review describes the state of the art for each of such factors.
Collapse
Affiliation(s)
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - “Fond G. Pascale”, Naples, Italy
| |
Collapse
|
8
|
Wacker M, Bauer J, Wessling L, Dubbelaar M, Nelde A, Rammensee HG, Walz JS. Immunoprecipitation methods impact the peptide repertoire in immunopeptidomics. Front Immunol 2023; 14:1219720. [PMID: 37545538 PMCID: PMC10400765 DOI: 10.3389/fimmu.2023.1219720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Mass spectrometry-based immunopeptidomics is the only unbiased method to identify naturally presented HLA ligands, which is an indispensable prerequisite for characterizing novel tumor antigens for immunotherapeutic approaches. In recent years, improvements based on devices and methodology have been made to optimize sensitivity and throughput in immunopeptidomics. However, developments in ligand isolation, mass spectrometric analysis, and subsequent data processing can have a marked impact on the quality and quantity of immunopeptidomics data. Methods In this work, we compared the immunopeptidome composition in terms of peptide yields, spectra quality, hydrophobicity, retention time, and immunogenicity of two established immunoprecipitation methods (column-based and 96-well-based) using cell lines as well as primary solid and hematological tumor samples. Results Although, we identified comparable overall peptide yields, large proportions of method-exclusive peptides were detected with significantly higher hydrophobicity for the column-based method with potential implications for the identification of immunogenic tumor antigens. We showed that column preparation does not lose hydrophilic peptides in the hydrophilic washing step. In contrast, an additional 50% acetonitrile elution could partially regain lost hydrophobic peptides during 96-well preparation, suggesting a reduction of the bias towards the column-based method but not completely equalizing it. Discussion Together, this work showed how different immunoprecipitation methods and their adaptions can impact the peptide repertoire of immunopeptidomic analysis and therefore the identification of potential tumor-associated antigens.
Collapse
Affiliation(s)
- Marcel Wacker
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Jens Bauer
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Laura Wessling
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Marissa Dubbelaar
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Juliane S. Walz
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Ternette N, Adamopoulou E, Purcell AW. How mass spectrometric interrogation of MHC class I ligandomes has advanced our understanding of immune responses to viruses. Semin Immunol 2023; 68:101780. [PMID: 37276649 DOI: 10.1016/j.smim.2023.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Affiliation(s)
- Nicola Ternette
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford OX37BN, UK.
| | - Eleni Adamopoulou
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford OX37BN, UK
| | - Anthony W Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
10
|
Stutzmann C, Peng J, Wu Z, Savoie C, Sirois I, Thibault P, Wheeler AR, Caron E. Unlocking the potential of microfluidics in mass spectrometry-based immunopeptidomics for tumor antigen discovery. CELL REPORTS METHODS 2023; 3:100511. [PMID: 37426761 PMCID: PMC10326451 DOI: 10.1016/j.crmeth.2023.100511] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The identification of tumor-specific antigens (TSAs) is critical for developing effective cancer immunotherapies. Mass spectrometry (MS)-based immunopeptidomics has emerged as a powerful tool for identifying TSAs as physical molecules. However, current immunopeptidomics platforms face challenges in measuring low-abundance TSAs in a precise, sensitive, and reproducible manner from small needle-tissue biopsies (<1 mg). Inspired by recent advances in single-cell proteomics, microfluidics technology offers a promising solution to these limitations by providing improved isolation of human leukocyte antigen (HLA)-associated peptides with higher sensitivity. In this context, we highlight the challenges in sample preparation and the rationale for developing microfluidics technology in immunopeptidomics. Additionally, we provide an overview of promising microfluidic methods, including microchip pillar arrays, valved-based systems, droplet microfluidics, and digital microfluidics, and discuss the latest research on their application in MS-based immunopeptidomics and single-cell proteomics.
Collapse
Affiliation(s)
| | - Jiaxi Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Zhaoguan Wu
- CHU Sainte Justine Research Center, Montreal, QC, Canada
| | | | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
- Department of Chemistry, University of Montreal, Montreal, QC, Canada
| | - Aaron R. Wheeler
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Etienne Caron
- CHU Sainte Justine Research Center, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
11
|
Lazear MR, Remsberg JR, Jaeger MG, Rothamel K, Her HL, DeMeester KE, Njomen E, Hogg SJ, Rahman J, Whitby LR, Won SJ, Schafroth MA, Ogasawara D, Yokoyama M, Lindsey GL, Li H, Germain J, Barbas S, Vaughan J, Hanigan TW, Vartabedian VF, Reinhardt CJ, Dix MM, Koo SJ, Heo I, Teijaro JR, Simon GM, Ghosh B, Abdel-Wahab O, Ahn K, Saghatelian A, Melillo B, Schreiber SL, Yeo GW, Cravatt BF. Proteomic discovery of chemical probes that perturb protein complexes in human cells. Mol Cell 2023; 83:1725-1742.e12. [PMID: 37084731 PMCID: PMC10198961 DOI: 10.1016/j.molcel.2023.03.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/09/2023] [Accepted: 03/28/2023] [Indexed: 04/23/2023]
Abstract
Most human proteins lack chemical probes, and several large-scale and generalizable small-molecule binding assays have been introduced to address this problem. How compounds discovered in such "binding-first" assays affect protein function, nonetheless, often remains unclear. Here, we describe a "function-first" proteomic strategy that uses size exclusion chromatography (SEC) to assess the global impact of electrophilic compounds on protein complexes in human cells. Integrating the SEC data with cysteine-directed activity-based protein profiling identifies changes in protein-protein interactions that are caused by site-specific liganding events, including the stereoselective engagement of cysteines in PSME1 and SF3B1 that disrupt the PA28 proteasome regulatory complex and stabilize a dynamic state of the spliceosome, respectively. Our findings thus show how multidimensional proteomic analysis of focused libraries of electrophilic compounds can expedite the discovery of chemical probes with site-specific functional effects on protein complexes in human cells.
Collapse
Affiliation(s)
- Michael R Lazear
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | | | - Martin G Jaeger
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Katherine Rothamel
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hsuan-Lin Her
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Evert Njomen
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Simon J Hogg
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Jahan Rahman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Landon R Whitby
- Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Sang Joon Won
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | | | | | - Minoru Yokoyama
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | | | - Haoxin Li
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Jason Germain
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Sabrina Barbas
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Joan Vaughan
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Thomas W Hanigan
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Vincent F Vartabedian
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | | | - Melissa M Dix
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Seong Joo Koo
- Molecular and Cellular Pharmacology, Discovery Technologies and Molecular Pharmacology, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Inha Heo
- Molecular and Cellular Pharmacology, Discovery Technologies and Molecular Pharmacology, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - John R Teijaro
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Gabriel M Simon
- Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Brahma Ghosh
- Discovery Chemistry, Janssen Research & Development, Spring House, PA 19477, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Kay Ahn
- Molecular and Cellular Pharmacology, Discovery Technologies and Molecular Pharmacology, Janssen Research and Development, Spring House, PA 19477, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA; Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
12
|
Santharam MA, Shukla A, Levesque D, Kufer TA, Boisvert FM, Ramanathan S, Ilangumaran S. NLRC5-CIITA Fusion Protein as an Effective Inducer of MHC-I Expression and Antitumor Immunity. Int J Mol Sci 2023; 24:ijms24087206. [PMID: 37108368 PMCID: PMC10138588 DOI: 10.3390/ijms24087206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Aggressive tumors evade cytotoxic T lymphocytes by suppressing MHC class-I (MHC-I) expression that also compromises tumor responsiveness to immunotherapy. MHC-I defects strongly correlate to defective expression of NLRC5, the transcriptional activator of MHC-I and antigen processing genes. In poorly immunogenic B16 melanoma cells, restoring NLRC5 expression induces MHC-I and elicits antitumor immunity, raising the possibility of using NLRC5 for tumor immunotherapy. As the clinical application of NLRC5 is constrained by its large size, we examined whether a smaller NLRC5-CIITA fusion protein, dubbed NLRC5-superactivator (NLRC5-SA) as it retains the ability to induce MHC-I, could be used for tumor growth control. We show that stable NLRC5-SA expression in mouse and human cancer cells upregulates MHC-I expression. B16 melanoma and EL4 lymphoma tumors expressing NLRC5-SA are controlled as efficiently as those expressing full-length NLRC5 (NLRC5-FL). Comparison of MHC-I-associated peptides (MAPs) eluted from EL4 cells expressing NLRC5-FL or NLRC5-SA and analyzed by mass spectrometry revealed that both NLRC5 constructs expanded the MAP repertoire, which showed considerable overlap but also included a substantial proportion of distinct peptides. Thus, we propose that NLRC5-SA, with its ability to increase tumor immunogenicity and promote tumor growth control, could overcome the limitations of NLRC5-FL for translational immunotherapy applications.
Collapse
Affiliation(s)
- Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Dominique Levesque
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- CRCHUS, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- CRCHUS, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- CRCHUS, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
13
|
Peng X, Woodhouse I, Hancock G, Parker R, Marx K, Müller J, Salatino S, Partridge T, Nicastri A, Liao H, Kruppa G, Hellner K, Dorrell L, Ternette N. Novel canonical and non-canonical viral antigens extend current targets for immunotherapy of HPV-driven cervical cancer. iScience 2023; 26:106101. [PMID: 36876126 PMCID: PMC9978627 DOI: 10.1016/j.isci.2023.106101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/30/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Current immunotherapeutic approaches for human papillomavirus (HPV)-driven cervical cancer target the viral oncogenes E6 and E7. We report viral canonical and alternative reading frame (ARF)-derived sequences presented on cervical tumor cells, including antigens encoded by the conserved viral gene E1. We confirm immunogenicity of the identified viral peptides in HPV-positive women, and women with cervical intraepithelial neoplasia. We observe consistent transcription of the E1, E6, and E7 genes in 10 primary cervical tumor resections from the four most common high-risk HPV subtypes (HPV16, 18, 31, and 45), suggesting the suitability of E1 as therapeutic target. We finally confirm HLA presentation of canonical peptides derived from E6 and E7, and ARF-derived viral peptides from a reverse-strand transcript spanning the HPV E1 and E2 genes in primary human cervical tumor tissue. Our results extend currently known viral immunotherapeutic targets in cervical cancer and highlight E1 as an important cervical cancer antigen.
Collapse
Affiliation(s)
- Xu Peng
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, OX3 7DQ Oxford, UK
| | - Isaac Woodhouse
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, OX3 7DQ Oxford, UK
| | - Gemma Hancock
- Nuffield Department of Medicine, University of Oxford, OX3 7FZ Oxford, UK
| | - Robert Parker
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, OX3 7DQ Oxford, UK
- The Jenner Institute, University of Oxford, OX3 7DQ Oxford, UK
| | - Kristina Marx
- Bruker Daltonics, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Julius Müller
- The Jenner Institute, University of Oxford, OX3 7DQ Oxford, UK
| | - Silvia Salatino
- Wellcome Centre Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - Thomas Partridge
- Nuffield Department of Medicine, University of Oxford, OX3 7FZ Oxford, UK
| | - Annalisa Nicastri
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, OX3 7DQ Oxford, UK
- The Jenner Institute, University of Oxford, OX3 7DQ Oxford, UK
| | - Hanqing Liao
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, OX3 7DQ Oxford, UK
- The Jenner Institute, University of Oxford, OX3 7DQ Oxford, UK
| | - Gary Kruppa
- Bruker Daltonics, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Karin Hellner
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, OX3 7FZ Oxford, UK
- The Jenner Institute, University of Oxford, OX3 7DQ Oxford, UK
- Immunocore Ltd., OX14 4RY Abingdon, UK
| | - Nicola Ternette
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, OX3 7DQ Oxford, UK
- The Jenner Institute, University of Oxford, OX3 7DQ Oxford, UK
| |
Collapse
|
14
|
Lichti CF, Wan X. Using mass spectrometry to identify neoantigens in autoimmune diseases: The type 1 diabetes example. Semin Immunol 2023; 66:101730. [PMID: 36827760 PMCID: PMC10324092 DOI: 10.1016/j.smim.2023.101730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
In autoimmune diseases, recognition of self-antigens presented by major histocompatibility complex (MHC) molecules elicits unexpected attack of tissue by autoantibodies and/or autoreactive T cells. Post-translational modification (PTM) may alter the MHC-binding motif or TCR contact residues in a peptide antigen, transforming the tolerance to self to autoreactivity. Mass spectrometry-based immunopeptidomics provides a valuable mechanism for identifying MHC ligands that contain PTMs and can thus provide valuable insights into pathogenesis and therapeutics of autoimmune diseases. A plethora of PTMs have been implicated in this process, and this review highlights their formation and identification.
Collapse
Affiliation(s)
- Cheryl F Lichti
- Department of Pathology and Immunology, Division of Immunobiology, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, St. Louis, MO 63110, USA.
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Division of Immunobiology, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Zeng WF, Zhou XX, Willems S, Ammar C, Wahle M, Bludau I, Voytik E, Strauss MT, Mann M. AlphaPeptDeep: a modular deep learning framework to predict peptide properties for proteomics. Nat Commun 2022; 13:7238. [PMID: 36433986 PMCID: PMC9700817 DOI: 10.1038/s41467-022-34904-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Machine learning and in particular deep learning (DL) are increasingly important in mass spectrometry (MS)-based proteomics. Recent DL models can predict the retention time, ion mobility and fragment intensities of a peptide just from the amino acid sequence with good accuracy. However, DL is a very rapidly developing field with new neural network architectures frequently appearing, which are challenging to incorporate for proteomics researchers. Here we introduce AlphaPeptDeep, a modular Python framework built on the PyTorch DL library that learns and predicts the properties of peptides ( https://github.com/MannLabs/alphapeptdeep ). It features a model shop that enables non-specialists to create models in just a few lines of code. AlphaPeptDeep represents post-translational modifications in a generic manner, even if only the chemical composition is known. Extensive use of transfer learning obviates the need for large data sets to refine models for particular experimental conditions. The AlphaPeptDeep models for predicting retention time, collisional cross sections and fragment intensities are at least on par with existing tools. Additional sequence-based properties can also be predicted by AlphaPeptDeep, as demonstrated with a HLA peptide prediction model to improve HLA peptide identification for data-independent acquisition ( https://github.com/MannLabs/PeptDeep-HLA ).
Collapse
Affiliation(s)
- Wen-Feng Zeng
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Xie-Xuan Zhou
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sander Willems
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Constantin Ammar
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maria Wahle
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Isabell Bludau
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Eugenia Voytik
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maximillian T Strauss
- Proteomics Program, NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Proteomics Program, NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Bernhardt M, Cruz-Garcia Y, Rech A, Meierjohann S, Erhard F, Schilling B, Schlosser A. Extending the Mass Spectrometry-Detectable Landscape of MHC Peptides by Use of Restricted Access Material. Anal Chem 2022; 94:14214-14222. [PMID: 36194871 DOI: 10.1021/acs.analchem.2c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry-based immunopeptidomics enables the comprehensive identification of major histocompatibility complex (MHC) peptides from a cell culture as well as from tissue or tumor samples and is applied for the identification of tumor-specific and viral T-cell epitopes. Although mass spectrometry is generally considered an "unbiased" method for MHC peptide identification, the physicochemical properties of MHC peptides can greatly influence their detectability. Here, we demonstrate that highly hydrophobic peptides are lost during sample preparation when C18 solid-phase extraction (SPE) is used for separating MHC peptides from proteins. To overcome this limitation, we established an optimized protocol involving restricted access material (RAM). Compared to C18-SPE, RAM-SPE improved the overall MHC peptide recovery and extended the landscape of mass spectrometry-detectable MHC peptides toward more hydrophobic peptides.
Collapse
Affiliation(s)
- Melissa Bernhardt
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, Julius Maximilians University Würzburg, 97080 Würzburg, Germany
| | - Yiliam Cruz-Garcia
- Department of Biochemistry and Molecular Biology, Julius Maximilians University Würzburg, 97080 Würzburg, Germany
| | - Anne Rech
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Svenja Meierjohann
- Institute of Pathology, Julius Maximilians University Würzburg, 97080 Würzburg, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius Maximilians University Würzburg, 97080 Würzburg, Germany
| | - Bastian Schilling
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, Julius Maximilians University Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
17
|
Minegishi Y, Kiyotani K, Nemoto K, Inoue Y, Haga Y, Fujii R, Saichi N, Nagayama S, Ueda K. Differential ion mobility mass spectrometry in immunopeptidomics identifies neoantigens carrying colorectal cancer driver mutations. Commun Biol 2022; 5:831. [PMID: 35982173 PMCID: PMC9388627 DOI: 10.1038/s42003-022-03807-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
Understanding the properties of human leukocyte antigen (HLA) peptides (immunopeptides) is essential for precision cancer medicine, while the direct identification of immunopeptides from small biopsies of clinical tissues by mass spectrometry (MS) is still confronted with technical challenges. Here, to overcome these hindrances, high-field asymmetric waveform ion mobility spectrometry (FAIMS) is introduced to conduct differential ion mobility (DIM)-MS by seamless gas-phase fractionation optimal for scarce samples. By established DIM-MS for immunopeptidomics analysis, on average, 42.9 mg of normal and tumor colorectal tissues from identical patients (n = 17) were analyzed, and on average 4921 immunopeptides were identified. Among these 44,815 unique immunopeptides, two neoantigens, KRAS-G12V and CPPED1-R228Q, were identified. These neoantigens were confirmed by synthetic peptides through targeted MS in parallel reaction monitoring (PRM) mode. Comparison of the tissue-based personal immunopeptidome revealed tumor-specific processing of immunopeptides. Since the direct identification of neoantigens from tumor tissues suggested that more potential neoantigens have yet to be identified, we screened cell lines with known oncogenic KRAS mutations and identified 2 more neoantigens that carry KRAS-G12V. These results indicated that the established FAIMS-assisted DIM-MS is effective in the identification of immunopeptides and potential recurrent neoantigens directly from scarce samples such as clinical tissues.
Collapse
Affiliation(s)
- Yuriko Minegishi
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensaku Nemoto
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | - Yoshimi Haga
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Risa Fujii
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Naomi Saichi
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoshi Nagayama
- Development of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
18
|
Prašnikar E, Perdih A, Borišek J. What a Difference an Amino Acid Makes: An All-Atom Simulation Study of Nonameric Peptides in Inhibitory HLA-E/NKG2A/CD94 Immune Complexes. Front Pharmacol 2022; 13:925427. [PMID: 35991867 PMCID: PMC9385950 DOI: 10.3389/fphar.2022.925427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
MHC class I antigen E (HLA-E), a ligand for the inhibitory NKG2A/CD94 receptor of the immune system, is responsible for evading the immune surveillance in several settings, including senescent cell accumulation and tumor persistence. The formation of this ligand-receptor interaction promotes the inhibition of the cytolytic action of immune system natural killer (NK) cells and CD8+ T-cells expressing this receptor. The final outcome of the HLA-E/NKG2A/CD94 interaction on target cells is also highly dependent on the identity of the nonameric peptide incorporated into the HLA-E ligand. To better understand the role played by a nonameric peptide in these immune complexes, we performed a series of multi-microsecond all-atom molecular dynamics simulations. We generated natural and alternative variants of the nonameric peptide bound to the HLA-E ligand alone or in the HLA-E/NKG2A/CD94 complexes. A systematic study of molecular recognition between HLA-E and peptides led to the development of new variants that differ at the strategic 6th position (P6) of the peptide and have favorable in silico properties comparable to those of natural binding peptides. Further examination of a selected subset of peptides in full complexes revealed a new variant that, according to our previously derived atomistic model, can interfere with the signal transduction via HLA-E/NKG2A/CD94 and thus prevent the target cell from evading immune clearance by NK and CD8+ T-cells. These simulations provide an atomistic picture of how a small change in amino acid sequence can lead to a profound effect on binding and molecular recognition. Furthermore, our study also provides new data on the peptide interaction motifs as well as the energetic and conformational properties of the binding interface, laying the structure-based foundation for future development of potential therapeutic peptides, peptidomimetics, or even small molecules that would bind to the HLA-E ligand and abrogate NKG2A/CD94 recognition. Such external intervention would be useful in the emerging field of targeting senescent cells in a variety of age-related diseases, as well as in novel cancer immunotherapies.
Collapse
Affiliation(s)
- Eva Prašnikar
- Theory Department, Laboratory for Chemical Informatics, National Institute of Chemistry, Ljubljana, Slovenia
- Faculty of Medicine, Graduate School of Biomedicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Perdih
- Theory Department, Laboratory for Computational Biochemistry and Drug Design, National Institute of Chemistry, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Andrej Perdih, ; Jure Borišek,
| | - Jure Borišek
- Theory Department, Laboratory for Chemical Informatics, National Institute of Chemistry, Ljubljana, Slovenia
- *Correspondence: Andrej Perdih, ; Jure Borišek,
| |
Collapse
|
19
|
Illing PT, Ramarathinam SH, Purcell AW. New insights and approaches for analyses of immunopeptidomes. Curr Opin Immunol 2022; 77:102216. [PMID: 35716458 DOI: 10.1016/j.coi.2022.102216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022]
Abstract
Human leucocyte antigen (HLA) molecules play a key role in health and disease by presenting antigen to T-lymphocytes for immunosurveillance. Immunopeptidomics involves the study of the collection of peptides presented within the antigen-binding groove of HLA molecules. Identifying their nature and diversity is crucial to understanding immunosurveillance especially during infection or for the recognition and potential eradication of tumours. This review discusses recent advances in the isolation, identification, and quantitation of these peptide antigens. New informatics approaches and databases have shed light on the extent of peptide antigens derived from unconventional sources including peptides derived from transcripts associated with frame shifts, long noncoding RNA, incorrectly annotated untranslated regions, post-translational modifications, and proteasomal splicing. Several challenges remain in successful analysis of immunopeptides, yet recent developments point to unexplored biology waiting to be unravelled.
Collapse
Affiliation(s)
- Patricia T Illing
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Sri H Ramarathinam
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
20
|
Development of Cancer Immunotherapies. Cancer Treat Res 2022; 183:1-48. [PMID: 35551655 DOI: 10.1007/978-3-030-96376-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cancer immunotherapy, or the utilization of components of the immune system to target and eliminate cancer, has become a highly active area of research in the past several decades and a common treatment strategy for several cancer types. The concept of harnessing the immune system for this purpose originated over 100 years ago when a physician by the name of William Coley successfully treated several of his cancer patients with a combination of live and attenuated bacteria, later known as "Coley's Toxins", after observing a subset of prior patients enter remission following their diagnosis with the common bacterial infection, erysipelas. However, it was not until late in the twentieth century that cancer immunotherapies were developed for widespread use, thereby transforming the treatment landscape of numerous cancer types. Pivotal studies elucidating molecular and cellular functions of immune cells, such as the discovery of IL-2 and production of monoclonal antibodies, fostered the development of novel techniques for studying the immune system and ultimately the development and approval of several cancer immunotherapies by the United States Food and Drug Association in the 1980s and 1990s, including the tuberculosis vaccine-Bacillus Calmette-Guérin, IL-2, and the CD20-targeting monoclonal antibody. Approval of the first therapeutic cancer vaccine, Sipuleucel-T, for the treatment of metastatic castration-resistant prostate cancer and the groundbreaking success and approval of immune checkpoint inhibitors and chimeric antigen receptor T cell therapy in the last decade, have driven an explosion of interest in and pursuit of novel cancer immunotherapy strategies. A broad range of modalities ranging from antibodies to adoptive T cell therapies is under investigation for the generalized treatment of a broad spectrum of cancers as well as personalized medicine. This chapter will focus on the recent advances, current strategies, and future outlook of immunotherapy development for the treatment of cancer.
Collapse
|
21
|
Nielsen M, Ternette N, Barra C. The interdependence of machine learning and LC-MS approaches for an unbiased understanding of the cellular immunopeptidome. Expert Rev Proteomics 2022; 19:77-88. [PMID: 35390265 DOI: 10.1080/14789450.2022.2064278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The comprehensive collection of peptides presented by Major Histocompatibility Complex (MHC) molecules on the cell surface is collectively known as the immunopeptidome. The analysis and interpretation of such data sets holds great promise for furthering our understanding of basic immunology and adaptive immune activation and regulation, and for direct rational discovery of T cell antigens and the design of T-cell based therapeutics and vaccines. These applications are however challenged by the complex nature of immunopeptidome data. AREAS COVERED Here, we describe the benefits and shortcomings of applying liquid chromatography-tandem mass spectrometry (MS) to obtain large scale immunopeptidome data sets and illustrate how the accurate analysis and optimal interpretation of such data is reliant on the availability of refined and highly optimized machine learning approaches. EXPERT OPINION Further we demonstrate how the accuracy of immunoinformatics prediction methods within the field of MHC antigen presentation has benefited greatly from the availability of MS-immunopeptidomics data, and exemplify how optimal antigen discovery is best performed in a synergistic combination of MS experiments and such in silico models trained on large scale immunopeptidomics data.
Collapse
Affiliation(s)
- Morten Nielsen
- Department of Health technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Nicola Ternette
- Centre for Cellular and Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Carolina Barra
- Department of Health technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
22
|
Scull KE, Pandey K, Ramarathinam SH, Purcell AW. Immunopeptidogenomics: Harnessing RNA-Seq to Illuminate the Dark Immunopeptidome. Mol Cell Proteomics 2021; 20:100143. [PMID: 34509645 PMCID: PMC8724885 DOI: 10.1016/j.mcpro.2021.100143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
Human leukocyte antigen (HLA) molecules are cell-surface glycoproteins that present peptide antigens on the cell surface for surveillance by T lymphocytes, which contemporaneously seek signs of disease. Mass spectrometric analysis allows us to identify large numbers of these peptides (the immunopeptidome) following affinity purification of solubilized HLA-peptide complexes. However, in recent years, there has been a growing awareness of the "dark side" of the immunopeptidome: unconventional peptide epitopes, including neoepitopes, which elude detection by conventional search methods because their sequences are not present in reference protein databases (DBs). Here, we establish a bioinformatics workflow to aid identification of peptides generated by noncanonical translation of mRNA or by genome variants. The workflow incorporates both standard transcriptomics software and novel computer programs to produce cell line-specific protein DBs based on three-frame translation of the transcriptome. The final protein DB also includes sequences resulting from variants determined by variant calling on the same RNA-Seq data. We then searched our experimental data against both transcriptome-based and standard DBs using PEAKS Studio (Bioinformatics Solutions, Inc). Finally, further novel software helps to compare the various result sets arising for each sample, pinpoint putative genomic origins for unconventional sequences, and highlight potential neoepitopes. We applied the workflow to study the immunopeptidome of the acute myeloid leukemia cell line THP-1, using RNA-Seq and immunopeptidome data. We confidently identified over 14,000 peptides from three replicates of purified HLA peptides derived from THP-1 cells using the conventional UniProt human proteome. Using the transcriptome-based DB generated using our workflow, we recapitulated >85% of these and also identified 1029 unconventional peptides not explained by UniProt, including 16 sequences caused by nonsynonymous variants. Our workflow, which we term "immunopeptidogenomics," can provide DBs, which include pertinent unconventional sequences and allow neoepitope discovery, without becoming too large to search. Immunopeptidogenomics is a step toward unbiased search approaches that are needed to illuminate the dark side of the immunopeptidome.
Collapse
Affiliation(s)
- Katherine E Scull
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kirti Pandey
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sri H Ramarathinam
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
23
|
Hoek M, Demmers LC, Wu W, Heck AJR. Allotype-Specific Glycosylation and Cellular Localization of Human Leukocyte Antigen Class I Proteins. J Proteome Res 2021; 20:4518-4528. [PMID: 34415762 PMCID: PMC8419865 DOI: 10.1021/acs.jproteome.1c00466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Presentation of antigens
by human leukocyte antigen (HLA) complexes
at the cell surface is a key process in the immune response. The α-chain,
containing the peptide-binding groove, is one of the most polymorphic
proteins in the proteome. All HLA class I α-chains carry a conserved
N-glycosylation site, but little is known about its nature and function.
Here, we report an in-depth characterization of N-glycosylation features
of HLA class I molecules. We observe that different HLA-A α-chains
carry similar glycosylation, distinctly different from the HLA-B,
HLA-C, and HLA-F α-chains. Although HLA-A displays the broadest
variety of glycan characteristics, HLA-B α-chains carry mostly
mature glycans, and HLA-C and HLA-F α-chains carry predominantly
high-mannose glycans. We expected these glycosylation features to
be directly linked to cellular localization of the HLA complexes.
Indeed, analyzing HLA class I complexes from crude plasma and inner
membrane-enriched fractions confirmed that most HLA-B complexes can
be found at the plasma membrane, while most HLA-C and HLA-F molecules
reside in the endoplasmic reticulum and Golgi membrane, and HLA-A
molecules are more equally distributed over these cellular compartments.
This allotype-specific cellular distribution of HLA molecules should
be taken into account when analyzing peptide antigen presentation
by immunopeptidomics.
Collapse
Affiliation(s)
- Max Hoek
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Laura C Demmers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
24
|
Klaeger S, Apffel A, Clauser KR, Sarkizova S, Oliveira G, Rachimi S, Le PM, Tarren A, Chea V, Abelin JG, Braun DA, Ott PA, Keshishian H, Hacohen N, Keskin DB, Wu CJ, Carr SA. Optimized liquid and gas phase fractionation increases HLA-peptidome coverage for primary cell and tissue samples. Mol Cell Proteomics 2021; 20:100133. [PMID: 34391888 PMCID: PMC8724927 DOI: 10.1016/j.mcpro.2021.100133] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/08/2021] [Accepted: 08/01/2021] [Indexed: 12/20/2022] Open
Abstract
Mass spectrometry is the most effective method to directly identify peptides presented on HLA molecules. However, current standard approaches often use 500 million or more cells as input to achieve high coverage of the immunopeptidome and therefore these methods are not compatible with the often limited amounts of tissue available from clinical tumor samples. Here, we evaluated microscaled basic reversed-phase fractionation to separate HLA peptide samples off-line followed by ion mobility coupled to LC-MS/MS for analysis. The combination of these two separation methods enabled identification of 20% to 50% more peptides compared to samples analyzed without either prior fractionation or use of ion mobility alone. We demonstrate coverage of HLA immunopeptidomes with up to 8,107 distinct peptides starting with as few as 100 million cells. The increased sensitivity obtained using our methods can provide data useful to improve HLA binding prediction algorithms as well as to enable detection of clinically relevant epitopes such as neoantigens.
Collapse
Affiliation(s)
- Susan Klaeger
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Annie Apffel
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Phuong M Le
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anna Tarren
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Vipheaviny Chea
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - David A Braun
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Patrick A Ott
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Derin B Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA; Health Informatics Lab, Metropolitan College, Boston University, Boston, MA, USA
| | - Catherine J Wu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
25
|
Joyce S, Ternette N. Know thy immune self and non-self: Proteomics informs on the expanse of self and non-self, and how and where they arise. Proteomics 2021; 21:e2000143. [PMID: 34310018 PMCID: PMC8865197 DOI: 10.1002/pmic.202000143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022]
Abstract
T cells play an important role in the adaptive immune response to a variety of infections and cancers. Initiation of a T cell mediated immune response requires antigen recognition in a process termed MHC (major histocompatibility complex) restri ction. A T cell antigen is a composite structure made up of a peptide fragment bound within the antigen‐binding groove of an MHC‐encoded class I or class II molecule. Insight into the precise composition and biology of self and non‐self immunopeptidomes is essential to harness T cell mediated immunity to prevent, treat, or cure infectious diseases and cancers. T cell antigen discovery is an arduous task! The pioneering work in the early 1990s has made large‐scale T cell antigen discovery possible. Thus, advancements in mass spectrometry coupled with proteomics and genomics technologies make possible T cell antigen discovery with ease, accuracy, and sensitivity. Yet we have only begun to understand the breadth and the depth of self and non‐self immunopeptidomes because the molecular biology of the cell continues to surprise us with new secrets directly related to the source, and the processing and presentation of MHC ligands. Focused on MHC class I molecules, this review, therefore, provides a brief historic account of T cell antigen discovery and, against a backdrop of key advances in molecular cell biologic processes, elaborates on how proteogenomics approaches have revolutionised the field.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System and the Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicola Ternette
- Centre for Cellular and Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Juanes-Velasco P, Landeira-Viñuela A, Acebes-Fernandez V, Hernández ÁP, Garcia-Vaquero ML, Arias-Hidalgo C, Bareke H, Montalvillo E, Gongora R, Fuentes M. Deciphering Human Leukocyte Antigen Susceptibility Maps From Immunopeptidomics Characterization in Oncology and Infections. Front Cell Infect Microbiol 2021; 11:642583. [PMID: 34123866 PMCID: PMC8195621 DOI: 10.3389/fcimb.2021.642583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic variability across the three major histocompatibility complex (MHC) class I genes (human leukocyte antigen [HLA] A, B, and C) may affect susceptibility to many diseases such as cancer, auto-immune or infectious diseases. Individual genetic variation may help to explain different immune responses to microorganisms across a population. HLA typing can be fast and inexpensive; however, deciphering peptides loaded on MHC-I and II which are presented to T cells, require the design and development of high-sensitivity methodological approaches and subsequently databases. Hence, these novel strategies and databases could help in the generation of vaccines using these potential immunogenic peptides and in identifying high-risk HLA types to be prioritized for vaccination programs. Herein, the recent developments and approaches, in this field, focusing on the identification of immunogenic peptides have been reviewed and the next steps to promote their translation into biomedical and clinical practice are discussed.
Collapse
Affiliation(s)
- Pablo Juanes-Velasco
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Alicia Landeira-Viñuela
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Vanessa Acebes-Fernandez
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Ángela-Patricia Hernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Marina L. Garcia-Vaquero
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Carlota Arias-Hidalgo
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Halin Bareke
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Enrique Montalvillo
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Rafael Gongora
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Manuel Fuentes
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| |
Collapse
|
27
|
Pandey K, Ramarathinam SH, Purcell AW. Isolation of HLA Bound Peptides by Immunoaffinity Capture and Identification by Mass Spectrometry. Curr Protoc 2021; 1:e92. [PMID: 33769717 DOI: 10.1002/cpz1.92] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article describes the purification of HLA-bound peptides and their subsequent sequencing by mass spectrometry. These methods can be used for both HLA class I and class II molecules and can be adapted to different species depending on the availability of specific antibodies. Peptides can be successfully isolated from a variety of sample types, including in vitro cultured cells and primary tissues. The method involves the affinity capture of HLA-peptide complexes and separation of peptides from HLA heavy chains, followed by tailored interrogation by mass spectrometry to take into account the non-tryptic nature of endogenously derived HLA-bound peptides. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparation of immunoaffinity column Alternate Protocol 1: Preparation of microscale immunoaffinity column Basic Protocol 2: Generation of cell lysate and HLA immunoaffinity purification Alternate Protocol 2: Microscale immunoaffinity purification Basic Protocol 3: Separation of HLA peptides by reverse-phase high-performance liquid chromatography (RP-HPLC) Alternate Protocol 3: Isolation of HLA peptides using molecular weight cutoff (MWCO) filter Basic Protocol 4: Mass spectrometry and data analysis.
Collapse
Affiliation(s)
- Kirti Pandey
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sri H Ramarathinam
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|