1
|
Li K, Chen S, Wang K, Wang Y, Xue L, Ye Y, Fang Z, Lyu J, Zhu H, Li Y, Yu T, Yang F, Zhang X, Guo S, Ruan C, Zhou J, Wang Q, Dong M, Luo C, Ye M. A peptide-centric local stability assay enables proteome-scale identification of the protein targets and binding regions of diverse ligands. Nat Methods 2024:10.1038/s41592-024-02553-7. [PMID: 39658593 DOI: 10.1038/s41592-024-02553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/30/2024] [Indexed: 12/12/2024]
Abstract
By using a limited-proteolysis strategy that employs a large amount of trypsin to generate peptides directly from native proteins, we found that ligand-induced protein local stability shifts can be sensitively detected on a proteome-wide scale. This enabled us to develop the peptide-centric local stability assay, a modification-free approach that achieves unprecedented sensitivity in proteome-wide target identification and binding-region determination. We demonstrate the broad applications of the peptide-centric local stability assay by investigating interactions across various biological contexts.
Collapse
Affiliation(s)
- Kejia Li
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Shijie Chen
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Keyun Wang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Yan Wang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Lianji Xue
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuying Ye
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Fang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiawen Lyu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Haiyang Zhu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Li
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Ting Yu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Yang
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaolei Zhang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Siqi Guo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chengfei Ruan
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiahua Zhou
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Wang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingming Dong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- School of Pharmacy, Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Mingliang Ye
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Van Vranken JG, Li J, Mintseris J, Wei TY, Sniezek CM, Gadzuk-Shea M, Gygi SP, Schweppe DK. Large-scale characterization of drug mechanism of action using proteome-wide thermal shift assays. eLife 2024; 13:RP95595. [PMID: 39526730 PMCID: PMC11554310 DOI: 10.7554/elife.95595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
In response to an ever-increasing demand of new small molecules therapeutics, numerous chemical and genetic tools have been developed to interrogate compound mechanism of action. Owing to its ability to approximate compound-dependent changes in thermal stability, the proteome-wide thermal shift assay has emerged as a powerful tool in this arsenal. The most recent iterations have drastically improved the overall efficiency of these assays, providing an opportunity to screen compounds at a previously unprecedented rate. Taking advantage of this advance, we quantified more than one million thermal stability measurements in response to multiple classes of therapeutic and tool compounds (96 compounds in living cells and 70 compounds in lysates). When interrogating the dataset as a whole, approximately 80% of compounds (with quantifiable targets) caused a significant change in the thermal stability of an annotated target. There was also a wealth of evidence portending off-target engagement despite the extensive use of the compounds in the laboratory and/or clinic. Finally, the combined application of cell- and lysate-based assays, aided in the classification of primary (direct ligand binding) and secondary (indirect) changes in thermal stability. Overall, this study highlights the value of these assays in the drug development process by affording an unbiased and reliable assessment of compound mechanism of action.
Collapse
Affiliation(s)
| | - Jiaming Li
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| | - Julian Mintseris
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| | - Ting-Yu Wei
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| | | | - Meagan Gadzuk-Shea
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| | - Devin K Schweppe
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| |
Collapse
|
3
|
Batth TS, Locard-Paulet M, Doncheva NT, Lopez Mendez B, Jensen LJ, Olsen JV. Streamlined analysis of drug targets by proteome integral solubility alteration indicates organ-specific engagement. Nat Commun 2024; 15:8923. [PMID: 39414818 PMCID: PMC11484808 DOI: 10.1038/s41467-024-53240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Proteins are the primary targets of almost all small molecule drugs. However, even the most selectively designed drugs can potentially target several unknown proteins. Identification of potential drug targets can facilitate design of new drugs and repurposing of existing ones. Current state-of-the-art proteomics methodologies enable screening of thousands of proteins against a limited number of drug molecules. Here we report the development of a label-free quantitative proteomics approach that enables proteome-wide screening of small organic molecules in a scalable, reproducible, and rapid manner by streamlining the proteome integral solubility alteration (PISA) assay. We used rat organs ex-vivo to determine organ specific targets of medical drugs and enzyme inhibitors to identify drug targets for common drugs such as Ibuprofen. Finally, global drug profiling revealed overarching trends of how small molecules affect the proteome through either direct or indirect protein interactions.
Collapse
Affiliation(s)
- Tanveer Singh Batth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| | - Marie Locard-Paulet
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Nadezhda T Doncheva
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Blanca Lopez Mendez
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Velgaard Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Zhang L, Wang Y, Zheng C, Zhou Z, Chen Z. Cellular thermal shift assay: an approach to identify and assess protein target engagement. Expert Rev Proteomics 2024; 21:387-400. [PMID: 39317941 DOI: 10.1080/14789450.2024.2406785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION A comprehensive and global knowledge of protein target engagement is of vital importance for mechanistic studies and in drug development. Since its initial introduction, the cellular thermal shift assay (CETSA) has proven to be a reliable and flexible technique that can be widely applied to multiple contexts and has profound applications in facilitating the identification and assessment of protein target engagement. AREAS COVERED This review introduces the principle of CETSA, elaborates on western blot-based CETSA and MS-based thermal proteome profiling (TPP) as well as the major applications and prospects of these approaches. EXPERT OPINION CETSA primarily evaluates a given ligand binding to a particular target protein in cells and tissues with the protein thermal stabilities analyzed by western blot. When coupling mass spectrometry with CETSA, thermal proteome profiling allows simultaneous proteome-wide experiment that greatly increased the efficiency of target engagement evaluation, and serves as a promising strategy to identify protein targets and off-targets as well as protein-protein interactions to uncover the biological effects. The CETSA approaches have broad applications and potentials in drug development and clinical research.
Collapse
Affiliation(s)
- Liying Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Chang Zheng
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zihan Zhou
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhe Chen
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
5
|
Le Sueur C, Rattray M, Savitski M. GPMelt: A hierarchical Gaussian process framework to explore the dark meltome of thermal proteome profiling experiments. PLoS Comput Biol 2024; 20:e1011632. [PMID: 39331673 PMCID: PMC11463780 DOI: 10.1371/journal.pcbi.1011632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/09/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024] Open
Abstract
Thermal proteome profiling (TPP) is a proteome wide technology that enables unbiased detection of protein drug interactions as well as changes in post-translational state of proteins between different biological conditions. Statistical analysis of temperature range TPP (TPP-TR) datasets relies on comparing protein melting curves, describing the amount of non-denatured proteins as a function of temperature, between different conditions (e.g. presence or absence of a drug). However, state-of-the-art models are restricted to sigmoidal melting behaviours while unconventional melting curves, representing up to 50% of TPP-TR datasets, have recently been shown to carry important biological information. We present a novel statistical framework, based on hierarchical Gaussian process models and named GPMelt, to make TPP-TR datasets analysis unbiased with respect to the melting profiles of proteins. GPMelt scales to multiple conditions, and extension of the model to deeper hierarchies (i.e. with additional sub-levels) allows to deal with complex TPP-TR protocols. Collectively, our statistical framework extends the analysis of TPP-TR datasets for both protein and peptide level melting curves, offering access to thousands of previously excluded melting curves and thus substantially increasing the coverage and the ability of TPP to uncover new biology.
Collapse
Affiliation(s)
- Cecile Le Sueur
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Magnus Rattray
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mikhail Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
6
|
Cheng X, Yang X, Guan Y, Feng Y. ERT-GFAN: A multimodal drug-target interaction prediction model based on molecular biology and knowledge-enhanced attention mechanism. Comput Biol Med 2024; 180:109012. [PMID: 39153394 DOI: 10.1016/j.compbiomed.2024.109012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
In drug discovery, precisely identifying drug-target interactions is crucial for finding new drugs and understanding drug mechanisms. Evolving drug/target heterogeneous data presents challenges in obtaining multimodal representation in drug-target prediction(DTI). To deal with this, we propose 'ERT-GFAN', a multimodal drug-target interaction prediction model inspired by molecular biology. Firstly, it integrates bio-inspired principles to obtain structure feature of drugs and targets using Extended Connectivity Fingerprints(ECFP). Simultaneously, the knowledge graph embedding model RotatE is employed to discover the interaction feature of drug-target pairs. Subsequently, Transformer is utilized to refine the contextual neighborhood features from the obtained structure feature and interaction features, and multi-modal high-dimensional fusion features of the three-modal information constructed. Finally, the final DTI prediction results are outputted by integrating the multimodal fusion features into a graphical high-dimensional fusion feature attention network (GFAN) using our innovative multimodal high-dimensional fusion feature attention. This multimodal approach offers a comprehensive understanding of drug-target interactions, addressing challenges in complex knowledge graphs. By combining structure feature, interaction feature, and contextual neighborhood features, 'ERT-GFAN' excels in predicting DTI. Empirical evaluations on three datasets demonstrate our method's superior performance, with AUC of 0.9739, 0.9862, and 0.9667, AUPR of 0.9598, 0.9789, and 0.9750, and Mean Reciprocal Rank(MRR) of 0.7386, 0.7035, and 0.7133. Ablation studies show over a 5% improvement in predictive performance compared to baseline unimodal and bimodal models. These results, along with detailed case studies, highlight the efficacy and robustness of our approach.
Collapse
Affiliation(s)
- Xiaoqing Cheng
- College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China.
| | - Xixin Yang
- College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China; School of Automation, Qingdao University, Qingdao, 266071, China.
| | - Yuanlin Guan
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, 266071, China; Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao University of Technology, Qingdao, 266071, China
| | - Yihan Feng
- College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
7
|
Picco G, Rao Y, Al Saedi A, Lee Y, Vieira SF, Bhosle S, May K, Herranz-Ors C, Walker SJ, Shenje R, Dincer C, Gibson F, Banerjee R, Hewitson Z, Werner T, Cottom JE, Peng Y, Deng N, Zhang Y, Nartey E, Nickels L, Landis P, Conticelli D, McCarten K, Bush J, Sharma M, Lightfoot H, House D, Milford E, Grant EK, Glogowski MP, Wagner CD, Bantscheff M, Rutkowska-Klute A, Zappacosta F, Pettinger J, Barthorpe S, Eberl HC, Jones BT, Schneck JL, Murphy DJ, Voest EE, Taygerly JP, DeMartino MP, Coelho MA, Houseley J, Sharma G, Schwartz B, Garnett MJ. Novel WRN Helicase Inhibitors Selectively Target Microsatellite-Unstable Cancer Cells. Cancer Discov 2024; 14:1457-1475. [PMID: 38587317 PMCID: PMC7616858 DOI: 10.1158/2159-8290.cd-24-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Microsatellite-unstable (MSI) cancers require WRN helicase to resolve replication stress due to expanded DNA (TA)n dinucleotide repeats. WRN is a promising synthetic lethal target for MSI tumors, and WRN inhibitors are in development. In this study, we used CRISPR-Cas9 base editing to map WRN residues critical for MSI cells, validating the helicase domain as the primary drug target. Fragment-based screening led to the development of potent and highly selective WRN helicase covalent inhibitors. These compounds selectively suppressed MSI model growth in vitro and in vivo by mimicking WRN loss, inducing DNA double-strand breaks at expanded TA repeats and DNA damage. Assessment of biomarkers in preclinical models linked TA-repeat expansions and mismatch repair alterations to compound activity. Efficacy was confirmed in immunotherapy-resistant organoids and patient-derived xenograft models. The discovery of potent, selective covalent WRN inhibitors provides proof of concept for synthetic lethal targeting of WRN in MSI cancer and tools to dissect WRN biology. Significance: We report the discovery and characterization of potent, selective WRN helicase inhibitors for MSI cancer treatment, with biomarker analysis and evaluation of efficacy in vivo and in immunotherapy-refractory preclinical models. These findings pave the way to translate WRN inhibition into MSI cancer therapies and provide tools to investigate WRN biology. See related commentary by Wainberg, p. 1369.
Collapse
Affiliation(s)
| | | | | | - Yang Lee
- GSK, Upper Providence, PA, US 19426
| | | | | | - Kieron May
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Cell Model Network UK Group
- Wellcome Sanger Institute, Cambridge, UK
- GSK, Upper Providence, PA, US 19426
- GSK, Stevenage, UK, SG1 2NY
- GSK, 69117 Heidelberg, Germany
- GSK, Cambridge, MA, US 02139
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Candiolo Cancer Institute, Italy
- IDEAYA Biosciences, South San Francisco, CA 94080
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | - Emile E. Voest
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
8
|
George AL, Dueñas ME, Marín-Rubio JL, Trost M. Stability-based approaches in chemoproteomics. Expert Rev Mol Med 2024; 26:e6. [PMID: 38604802 PMCID: PMC11062140 DOI: 10.1017/erm.2024.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 04/13/2024]
Abstract
Target deconvolution can help understand how compounds exert therapeutic effects and can accelerate drug discovery by helping optimise safety and efficacy, revealing mechanisms of action, anticipate off-target effects and identifying opportunities for therapeutic expansion. Chemoproteomics, a combination of chemical biology with mass spectrometry has transformed target deconvolution. This review discusses modification-free chemoproteomic approaches that leverage the change in protein thermodynamics induced by small molecule ligand binding. Unlike modification-based methods relying on enriching specific protein targets, these approaches offer proteome-wide evaluations, driven by advancements in mass spectrometry sensitivity, increasing proteome coverage and quantitation methods. Advances in methods based on denaturation/precipitation by thermal or chemical denaturation, or by protease degradation are evaluated, emphasising the evolving landscape of chemoproteomics and its potential impact on future drug-development strategies.
Collapse
Affiliation(s)
- Amy L. George
- Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Maria Emilia Dueñas
- Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - José Luis Marín-Rubio
- Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Matthias Trost
- Laboratory for Biomedical Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| |
Collapse
|
9
|
Burtscher ML, Gade S, Garrido-Rodriguez M, Rutkowska A, Werner T, Eberl HC, Petretich M, Knopf N, Zirngibl K, Grandi P, Bergamini G, Bantscheff M, Fälth-Savitski M, Saez-Rodriguez J. Network integration of thermal proteome profiling with multi-omics data decodes PARP inhibition. Mol Syst Biol 2024; 20:458-474. [PMID: 38454145 PMCID: PMC10987601 DOI: 10.1038/s44320-024-00025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
Complex disease phenotypes often span multiple molecular processes. Functional characterization of these processes can shed light on disease mechanisms and drug effects. Thermal Proteome Profiling (TPP) is a mass-spectrometry (MS) based technique assessing changes in thermal protein stability that can serve as proxies of functional protein changes. These unique insights of TPP can complement those obtained by other omics technologies. Here, we show how TPP can be integrated with phosphoproteomics and transcriptomics in a network-based approach using COSMOS, a multi-omics integration framework, to provide an integrated view of transcription factors, kinases and proteins with altered thermal stability. This allowed us to recover consequences of Poly (ADP-ribose) polymerase (PARP) inhibition in ovarian cancer cells on cell cycle and DNA damage response as well as interferon and hippo signaling. We found that TPP offers a complementary perspective to other omics data modalities, and that its integration allowed us to obtain a more complete molecular overview of PARP inhibition. We anticipate that this strategy can be used to integrate functional proteomics with other omics to study molecular processes.
Collapse
Affiliation(s)
- Mira L Burtscher
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
- Cellzome, a GSK company, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | | | - Martin Garrido-Rodriguez
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | - Katharina Zirngibl
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
- Cellzome, a GSK company, Heidelberg, Germany
| | | | | | | | | | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany.
| |
Collapse
|
10
|
Figueroa-Navedo AM, Ivanov AR. Experimental and data analysis advances in thermal proteome profiling. CELL REPORTS METHODS 2024; 4:100717. [PMID: 38412830 PMCID: PMC10921035 DOI: 10.1016/j.crmeth.2024.100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/17/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Method development for mass spectrometry (MS)-based thermal shift proteomic assays have advanced to probe small molecules with known and unknown protein-ligand interaction mechanisms and specificity, which is predominantly used in characterization of drug-protein interactions. In the discovery of target and off-target protein-ligand interactions, a thorough investigation of method development and their impact on the sensitivity and accuracy of protein-small molecule and protein-protein interactions is warranted. In this review, we discuss areas of improvement at each stage of thermal proteome profiling data analysis that includes processing of MS-based data, method development, and their effect on the overall quality of thermal proteome profiles. We also overview the optimization of experimental strategies and prioritization of an increased number of independent biological replicates over the number of evaluated temperatures.
Collapse
Affiliation(s)
- Amanda M Figueroa-Navedo
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Wu Q, Zheng J, Sui X, Fu C, Cui X, Liao B, Ji H, Luo Y, He A, Lu X, Xue X, Tan CSH, Tian R. High-throughput drug target discovery using a fully automated proteomics sample preparation platform. Chem Sci 2024; 15:2833-2847. [PMID: 38404368 PMCID: PMC10882491 DOI: 10.1039/d3sc05937e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/19/2023] [Indexed: 02/27/2024] Open
Abstract
Drug development is plagued by inefficiency and high costs due to issues such as inadequate drug efficacy and unexpected toxicity. Mass spectrometry (MS)-based proteomics, particularly isobaric quantitative proteomics, offers a solution to unveil resistance mechanisms and unforeseen side effects related to off-targeting pathways. Thermal proteome profiling (TPP) has gained popularity for drug target identification at the proteome scale. However, it involves experiments with multiple temperature points, resulting in numerous samples and considerable variability in large-scale TPP analysis. We propose a high-throughput drug target discovery workflow that integrates single-temperature TPP, a fully automated proteomics sample preparation platform (autoSISPROT), and data independent acquisition (DIA) quantification. The autoSISPROT platform enables the simultaneous processing of 96 samples in less than 2.5 hours, achieving protein digestion, desalting, and optional TMT labeling (requires an additional 1 hour) with 96-channel all-in-tip operations. The results demonstrated excellent sample preparation performance with >94% digestion efficiency, >98% TMT labeling efficiency, and >0.9 intra- and inter-batch Pearson correlation coefficients. By automatically processing 87 samples, we identified both known targets and potential off-targets of 20 kinase inhibitors, affording over a 10-fold improvement in throughput compared to classical TPP. This fully automated workflow offers a high-throughput solution for proteomics sample preparation and drug target/off-target identification.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Jiangnan Zheng
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
- Southern University of Science and Technology, Guangming Advanced Research Institute Shenzhen 518055 China
| | - Xintong Sui
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Changying Fu
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Xiaozhen Cui
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Bin Liao
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Hongchao Ji
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Yang Luo
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - An He
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Xue Lu
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Xinyue Xue
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Chris Soon Heng Tan
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
- Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
- Southern University of Science and Technology, Guangming Advanced Research Institute Shenzhen 518055 China
| | - Ruijun Tian
- Department of Chemistry, School of Science, Southern University of Science and Technology Shenzhen 518055 China
- Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology 1088 Xueyuan Road Shenzhen 518055 China
- Southern University of Science and Technology, Guangming Advanced Research Institute Shenzhen 518055 China
| |
Collapse
|
12
|
Li Y, Lyu J, Wang Y, Ye M, Wang H. Ligand Modification-Free Methods for the Profiling of Protein-Environmental Chemical Interactions. Chem Res Toxicol 2024; 37:1-15. [PMID: 38146056 DOI: 10.1021/acs.chemrestox.3c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Adverse health outcomes caused by environmental chemicals are often initiated via their interactions with proteins. Essentially, one environmental chemical may interact with a number of proteins and/or a protein may interact with a multitude of environmental chemicals, forming an intricate interaction network. Omics-wide protein-environmental chemical interaction profiling (PECI) is of prominent importance for comprehensive understanding of these interaction networks, including the toxicity mechanisms of action (MoA), and for providing systematic chemical safety assessment. However, such information remains unknown for most environmental chemicals, partly due to their vast chemical diversity. In recent years, with the continuous efforts afforded, especially in mass spectrometry (MS) based omics technologies, several ligand modification-free methods have been developed, and new attention for systematic PECI profiling was gained. In this Review, we provide a comprehensive overview on these methodologies for the identification of ligand-protein interactions, including affinity interaction-based methods of affinity-driven purification, covalent modification profiling, and activity-based protein profiling (ABPP) in a competitive mode, physicochemical property changes assessment methods of ligand-directed nuclear magnetic resonance (ligand-directed NMR), MS integrated with equilibrium dialysis for the discovery of allostery systematically (MIDAS), thermal proteome profiling (TPP), limited proteolysis-coupled mass spectrometry (LiP-MS), stability of proteins from rates of oxidation (SPROX), and several intracellular downstream response characterization methods. We expect that the applications of these ligand modification-free technologies will drive a considerable increase in the number of PECI identified, facilitate unveiling the toxicological mechanisms, and ultimately contribute to systematic health risk assessment of environmental chemicals.
Collapse
Affiliation(s)
- Yanan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiawen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- State Key Laboratory of Medical Proteomics, Beijing, 102206, China
| | - Hailin Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
13
|
Shi Z, Ren Y, Li S, Hao P. Identifying drug targets with thermal proteome profiling using IBT-16plex. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9673. [PMID: 38073198 DOI: 10.1002/rcm.9673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023]
Abstract
RATIONALE Thermal proteome profiling (TPP) has been widely used for the identification of drug targets for several years, and TMTpro-16plex has recently been evaluated for TPP of vehicle- and drug-treated samples in a single labeling process to reduce missing values and save instrument time. A novel isobaric labeling reagent, IBT-16plex, was developed with slightly better performance in protein identification and quantification than the commercially available TMTpro-16plex. METHODS In this study, we applied the newly developed IBT-16plex for target identification of methotrexate and panobinostat using TPP. RESULTS The known targets of these two drugs were successfully identified with elevated melting temperatures, and some known off-targets and potential new off-targets were also identified. CONCLUSIONS IBT-16plex can be a cost-effective replacement for TMTpro-16plex for TPP applications.
Collapse
Affiliation(s)
- Zhaomei Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Ren
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuwei Li
- Nanjing Apollomics Biotech Inc., Nanjing, China
- China Pharmaceutical University, Nanjing, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
14
|
Jin J, Liang X, Bi W, Liu R, Zhang S, He Y, Xie Q, Liu S, Xiao JC, Zhang P. Identification of a Difluorinated Alkoxy Sulfonyl Chloride as a Novel Antitumor Agent for Hepatocellular Carcinoma through Activating Fumarate Hydratase Activity. Pharmaceuticals (Basel) 2023; 16:1705. [PMID: 38139831 PMCID: PMC10748328 DOI: 10.3390/ph16121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Fenofibrate is known as a lipid-lowering drug. Although previous studies have reported that fenofibrate exhibits potential antitumor activities, IC50 values of fenofibrate could be as high as 200 μM. Therefore, we investigated the antitumor activities of six synthesized fenofibrate derivatives. We discovered that one compound, SIOC-XJC-SF02, showed significant antiproliferative activity on human hepatocellular carcinoma (HCC) HCCLM3 cells and HepG2 cells (the IC50 values were 4.011 μM and 10.908 μM, respectively). We also found this compound could inhibit the migration of human HCC cells. Transmission electron microscope and flow cytometry assays demonstrated that this compound could induce apoptosis of human HCC cells. The potential binding sites of this compound acting on human HCC cells were identified by mass spectrometry-cellular thermal shift assay (MS-CETSA). Molecular docking, Western blot, and enzyme activity assay-validated binding sites in human HCC cells. The results showed that fumarate hydratase may be a potential binding site of this compound, exerting antitumor effects. A xenograft model in nude mice demonstrated the anti-liver cancer activity and the mechanism of action of this compound. These findings indicated that the antitumor effect of this compound may act via activating fumarate hydratase, and this compound may be a promising antitumor candidate for further investigation.
Collapse
Affiliation(s)
- Jin Jin
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.); (W.B.); (R.L.); (Q.X.); (S.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xujun Liang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.); (W.B.); (R.L.); (Q.X.); (S.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wu Bi
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.); (W.B.); (R.L.); (Q.X.); (S.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ruijie Liu
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.); (W.B.); (R.L.); (Q.X.); (S.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Sai Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.); (W.B.); (R.L.); (Q.X.); (S.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yi He
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.); (W.B.); (R.L.); (Q.X.); (S.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qingming Xie
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.); (W.B.); (R.L.); (Q.X.); (S.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shilei Liu
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.); (W.B.); (R.L.); (Q.X.); (S.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Pengfei Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.); (W.B.); (R.L.); (Q.X.); (S.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
15
|
Sun S, Zheng Z, Wang J, Li F, He A, Lai K, Zhang S, Lu JH, Tian R, Tan CSH. Improved in situ characterization of protein complex dynamics at scale with thermal proximity co-aggregation. Nat Commun 2023; 14:7697. [PMID: 38001062 PMCID: PMC10673876 DOI: 10.1038/s41467-023-43526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Cellular activities are carried out vastly by protein complexes but large repertoire of protein complexes remains functionally uncharacterized which necessitate new strategies to delineate their roles in various cellular processes and diseases. Thermal proximity co-aggregation (TPCA) is readily deployable to characterize protein complex dynamics in situ and at scale. We develop a version termed Slim-TPCA that uses fewer temperatures increasing throughputs by over 3X, with new scoring metrics and statistical evaluation that result in minimal compromise in coverage and detect more relevant complexes. Less samples are needed, batch effects are minimized while statistical evaluation cost is reduced by two orders of magnitude. We applied Slim-TPCA to profile K562 cells under different duration of glucose deprivation. More protein complexes are found dissociated, in accordance with the expected downregulation of most cellular activities, that include 55S ribosome and respiratory complexes in mitochondria revealing the utility of TPCA to study protein complexes in organelles. Protein complexes in protein transport and degradation are found increasingly assembled unveiling their involvement in metabolic reprogramming during glucose deprivation. In summary, Slim-TPCA is an efficient strategy for characterization of protein complexes at scale across cellular conditions, and is available as Python package at https://pypi.org/project/Slim-TPCA/ .
Collapse
Affiliation(s)
- Siyuan Sun
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhenxiang Zheng
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jun Wang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Fengming Li
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - An He
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Kunjia Lai
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shuang Zhang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, Macau SAR, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, Macau SAR, China
| | - Ruijun Tian
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Chris Soon Heng Tan
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
16
|
George AL, Sidgwick FR, Watt JE, Martin MP, Trost M, Marín-Rubio JL, Dueñas ME. Comparison of Quantitative Mass Spectrometric Methods for Drug Target Identification by Thermal Proteome Profiling. J Proteome Res 2023; 22:2629-2640. [PMID: 37439223 PMCID: PMC10407934 DOI: 10.1021/acs.jproteome.3c00111] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Indexed: 07/14/2023]
Abstract
Thermal proteome profiling (TPP) provides a powerful approach to studying proteome-wide interactions of small therapeutic molecules and their target and off-target proteins, complementing phenotypic-based drug screens. Detecting differences in thermal stability due to target engagement requires high quantitative accuracy and consistent detection. Isobaric tandem mass tags (TMTs) are used to multiplex samples and increase quantification precision in TPP analysis by data-dependent acquisition (DDA). However, advances in data-independent acquisition (DIA) can provide higher sensitivity and protein coverage with reduced costs and sample preparation steps. Herein, we explored the performance of different DIA-based label-free quantification approaches compared to TMT-DDA for thermal shift quantitation. Acute myeloid leukemia cells were treated with losmapimod, a known inhibitor of MAPK14 (p38α). Label-free DIA approaches, and particularly the library-free mode in DIA-NN, were comparable of TMT-DDA in their ability to detect target engagement of losmapimod with MAPK14 and one of its downstream targets, MAPKAPK3. Using DIA for thermal shift quantitation is a cost-effective alternative to labeled quantitation in the TPP pipeline.
Collapse
Affiliation(s)
- Amy L. George
- Laboratory
for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Frances R. Sidgwick
- Laboratory
for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Jessica E. Watt
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Mathew P. Martin
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Matthias Trost
- Laboratory
for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - José Luis Marín-Rubio
- Laboratory
for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Maria Emilia Dueñas
- Laboratory
for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, U.K.
| |
Collapse
|
17
|
Ye Y, Li K, Ma Y, Zhang X, Li Y, Yu T, Wang Y, Ye M. The Introduction of Detergents in Thermal Proteome Profiling Requires Lowering the Applied Temperatures for Efficient Target Protein Identification. Molecules 2023; 28:4859. [PMID: 37375414 DOI: 10.3390/molecules28124859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Although the use of detergents in thermal proteome profiling (TPP) has become a common practice to identify membrane protein targets in complex biological samples, surprisingly, there is no proteome-wide investigation into the impacts of detergent introduction on the target identification performance of TPP. In this study, we assessed the target identification performance of TPP in the presence of a commonly used non-ionic detergent or a zwitterionic detergent using a pan-kinase inhibitor staurosporine, our results showed that the addition of either of these detergents significantly impaired the identification performance of TPP at the optimal temperature for soluble target protein identification. Further investigation showed that detergents destabilized the proteome and increased protein precipitation. By lowering the applied temperature point, the target identification performance of TPP with detergents is significantly improved and is comparable to that in the absence of detergents. Our findings provide valuable insight into how to select the appropriate temperature range when detergents are used in TPP. In addition, our results also suggest that the combination of detergent and heat may serve as a novel precipitation-inducing force that can be applied for target protein identification.
Collapse
Affiliation(s)
- Yuying Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kejia Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanni Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolei Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Tu Y, Tan L, Tao H, Li Y, Liu H. CETSA and thermal proteome profiling strategies for target identification and drug discovery of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154862. [PMID: 37216761 DOI: 10.1016/j.phymed.2023.154862] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Monitoring target engagement at various stages of drug development is essential for natural product (NP)-based drug discovery and development. The cellular thermal shift assay (CETSA) developed in 2013 is a novel, broadly applicable, label-free biophysical assay based on the principle of ligand-induced thermal stabilization of target proteins, which enables direct assessment of drug-target engagement in physiologically relevant contexts, including intact cells, cell lysates and tissues. This review aims to provide an overview of the work principles of CETSA and its derivative strategies and their recent progress in protein target validation, target identification and drug lead discovery of NPs. METHODS A literature-based survey was conducted using the Web of Science and PubMed databases. The required information was reviewed and discussed to highlight the important role of CETSA-derived strategies in NP studies. RESULTS After nearly ten years of upgrading and evolution, CETSA has been mainly developed into three formats: classic Western blotting (WB)-CETSA for target validation, thermal proteome profiling (TPP, also known as MS-CETSA) for unbiased proteome-wide target identification, and high-throughput (HT)-CETSA for drug hit discovery and lead optimization. Importantly, the application possibilities of a variety of TPP approaches for the target discovery of bioactive NPs are highlighted and discussed, including TPP-temperature range (TPP-TR), TPP-compound concentration range (TPP-CCR), two-dimensional TPP (2D-TPP), cell surface-TPP (CS-TPP), simplified TPP (STPP), thermal stability shift-based fluorescence difference in 2D gel electrophoresis (TS-FITGE) and precipitate supported TPP (PSTPP). In addition, the key advantages, limitations and future outlook of CETSA strategies for NP studies are discussed. CONCLUSION The accumulation of CETSA-based data can significantly accelerate the elucidation of the mechanism of action and drug lead discovery of NPs, and provide strong evidence for NP treatment against certain diseases. The CETSA strategy will certainly bring a great return far beyond the initial investment and open up more possibilities for future NP-based drug research and development.
Collapse
Affiliation(s)
- Yanbei Tu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
19
|
Kurzawa N, Leo IR, Stahl M, Kunold E, Becher I, Audrey A, Mermelekas G, Huber W, Mateus A, Savitski MM, Jafari R. Deep thermal profiling for detection of functional proteoform groups. Nat Chem Biol 2023:10.1038/s41589-023-01284-8. [PMID: 36941476 PMCID: PMC10374440 DOI: 10.1038/s41589-023-01284-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/09/2023] [Indexed: 03/23/2023]
Abstract
The complexity of the functional proteome extends considerably beyond the coding genome, resulting in millions of proteoforms. Investigation of proteoforms and their functional roles is important to understand cellular physiology and its deregulation in diseases but challenging to perform systematically. Here we applied thermal proteome profiling with deep peptide coverage to detect functional proteoform groups in acute lymphoblastic leukemia cell lines with different cytogenetic aberrations. We detected 15,846 proteoforms, capturing differently spliced, cleaved and post-translationally modified proteins expressed from 9,290 genes. We identified differential co-aggregation of proteoform pairs and established links to disease biology. Moreover, we systematically made use of measured biophysical proteoform states to find specific biomarkers of drug sensitivity. Our approach, thus, provides a powerful and unique tool for systematic detection and functional annotation of proteoform groups.
Collapse
Affiliation(s)
- Nils Kurzawa
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Isabelle Rose Leo
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Matthias Stahl
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Elena Kunold
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Anastasia Audrey
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Georgios Mermelekas
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | - Rozbeh Jafari
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology Karolinska Institutet, Science for Life Laboratory, Solna, Sweden.
| |
Collapse
|
20
|
Sauer P, Bantscheff M. Thermal Proteome Profiling for Drug Target Identification and Probing of Protein States. Methods Mol Biol 2023; 2718:73-98. [PMID: 37665455 DOI: 10.1007/978-1-0716-3457-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Proteins are central drivers of physiological and pathological processes in the cell. Methods evaluating protein functional states are therefore vital to fundamental research as well as drug discovery. Thermal proteome profiling (TPP) to this date constitutes the only approach that permits examining protein states in live cells, under native conditions and at a proteome-wide scale. TPP harnesses ligand/perturbation-induced changes in protein thermal stability, which are monitored by multiplexed quantitative mass spectrometry. In this chapter, we describe a modular experimental workflow for TPP experiments using live cells or crude cell extracts. We provide the tools to perform different TPP formats, i.e., temperature range experiments, TPP-TR; isothermal compound titrations, TPP-CCR; and a combination thereof, 2D-TPP.
Collapse
Affiliation(s)
- Patricia Sauer
- Cellzome GmbH, GlaxoSmithKline (GSK), Heidelberg, Germany
| | | |
Collapse
|
21
|
Chana CK, Maisonneuve P, Posternak G, Grinberg NGA, Poirson J, Ona SM, Ceccarelli DF, Mader P, St-Cyr DJ, Pau V, Kurinov I, Tang X, Deng D, Cui W, Su W, Kuai L, Soll R, Tyers M, Röst HL, Batey RA, Taipale M, Gingras AC, Sicheri F. Discovery and Structural Characterization of Small Molecule Binders of the Human CTLH E3 Ligase Subunit GID4. J Med Chem 2022; 65:12725-12746. [PMID: 36117290 PMCID: PMC9574856 DOI: 10.1021/acs.jmedchem.2c00509] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Targeted protein
degradation (TPD) strategies exploit bivalent
small molecules to bridge substrate proteins to an E3 ubiquitin ligase
to induce substrate degradation. Few E3s have been explored as degradation
effectors due to a dearth of E3-binding small molecules. We show that
genetically induced recruitment to the GID4 subunit of the CTLH E3
complex induces protein degradation. An NMR-based fragment screen
followed by structure-guided analog elaboration identified two binders
of GID4, 16 and 67, with Kd values of 110 and 17 μM in vitro. A parallel DNA-encoded library (DEL) screen identified five binders
of GID4, the best of which, 88, had a Kd of 5.6 μM in vitro and an EC50 of 558 nM in cells with strong selectivity for GID4. X-ray
co-structure determination revealed the basis for GID4–small
molecule interactions. These results position GID4-CTLH as an E3 for
TPD and provide candidate scaffolds for high-affinity moieties that
bind GID4.
Collapse
Affiliation(s)
- Chetan K Chana
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Pierre Maisonneuve
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | - Ganna Posternak
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | - Nicolas G A Grinberg
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Juline Poirson
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Samara M Ona
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Derek F Ceccarelli
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | - Pavel Mader
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | | | - Victor Pau
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | - Igor Kurinov
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Argonne, Illinois 60439, United States
| | - Xiaojing Tang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | - Dongjing Deng
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Weiren Cui
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Wenji Su
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Letian Kuai
- WuXi AppTec, 55 Cambridge Parkway, 8th Floor, Cambridge, Massachusetts 02142, United States
| | - Richard Soll
- WuXi AppTec, 55 Cambridge Parkway, 8th Floor, Cambridge, Massachusetts 02142, United States
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, University of Montréal, Québec H3C 3J7, Canada
| | - Hannes L Röst
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| | - Robert A Batey
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
22
|
Marín-Rubio JL, Peltier-Heap RE, Dueñas ME, Heunis T, Dannoura A, Inns J, Scott J, Simpson AJ, Blair HJ, Heidenreich O, Allan JM, Watt JE, Martin MP, Saxty B, Trost M. A Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Assay Identifies Nilotinib as an Inhibitor of Inflammation in Acute Myeloid Leukemia. J Med Chem 2022; 65:12014-12030. [PMID: 36094045 PMCID: PMC9511480 DOI: 10.1021/acs.jmedchem.2c00671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Inflammatory responses are important in cancer, particularly
in the context of monocyte-rich aggressive myeloid neoplasm. We developed
a label-free cellular phenotypic drug discovery assay to identify
anti-inflammatory drugs in human monocytes derived from acute myeloid
leukemia (AML), by tracking several features ionizing from only 2500
cells using matrix-assisted laser desorption/ionization-time of flight
(MALDI-TOF) mass spectrometry. A proof-of-concept screen showed that
the BCR-ABL inhibitor nilotinib, but not the structurally similar
imatinib, blocks inflammatory responses. In order to identify the
cellular (off-)targets of nilotinib, we performed thermal proteome
profiling (TPP). Unlike imatinib, nilotinib and other later-generation
BCR-ABL inhibitors bind to p38α and inhibit the p38α-MK2/3
signaling axis, which suppressed pro-inflammatory cytokine expression,
cell adhesion, and innate immunity markers in activated monocytes
derived from AML. Thus, our study provides a tool for the discovery
of new anti-inflammatory drugs, which could contribute to the treatment
of inflammation in myeloid neoplasms and other diseases.
Collapse
Affiliation(s)
- José Luis Marín-Rubio
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Rachel E Peltier-Heap
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Maria Emilia Dueñas
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Tiaan Heunis
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK.,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Abeer Dannoura
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Joseph Inns
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Jonathan Scott
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - A John Simpson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK.,Respiratory Medicine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Helen J Blair
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - Olaf Heidenreich
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - James M Allan
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - Jessica E Watt
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Mathew P Martin
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Barbara Saxty
- LifeArc, SBC Open Innovation Campus, Stevenage SG1 2FX, UK
| | - Matthias Trost
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| |
Collapse
|
23
|
Abstract
Knowing that the drug candidate binds to its intended target is a vital part of drug discovery. Thus, several labeled and label-free methods have been developed to study target engagement. In recent years, the cellular thermal shift assay (CETSA) with its variations has been widely adapted to drug discovery workflows. Western blot–based CETSA is used primarily to validate the target binding of a molecule to its target protein whereas CETSA based on bead chemistry detection methods (CETSA HT) has been used to screen molecular libraries to find novel molecules binding to a pre-determined target. Mass spectrometry–based CETSA also known as thermal proteome profiling (TPP) has emerged as a powerful tool for target deconvolution and finding novel binding partners for old and novel molecules. With this technology, it is possible to probe thermal shifts among over 7,000 proteins from one sample and to identify the wanted target binding but also binding to unwanted off-targets known to cause adverse effects. In addition, this proteome-wide method can provide information on the biological process initiated by the ligand binding. The continued development of mass spectrometry labeling reagents, such as isobaric tandem mass tag technology (TMT) continues to increase the throughput of CETSA MS, allowing its use for structure–activity relationship (SAR) studies with a limited number of molecules. In this review, we discussed the differences between different label-free methods to study target engagement, but our focus was on CETSA and recent advances in the CETSA method.
Collapse
Affiliation(s)
- Tuomas Aleksi Tolvanen
- Division of Rheumatology, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden.,Pelago Bioscience AB, Solna, Sweden
| |
Collapse
|
24
|
Ruan C, Wang Y, Zhang X, Lyu J, Zhang N, Ma Y, Shi C, Qu G, Ye M. Matrix Thermal Shift Assay for Fast Construction of Multidimensional Ligand-Target Space. Anal Chem 2022; 94:6482-6490. [PMID: 35442643 DOI: 10.1021/acs.analchem.1c04627] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Existing thermal shift-based mass spectrometry approaches are able to identify target proteins without chemical modification of the ligand, but they are suffering from complicated workflows with limited throughput. Herein, we present a new thermal shift-based method, termed matrix thermal shift assay (mTSA), for fast deconvolution of ligand-binding targets and binding affinities at the proteome level. In mTSA, a sample matrix, treated horizontally with five different compound concentrations and vertically with five technical replicates of each condition, was denatured at a single temperature to induce protein precipitation, and then, data-independent acquisition was employed for quick protein quantification. Compared with previous thermal shift assays, the analysis throughput of mTSA was significantly improved, but the costs as well as efforts were reduced. More importantly, the matrix experiment design allowed simultaneous computation of the statistical significance and fitting of the dose-response profiles, which can be combined to enable a more accurate identification of target proteins, as well as reporting binding affinities between the ligand and individual targets. Using a pan-specific kinase inhibitor, staurosporine, we demonstrated a 36% improvement in screening sensitivity over the traditional thermal proteome profiling (TPP) and a comparable sensitivity with a latest two-dimensional TPP. Finally, mTSA was successfully applied to delineate the target landscape of perfluorooctanesulfonic acid (PFOS), a persistent organic pollutant that is hard to perform modification on, and revealed several potential targets that might account for the toxicities of PFOS.
Collapse
Affiliation(s)
- Chengfei Ruan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Xiaolei Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Jiawen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanni Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| |
Collapse
|
25
|
Ji H, Lu X, Zheng Z, Sun S, Tan CSH. ProSAP: a GUI software tool for statistical analysis and assessment of thermal stability data. Brief Bioinform 2022; 23:6542221. [PMID: 35246677 DOI: 10.1093/bib/bbac057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/18/2022] [Accepted: 02/04/2022] [Indexed: 11/14/2022] Open
Abstract
The Cellular Thermal Shift Assay (CETSA) plays an important role in drug-target identification, and statistical analysis is a crucial step significantly affecting conclusion. We put forward ProSAP (Protein Stability Analysis Pod), an open-source, cross-platform and user-friendly software tool, which provides multiple methods for thermal proteome profiling (TPP) analysis, nonparametric analysis (NPA), proteome integral solubility alteration and isothermal shift assay (iTSA). For testing the performance of ProSAP, we processed several datasets and compare the performance of different algorithms. Overall, TPP analysis is more accurate with fewer false positive targets, but NPA methods are flexible and free from parameters. For iTSA, edgeR and DESeq2 identify more true targets than t-test and Limma, but when it comes to ranking, the four methods show not much difference. ProSAP software is available at https://github.com/hcji/ProSAP and https://zenodo.org/record/5763315.
Collapse
Affiliation(s)
- Hongchao Ji
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhenxiang Zheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyuan Sun
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chris Soon Heng Tan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
26
|
Van Vranken JG, Li J, Mitchell DC, Navarrete-Perea J, Gygi SP. Assessing target engagement using proteome-wide solvent shift assays. eLife 2021; 10:e70784. [PMID: 34878405 PMCID: PMC8654358 DOI: 10.7554/elife.70784] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Recent advances in mass spectrometry (MS) have enabled quantitative proteomics to become a powerful tool in the field of drug discovery, especially when applied toward proteome-wide target engagement studies. Similar to temperature gradients, increasing concentrations of organic solvents stimulate unfolding and precipitation of the cellular proteome. This property can be influenced by physical association with ligands and other molecules, making individual proteins more or less susceptible to solvent-induced denaturation. Herein, we report the development of proteome-wide solvent shift assays by combining the principles of solvent-induced precipitation (Zhang et al., 2020) with modern quantitative proteomics. Using this approach, we developed solvent proteome profiling (SPP), which is capable of establishing target engagement through analysis of SPP denaturation curves. We readily identified the specific targets of compounds with known mechanisms of action. As a further efficiency boost, we applied the concept of area under the curve analysis to develop solvent proteome integral solubility alteration (solvent-PISA) and demonstrate that this approach can serve as a reliable surrogate for SPP. We propose that by combining SPP with alternative methods, like thermal proteome profiling, it will be possible to increase the absolute number of high-quality melting curves that are attainable by either approach individually, thereby increasing the fraction of the proteome that can be screened for evidence of ligand binding.
Collapse
Affiliation(s)
| | - Jiaming Li
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| | - Dylan C Mitchell
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
27
|
Mateus A, Kurzawa N, Perrin J, Bergamini G, Savitski MM. Drug Target Identification in Tissues by Thermal Proteome Profiling. Annu Rev Pharmacol Toxicol 2021; 62:465-482. [PMID: 34499524 DOI: 10.1146/annurev-pharmtox-052120-013205] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drug target deconvolution can accelerate the drug discovery process by identifying a drug's targets (facilitating medicinal chemistry efforts) and off-targets (anticipating toxicity effects or adverse drug reactions). Multiple mass spectrometry-based approaches have been developed for this purpose, but thermal proteome profiling (TPP) remains to date the only one that does not require compound modification and can be used to identify intracellular targets in living cells. TPP is based on the principle that the thermal stability of a protein can be affected by its interactions. Recent developments of this approach have expanded its applications beyond drugs and cell cultures to studying protein-drug interactions and biological phenomena in tissues. These developments open up the possibility of studying drug treatment or mechanisms of disease in a holistic fashion, which can result in the design of better drugs and lead to a better understanding of fundamental biology. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| | - Nils Kurzawa
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; .,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Jessica Perrin
- Cellzome GmbH, GlaxoSmithKline, 69117 Heidelberg, Germany
| | | | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| |
Collapse
|
28
|
Lu J, Jiang H, Li D, Chen T, Wang Y, Pu Z, Xu G. Proximity Labeling, Quantitative Proteomics, and Biochemical Studies Revealed the Molecular Mechanism for the Inhibitory Effect of Indisulam on the Proliferation of Gastric Cancer Cells. J Proteome Res 2021; 20:4462-4474. [PMID: 34420308 DOI: 10.1021/acs.jproteome.1c00437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Indisulam exhibits antitumor activity against several cancer cells. Although the DCAF15-indisulam-RBM39 axis has been well documented in the inhibition of cancer cell growth, it is unknown whether RBM39 degradation alone is the mechanism of action of indisulam. Here, we verified the inhibitory effect of indisulam on the proliferation of gastric cancer cells and its dependence on DCAF15. Proximity-dependent biotin labeling with TurboID and quantitative proteomics revealed that indisulam indeed promoted the interaction between DCAF15 and RBM39. Immunoblotting and immunofluorescence also revealed that indisulam promoted the ubiquitin-mediated RBM39 degradation and RBM39 colocalized with DCAF15 in the nucleus. DCAF15 knockdown almost completely abolished the indisulam-mediated RBM39 reduction. Further knockdown of RBM39 eliminated the effect of DCAF15 on the proliferation of gastric cancer cells upon indisulam treatment. Immunoblotting of gastric tumor tissues confirmed the downregulation of RBM39 by indisulam. Database analysis unveiled that RBM39 was highly expressed in gastric cancer tissues and its high expression significantly shortened the survival time of gastric cancer patients. Taken together, we demonstrated that indisulam enhanced RBM39 ubiquitination and degradation by promoting its interaction with DCAF15, thus inhibiting the proliferation of gastric cancer cells. This work may provide valuable information for drug discovery through proteolysis targeting chimeras. MS data were deposited in ProteomeXchange (Dataset identifier: PXD024168).
Collapse
Affiliation(s)
- Jiaqi Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Honglv Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dan Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Tao Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhongjian Pu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu 226600, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
29
|
Xu Y, West GM, Abdelmessih M, Troutman MD, Everley RA. A Comparison of Two Stability Proteomics Methods for Drug Target Identification in OnePot 2D Format. ACS Chem Biol 2021; 16:1445-1455. [PMID: 34374519 DOI: 10.1021/acschembio.1c00317] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stability proteomics techniques that do not require drug modifications have emerged as an attractive alternative to affinity purification methods in drug target engagement studies. Two representative techniques include the chemical-denaturation-based SPROX (Stability of Proteins from Rates of Oxidation), which utilizes peptide-level quantification and thermal-denaturation-based TPP (Thermal Proteome Profiling), which utilizes protein-level quantification. Recently, the "OnePot" strategy was adapted for both SPROX and TPP to increase the throughput. When combined with the 2D setup which measures both the denaturation and the drug dose dimensions, the OnePot 2D format offers improved analysis specificity with higher resource efficiency. However, a systematic evaluation of the OnePot 2D format and a comparison between SPROX and TPP are still lacking. Here, we performed SPROX and TPP to identify protein targets of a well-studied pan-kinase inhibitor staurosporine with K562 lysate, in curve-fitting and OnePot 2D formats. We found that the OnePot 2D format provided ∼10× throughput, achieved ∼1.6× protein coverage and involves more straightforward data analysis. We also compared SPROX with the current "gold-standard" stability proteomics technique TPP in the OnePot 2D format. The protein coverage of TPP is ∼1.5 fold of SPROX; however, SPROX offers protein domain-level information, identifies comparable numbers of kinase hits, has higher signal (R value), and requires ∼3× less MS time. Unique SPROX hits encompass higher-molecular-weight proteins, compared to the unique TPP hits, and include atypical kinases. We also discuss hit stratification and prioritization strategies to promote the efficiency of hit followup.
Collapse
Affiliation(s)
- Yingrong Xu
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Graham M. West
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Mario Abdelmessih
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Matthew D. Troutman
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Robert A. Everley
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| |
Collapse
|