1
|
Yang Y, Yu F. Abnormal protein SUMOylation in liver disease: novel target for therapy. J Mol Med (Berl) 2024; 102:719-731. [PMID: 38565749 DOI: 10.1007/s00109-024-02440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
SUMOylation is an important protein post-translational modification (PTM) process, in which the small ubiquitin-like modifier (SUMO) protein covalently binds to the target protein and regulates stability, subcellular localization, and protein-protein interaction of the target protein. Protein SUMOylation exerts crucial regulatory function in the liver, and its abnormalities are associated with various liver-related disease processes. This review focuses on the biological functions of protein SUMOylation in liver-related diseases in recent years, summarizes the molecular mechanisms of SUMOylation in the replication of hepatitis viruses and the occurrence of hepatocellular carcinoma, and discusses the significance of SUMOylation in liver-related disorders, which is essential for understanding liver biological processes and formulating therapeutic strategies.
Collapse
Affiliation(s)
- Yanfang Yang
- Department of Central Laboratory, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| | - Fuxun Yu
- Department of Central Laboratory, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| |
Collapse
|
2
|
Lachiondo-Ortega S, Rejano-Gordillo CM, Simon J, Lopitz-Otsoa F, C Delgado T, Mazan-Mamczarz K, Goikoetxea-Usandizaga N, Zapata-Pavas LE, García-Del Río A, Guerra P, Peña-Sanfélix P, Hermán-Sánchez N, Al-Abdulla R, Fernandez-Rodríguez C, Azkargorta M, Velázquez-Cruz A, Guyon J, Martín C, Zalamea JD, Egia-Mendikute L, Sanz-Parra A, Serrano-Maciá M, González-Recio I, Gonzalez-Lopez M, Martínez-Cruz LA, Pontisso P, Aransay AM, Barrio R, Sutherland JD, Abrescia NGA, Elortza F, Lujambio A, Banales JM, Luque RM, Gahete MD, Palazón A, Avila MA, G Marin JJ, De S, Daubon T, Díaz-Quintana A, Díaz-Moreno I, Gorospe M, Rodríguez MS, Martínez-Chantar ML. SUMOylation controls Hu antigen R posttranscriptional activity in liver cancer. Cell Rep 2024; 43:113924. [PMID: 38507413 PMCID: PMC11025316 DOI: 10.1016/j.celrep.2024.113924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 08/08/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
The posttranslational modification of proteins critically influences many biological processes and is a key mechanism that regulates the function of the RNA-binding protein Hu antigen R (HuR), a hub in liver cancer. Here, we show that HuR is SUMOylated in the tumor sections of patients with hepatocellular carcinoma in contrast to the surrounding tissue, as well as in human cell line and mouse models of the disease. SUMOylation of HuR promotes major cancer hallmarks, namely proliferation and invasion, whereas the absence of HuR SUMOylation results in a senescent phenotype with dysfunctional mitochondria and endoplasmic reticulum. Mechanistically, SUMOylation induces a structural rearrangement of the RNA recognition motifs that modulates HuR binding affinity to its target RNAs, further modifying the transcriptomic profile toward hepatic tumor progression. Overall, SUMOylation constitutes a mechanism of HuR regulation that could be potentially exploited as a therapeutic strategy for liver cancer.
Collapse
Affiliation(s)
- Sofia Lachiondo-Ortega
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Claudia M Rejano-Gordillo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, University Institute of Biosanitary Research of Extremadura (INUBE), 06071 Badajoz, Spain; Biofisika Institute, Consejo Superior de Investigaciones Científicas (CSIC), Departamento Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Jorge Simon
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Teresa C Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - L Estefanía Zapata-Pavas
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Ana García-Del Río
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Pietro Guerra
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35128 Padua, Italy
| | - Patricia Peña-Sanfélix
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Natalia Hermán-Sánchez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology of University of Córdoba, Reina Sofia University Hospital, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Ruba Al-Abdulla
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Institute of Medical Biochemistry and Molecular Biology, University Medicine of Greifswald, 17475 Greifswald, Germany
| | - Carmen Fernandez-Rodríguez
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Mikel Azkargorta
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), 48160 Derio, Bizkaia, Spain
| | - Alejandro Velázquez-Cruz
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Joris Guyon
- University of Bordeaux, INSERM, BPH, U1219, 33000 Bordeaux, France; CHU de Bordeaux, Service de Pharmacologie Médicale, 33000 Bordeaux, France
| | - César Martín
- Biofisika Institute, Consejo Superior de Investigaciones Científicas (CSIC), Departamento Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Juan Diego Zalamea
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Arantza Sanz-Parra
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Marina Serrano-Maciá
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Irene González-Recio
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Monika Gonzalez-Lopez
- Genome Analysis Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Patrizia Pontisso
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine (DIMED), University of Padova, 35128 Padua, Italy
| | - Ana M Aransay
- Genome Analysis Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Rosa Barrio
- Ubiquitin-likes and Development Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - James D Sutherland
- Ubiquitin-likes and Development Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Nicola G A Abrescia
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Félix Elortza
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), 48160 Derio, Bizkaia, Spain
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jesus M Banales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology of University of Córdoba, Reina Sofia University Hospital, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Manuel D Gahete
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology of University of Córdoba, Reina Sofia University Hospital, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), 14004 Córdoba, Spain
| | - Asís Palazón
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Matias A Avila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Hepatology Program, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Jose J G Marin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEPHARM), Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Manuel S Rodríguez
- Laboratoire de Chimie de Coordination (LCC), UPR 8241, CNRS; IPBS-University of Toulouse III-Paul Sabatier, Toulouse, France
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain.
| |
Collapse
|
3
|
Chen Y, Liu K, Zhang G, Cheng J, Tu J. Monoclonal antibody-based systematic identification of SUMO1-modification sites reveals TFII-I SUMOylation is involved in tumor growth. J Cell Physiol 2024; 239:e31080. [PMID: 37450667 DOI: 10.1002/jcp.31080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
SUMOylation plays an essential role in diverse physiological and pathological processes. Identification of wild-type SUMO1-modification sites by mass spectrometry is still challenging. In this study, we produced a monoclonal SUMO1C-K antibody recognizing SUMOylated peptides and proposed an efficient streamline for identification of SUMOylation sites. We identified 471 SUMOylation sites in 325 proteins from five raw data. These identified sites exhibit a high positive rate when evaluated by mutation-verified SUMOylation sites. We identified many SUMOylated proteins involved in mitochondrial metabolism and non-membrane-bounded organelles formation. We proposed a SUMOylation motif, ΨKXD/EP, where proline is required for efficient SUMOylation. We further revealed SUMOylation of TFII-I was stimulated by growth signals and was required for nucleus-localization of p-ERK1/2. Mutation of SUMOylation sites of TFII-I suppressed tumor cell growth in vitro and in vivo. Taken together, we provided a strategy for personalized identification of wild-type SUMO1-modification sites and revealed the physiological significance of TFII-I SUMOylation in this study.
Collapse
Affiliation(s)
- Yalan Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kexin Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Geqiang Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Tu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Cao S, Wang D, Wang P, Liu Y, Dong W, Ruan X, Liu L, Xue Y, E T, Lin H, Liu X. SUMOylation of RALY promotes vasculogenic mimicry in glioma cells via the FOXD1/DKK1 pathway. Cell Biol Toxicol 2023; 39:3323-3340. [PMID: 37906341 PMCID: PMC10693529 DOI: 10.1007/s10565-023-09836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
Human malignant gliomas are the most common and aggressive primary malignant tumors of the human central nervous system. Vasculogenic mimicry (VM), which refers to the formation of a tumor blood supply system independently of endothelial cells, contributes to the malignant progression of glioma. Therefore, VM is considered a potential target for glioma therapy. Accumulated evidence indicates that alterations in SUMOylation, a reversible post-translational modification, are involved in tumorigenesis and progression. In the present study, we found that UBA2 and RALY were upregulated in glioma tissues and cell lines. Downregulation of UBA2 and RALY inhibited the migration, invasion, and VM of glioma cells. RALY can be SUMOylated by conjugation with SUMO1, which is facilitated by the overexpression of UBA2. The SUMOylation of RALY increases its stability, which in turn increases its expression as well as its promoting effect on FOXD1 mRNA. The overexpression of FOXD1 promotes DKK1 transcription by activating its promoter, thereby promoting glioma cell migration, invasion, and VM. Remarkably, the combined knockdown of UBA2, RALY, and FOXD1 resulted in the smallest tumor volumes and the longest survivals of nude mice in vivo. UBA2/RALY/FOXD1/DKK1 axis may play crucial roles in regulating VM in glioma, which may contribute to the development of potential strategies for the treatment of gliomas.
Collapse
Affiliation(s)
- Shuo Cao
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Di Wang
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004, China
| | - Ping Wang
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Yunhui Liu
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004, China
| | - Weiwei Dong
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004, China
| | - Xuelei Ruan
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Libo Liu
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Yixue Xue
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
| | - Tiange E
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004, China
| | - Hongda Lin
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004, China
| | - Xiaobai Liu
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China.
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004, China.
| |
Collapse
|
5
|
Gu Y, Fang Y, Wu X, Xu T, Hu T, Xu Y, Ma P, Wang Q, Shu Y. The emerging roles of SUMOylation in the tumor microenvironment and therapeutic implications. Exp Hematol Oncol 2023; 12:58. [PMID: 37415251 DOI: 10.1186/s40164-023-00420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Tumor initiation, progression, and response to therapies depend to a great extent on interactions between malignant cells and the tumor microenvironment (TME), which denotes the cancerous/non-cancerous cells, cytokines, chemokines, and various other factors around tumors. Cancer cells as well as stroma cells can not only obtain adaption to the TME but also sculpt their microenvironment through a series of signaling pathways. The post-translational modification (PTM) of eukaryotic cells by small ubiquitin-related modifier (SUMO) proteins is now recognized as a key flexible pathway. Proteins involved in tumorigenesis guiding several biological processes including chromatin organization, DNA repair, transcription, protein trafficking, and signal conduction rely on SUMOylation. The purpose of this review is to explore the role that SUMOylation plays in the TME formation and reprogramming, emphasize the importance of targeting SUMOylation to intervene in the TME and discuss the potential of SUMOylation inhibitors (SUMOi) in ameliorating tumor prognosis.
Collapse
Affiliation(s)
- Yunru Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Yuan Fang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Xi Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Tingting Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Tong Hu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Yangyue Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China.
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, People's Republic of China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, People's Republic of China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
WTIP upregulates FOXO3a and induces apoptosis through PUMA in acute myeloid leukemia. Cell Death Dis 2021; 13:18. [PMID: 34930905 PMCID: PMC8688515 DOI: 10.1038/s41419-021-04467-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/27/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive and heterogeneous clonal hematologic malignancy for which novel therapeutic targets and strategies are required. Emerging evidence suggests that WTIP is a candidate tumor suppressor. However, the molecular mechanisms of WTIP in leukemogenesis have not been explored. Here, we report that WTIP expression is significantly reduced both in AML cell lines and clinical specimens compared with normal controls, and low levels of WTIP correlate with decreased overall survival in AML patients. Overexpression of WTIP inhibits cell proliferation and induces apoptosis both in vitro and in vivo. Mechanistic studies reveal that the apoptotic function of WTIP is mediated by upregulation and nuclear translocation of FOXO3a, a member of Forkhead box O (FOXO) transcription factors involved in tumor suppression. We further demonstrate that WTIP interacts with FOXO3a and transcriptionally activates FOXO3a. Upon transcriptional activation of FOXO3a, its downstream target PUMA is increased, leading to activation of the intrinsic apoptotic pathway. Collectively, our results suggest that WTIP is a tumor suppressor and a potential target for therapeutic intervention in AML.
Collapse
|
7
|
Chen Y, Xu T, Li M, Li C, Ma Y, Chen G, Sun Y, Zheng H, Wu G, Liao W, Liao Y, Chen Y, Bin J. Inhibition of SENP2-mediated Akt deSUMOylation promotes cardiac regeneration via activating Akt pathway. Clin Sci (Lond) 2021; 135:811-828. [PMID: 33687053 DOI: 10.1042/cs20201408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
Post-translational modification (PTM) by small ubiquitin-like modifier (SUMO) is a key regulator of cell proliferation and can be readily reversed by a family of SUMO-specific proteases (SENPs), making SUMOylation an ideal regulatory mechanism for developing novel therapeutic strategies for promoting a cardiac regenerative response. However, the role of SUMOylation in cardiac regeneration remains unknown. In the present study, we assessed whether targeting protein kinase B (Akt) SUMOylation can promote cardiac regeneration. Quantitative PCR and Western blotting results showed that small ubiquitin-like modifier-specific protease 2 (SENP2) is up-regulated during postnatal heart development. SENP2 deficiency promoted P7 and adult cardiomyocyte (CM) dedifferentiation and proliferation both in vitro and in vivo. Mice with SENP2 deficiency exhibited improved cardiac function after MI due to CM proliferation and angiogenesis. Mechanistically, the loss of SENP2 up-regulated Akt SUMOylation levels and increased Akt kinase activity, leading to a decrease in GSK3β levels and subsequently promoting CM proliferation and angiogenesis. In summary, inhibition of SENP2-mediated Akt deSUMOylation promotes CM differentiation and proliferation by activating the Akt pathway. Our results provide new insights into the role of SUMOylation in cardiac regeneration.
Collapse
Affiliation(s)
- Yijin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tong Xu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengsha Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chuling Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yusheng Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yili Sun
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guangkai Wu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
A novel melanin complex displayed the affinity to HepG2 cell membrane and nucleus. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111923. [PMID: 33641916 DOI: 10.1016/j.msec.2021.111923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 01/07/2023]
Abstract
Chitosan-melanin complex from Catharsius molossus L. has proven to possess superior pharmaceutical excipient performance and may be the new source of water-soluble protein-free natural melanin. Herein, it was enzymatically hydrolyzed into the chitooligosaccharide-melanin complex (CMC) whose main chemical units were composed of eumelanin and chitooligosaccharides and showed three-layer structures. Additionally, this biomacromolecule could self-assemble into 40 nm nanoparticles (CMC Nps) in a weakly acidic aqueous solution. Interestingly, CMC displayed strong affinity for cell membrane by binding the phosphatidylserine, glycoprotein, glycolipids and glycosaminoglycans accumulated on the surface of tumor cells, notably, CMC Nps could enter cells and mainly target the nucleus by interacting with DNA and/or RNA substrates located around the nucleus to disrupt the proliferation and apoptosis processes. The findings suggest CMC may be the novel material for subcellular organelle targeting of cancer cells.
Collapse
|
9
|
Boulanger M, Chakraborty M, Tempé D, Piechaczyk M, Bossis G. SUMO and Transcriptional Regulation: The Lessons of Large-Scale Proteomic, Modifomic and Genomic Studies. Molecules 2021; 26:molecules26040828. [PMID: 33562565 PMCID: PMC7915335 DOI: 10.3390/molecules26040828] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
One major role of the eukaryotic peptidic post-translational modifier SUMO in the cell is transcriptional control. This occurs via modification of virtually all classes of transcriptional actors, which include transcription factors, transcriptional coregulators, diverse chromatin components, as well as Pol I-, Pol II- and Pol III transcriptional machineries and their regulators. For many years, the role of SUMOylation has essentially been studied on individual proteins, or small groups of proteins, principally dealing with Pol II-mediated transcription. This provided only a fragmentary view of how SUMOylation controls transcription. The recent advent of large-scale proteomic, modifomic and genomic studies has however considerably refined our perception of the part played by SUMO in gene expression control. We review here these developments and the new concepts they are at the origin of, together with the limitations of our knowledge. How they illuminate the SUMO-dependent transcriptional mechanisms that have been characterized thus far and how they impact our view of SUMO-dependent chromatin organization are also considered.
Collapse
Affiliation(s)
- Mathias Boulanger
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Mehuli Chakraborty
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Denis Tempé
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Marc Piechaczyk
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Correspondence: (M.P.); (G.B.)
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Correspondence: (M.P.); (G.B.)
| |
Collapse
|
10
|
Kroonen JS, Vertegaal ACO. Targeting SUMO Signaling to Wrestle Cancer. Trends Cancer 2020; 7:496-510. [PMID: 33353838 DOI: 10.1016/j.trecan.2020.11.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/16/2023]
Abstract
The small ubiquitin-like modifier (SUMO) signaling cascade is critical for gene expression, genome integrity, and cell cycle progression. In this review, we discuss the important role SUMO may play in cancer and how to target SUMO signaling. Recently developed small molecule inhibitors enable therapeutic targeting of the SUMOylation pathway. Blocking SUMOylation not only leads to reduced cancer cell proliferation but also to an increased antitumor immune response by stimulating interferon (IFN) signaling, indicating that SUMOylation inhibitors have a dual mode of action that can be employed in the fight against cancer. The search for tumor types that can be treated with SUMOylation inhibitors is ongoing. Employing SUMO conjugation inhibitory drugs in the years to come has potential as a new therapeutic strategy.
Collapse
Affiliation(s)
- Jessie S Kroonen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.
| |
Collapse
|
11
|
Yu Y, Chen Y, Liu K, Cheng J, Tu J. SUMOylation enhances the activity of IDH2 under oxidative stress. Biochem Biophys Res Commun 2020; 532:591-597. [DOI: 10.1016/j.bbrc.2020.08.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 01/24/2023]
|
12
|
Gu J, Huang L, Zhang Y. Monensin inhibits proliferation, migration, and promotes apoptosis of breast cancer cells via downregulating UBA2. Drug Dev Res 2020; 81:745-753. [PMID: 32462716 DOI: 10.1002/ddr.21683] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/13/2020] [Accepted: 04/26/2020] [Indexed: 11/10/2022]
Abstract
Breast cancer is a malignant tumor that occurs in the epithelial tissue of the breast gland, the morbidity, and mortality of which continue to increase. Therefore, it is crucial to find new drugs to treat breast cancer. Monensin is a carrier antibiotic that has been reported to inhibit the growth of cancer cells; however, its impacts on breast cancer cells have not been reported. In this article, the cell survival rate was measured by CCK-8. Colony formation assay was utilized to detect the level of cell proliferation. Transwell was used to measure the ability of cell invasion, and wound healing was used to measure the ability of cell migration. RT-qPCR and western blot were, respectively, used to detect the expression of related genes and proteins. The level of apoptosis was detected by flow cytometry. Cell transfection technique was used for overexpressing UBA2. We found that Monensin inhibited the proliferation and migration of breast cancer cells and inhibited the expression of MMP-2 and MMP-9. In addition, Monensin promoted the apoptosis accompanied by the increase of Bax, caspase3, caspase7, and caspase9 and the decreased of bcl-2 of breast cancer cells. Monensin was also found to inhibit UBA2 expression in breast cancer cells. Subsequently, after overexpression of UBA2, the impacts of Monensin on proliferation, migration, and apoptosis of breast cancer cells was inhibited. In conclusion, Monensin can inhibit the proliferation and migration and activate apoptosis of breast cancer cells via downregulating the expression of UBA2.
Collapse
Affiliation(s)
- Jiangtao Gu
- Pharmaceutical Department, Tianjin Baodi Hospital, Tianjin, China.,Pharmaceutical Department, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Lan Huang
- Clinical Laboratory, Clinical Laboratory of Wuhan Ping'an Haoyi Clinical Lab Co., Ltd, Wuhan, Hubei Province, China
| | - Yunxia Zhang
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
13
|
Liu Q, Zhou B, Liao R, Zhou X, Yan X. PIAS4, upregulated in hepatocellular carcinoma, promotes tumorigenicity and metastasis. J Cell Biochem 2020; 121:3372-3381. [PMID: 31943317 DOI: 10.1002/jcb.29610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/11/2019] [Indexed: 01/05/2023]
Abstract
Protein inhibitor of activated STAT4 (PIAS4) protein has been implicated in regulating various biological activities including protein posttranslational modification, such as SUMOylation. In this study, we explored the roles of PIAS4 in hepatocellular carcinoma (HCC). We analyzed the PIAS4 expression in cancer tissues and paracancerous tissues from 38 HCC patients and its correlation with patients' prognosis. In vitro, PIAS4 was overexpressed or knockdowned in Huh-7 and HepG-2 cells. Then Cell Counting Kit-8 assay, flow cytometry, and Transwell assay were performed to assess cell viability, apoptosis, migration, and invasion, respectively. Furthermore, SUMOylation of AMPKα and NEMO mediated by PIAS4 was investigated. The results showed that the PIAS4 expression was significantly upregulated in cancer tissues and was correlated with poor prognosis in HCC patients. PIAS4 silencing blocked the SUMOylation of AMPKα and NEMO, leading to enhanced cell proliferation, migration, and invasion. In addition, inhibition of AMPKα or NEMO by siRNAs attenuated the effect of PIAS4 silencing on Huh-7 and HepG-2 cells. In summary, our findings suggest that PIAS4 promotes tumorigenicity and metastasis of HCC cells by promoting the SUMOylation of AMPKα and NEMO.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Baoyong Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiong Zhou
- Department of Gastrointestinal Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xiong Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Li J, Sun X, He P, Liu WQ, Zou YB, Wang Q, Meng XW. Ubiquitin-like modifier activating enzyme 2 promotes cell migration and invasion through Wnt/β-catenin signaling in gastric cancer. World J Gastroenterol 2018; 24:4773-4786. [PMID: 30479464 PMCID: PMC6235804 DOI: 10.3748/wjg.v24.i42.4773] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/03/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the function and mechanism of ubiquitin-like modifier activating enzyme 2 (Uba2) in progression of gastric cancer (GC) cells.
METHODS Uba2 level in patients with GC was analyzed by Western blotting and immunohistochemistry. MTT and colony formation assays were performed to examine cell proliferation. Flow cytometry was used for cell cycle analysis. Wound healing and Transwell assays were conducted to examine the effects of Uba2 on migration and invasion. Expression levels of cell cycle-related proteins, epithelial-mesenchymal transition (EMT) biomarkers, and involvement of the Wnt/β-catenin pathway was assessed by Western blotting. Activation of the Wnt/β-catenin pathway was confirmed by luciferase assay.
RESULTS Uba2 expression was higher in GC than in normal tissues. Increased Uba2 expression was correlated with tissue differentiation, Lauren’s classification, vascular invasion, and TNM stage, as determined by the analysis of 100 GC cases (P < 0.05). Knock-down of Uba2 inhibited GC cell proliferation, induced cell cycle arrest, and altered expression of cyclin D1, P21, P27, and Bcl-2, while up-regulation of Uba2 showed the opposite effects. The wound healing and Transwell assays showed that Uba2 promoted GC cell migration and invasion. Western blotting revealed alterations in EMT biomarkers, suggesting the role of Uba2 in EMT. Furthermore, the luciferase reporter assay indicated the involvement of the Wnt/β-catenin signaling pathway as a possible modulator of Uba2 oncogenic functions.
CONCLUSION Uba2 plays a vital role in GC cell migration and invasion, possibly by regulating the Wnt/β-catenin signaling pathway and EMT.
Collapse
Affiliation(s)
- Ji Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Xun Sun
- Department of Pathology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Ping He
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Wan-Qi Liu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Ya-Bin Zou
- Department of Pathology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Quan Wang
- Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Xiang-Wei Meng
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
15
|
He P, Sun X, Cheng HJ, Zou YB, Wang Q, Zhou CL, Liu WQ, Hao YM, Meng XW. UBA2 promotes proliferation of colorectal cancer. Mol Med Rep 2018; 18:5552-5562. [PMID: 30387828 PMCID: PMC6236309 DOI: 10.3892/mmr.2018.9613] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/13/2018] [Indexed: 12/02/2022] Open
Abstract
Small ubiquitin-like modifier proteins are involved in tumorigenesis; however, the potential effects and functions of the family member ubiquitin-like modifier-activating enzyme 2 (UBA2) on colorectal cancer are not clear. The present study aimed to examine the effects of UBA2 on the proliferation of colorectal cancer cells in vitro and in vivo. The mRNA and protein expression levels of UBA2 in patients with colorectal cancer were measured by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, respectively. UBA2 expression levels in colorectal cancer tissues were significantly increased compared with the paracancerous normal tissues. The expression of UBA2 was also associated with higher stage colorectal cancer and poor prognosis. MTT and colony formation assays were used to examine proliferation in colorectal cancer cell lines. Flow cytometry was performed to examine the effects of UBA2 on the cell cycle and apoptosis of colorectal cancer cell lines and protein expression levels were examined by western blotting. Athymic nude mice were used to examine the ability of transfected colorectal cancer cells to form tumors in vivo. Downregulation of UBA2 inhibited the proliferation of colorectal cancer cell lines in vitro and in vivo through the regulation of cell cycle associated protein expression and apoptosis. Furthermore, downregulation of UBA2 decreased the expression levels of cyclin B1, B-cell lymphoma-2, phosphorylated protein kinase B and E3 ubiquitin-protein ligase MDM2 in colorectal cancer cells, whereas the expression levels of p21 and p27 were increased. UBA2 was demonstrated to serve an essential role in the proliferation of colorectal cancer and may be used as a potential biomarker to predict prognosis and as a therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Ping He
- Department of Gastroenterology, Bethune First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xun Sun
- Department of Pathology, Bethune First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hong-Jing Cheng
- Department of Gastroenterology, Bethune First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ya-Bin Zou
- Department of Pathology, Bethune First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Quan Wang
- Department of Gastrointestinal Surgery, Bethune First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chang-Li Zhou
- Department of Gastroenterology, Bethune First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wan-Qi Liu
- Department of Gastroenterology, Bethune First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yue-Ming Hao
- Department of Gastroenterology, Bethune First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiang-Wei Meng
- Department of Gastroenterology, Bethune First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
16
|
Exploration of variations in proteome and metabolome for predictive diagnostics and personalized treatment algorithms: Innovative approach and examples for potential clinical application. J Proteomics 2018; 188:30-40. [DOI: 10.1016/j.jprot.2017.08.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/06/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022]
|
17
|
Cheng H, Sun X, Li J, He P, Liu W, Meng X. Knockdown of Uba2 inhibits colorectal cancer cell invasion and migration through downregulation of the Wnt/β-catenin signaling pathway. J Cell Biochem 2018; 119:6914-6925. [PMID: 29744931 DOI: 10.1002/jcb.26890] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 03/21/2018] [Indexed: 12/15/2022]
Abstract
Colorectal cancer is a serious threat to human health, and has a high mortality rate. There is currently no effective therapy for end-stage colorectal cancer. In recent years, molecular targeted therapy has received increasing attention for cancer treatment. In particular, the role of Uba2, a vital component of SUMO-activating enzyme, has been highlighted, which plays important roles in the progression of certain cancers; however, its role in colorectal cancer remains unclear. Accordingly, the aim of this study was to evaluate the relationship between Uba2 and colorectal cancer. Uba2 expression was knocked down in two colorectal cancer cell lines, and gene microarray analysis was conducted, followed by proliferation, migration, and invasion assays. Uba2 knockdown influenced the expression of several genes, and significantly inhibited the proliferation, migration, and invasion of cancer cells. To determine the underlying mechanism, the expression of related signaling pathways and molecules was evaluated in the knockdown cell lines. Overall, the results suggest that Uba2 participates in the progression, invasion, and metastasis of colorectal cancer, and the possible mechanism is via regulating the Wnt signaling pathway and enhancing epithelial-mesenchymal transition behaviors of colorectal cancer cells. Therefore, Uba2 is expected to be an important oncoprotein and potential therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Hongjing Cheng
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| | - Xun Sun
- Department of Pathology, First Hospital of Jilin University, Changchun, China
| | - Ji Li
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| | - Ping He
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| | - Wanqi Liu
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| | - Xiangwei Meng
- Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Rosonina E, Akhter A, Dou Y, Babu J, Sri Theivakadadcham VS. Regulation of transcription factors by sumoylation. Transcription 2017; 8:220-231. [PMID: 28379052 PMCID: PMC5574528 DOI: 10.1080/21541264.2017.1311829] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Transcription factors (TFs) are among the most frequently detected targets of sumoylation, and effects of the modification have been studied for about 200 individual TFs to date. TF sumoylation is most often associated with reduced target gene expression, which can be mediated by enhanced interactions with corepressors or by interference with protein modifications that promote transcription. However, recent studies show that sumoylation also regulates gene expression by controlling the levels of TFs that are associated with chromatin. SUMO can mediate this by modulating TF DNA-binding activity, promoting clearance of TFs from chromatin, or indirectly, by influencing TF abundance or localization.
Collapse
Affiliation(s)
- Emanuel Rosonina
- a Department of Biology , York University , Toronto , ON , Canada
| | - Akhi Akhter
- a Department of Biology , York University , Toronto , ON , Canada
| | - Yimo Dou
- a Department of Biology , York University , Toronto , ON , Canada
| | - John Babu
- a Department of Biology , York University , Toronto , ON , Canada
| | | |
Collapse
|
19
|
Cai L, Tu J, Song L, Gao Z, Li K, Wang Y, Liu Y, Zhong F, Ge R, Qin J, Ding C, He F. Proteome-wide Mapping of Endogenous SUMOylation Sites in Mouse Testis. Mol Cell Proteomics 2017; 16:717-727. [PMID: 28289178 PMCID: PMC5417816 DOI: 10.1074/mcp.m116.062125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 02/27/2017] [Indexed: 01/12/2023] Open
Abstract
SUMOylation is a reversible post-translational modification involved in various critical biological processes. To date, there is limited approach for endogenous wild-type SUMO-modified peptides enrichment and SUMOylation sites identification. In this study, we generated a high-affinity SUMO1 antibody to facilitate the enrichment of endogenous SUMO1-modified peptides from Trypsin/Lys-C protease digestion. Following secondary Glu-C protease digestion, we identified 53 high-confidence SUMO1-modified sites from mouse testis by using high-resolution mass spectrometry. Bioinformatics analyses showed that SUMO1-modified proteins were enriched in transcription regulation and DNA repair. Nab1 was validated to be an authentic SUMOylated protein and Lys479 was identified to be the major SUMOylation site. The SUMOylation of Nab1 enhanced its interaction with HDAC2 and maintained its inhibitory effect on EGR1 transcriptional activity. Therefore, we provided a novel approach to investigating endogenous SUMOylation sites in tissue samples.
Collapse
Affiliation(s)
- Lili Cai
- From the ‡State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Jun Tu
- From the ‡State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China.,¶Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Song
- §State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Zhihua Gao
- From the ‡State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Kai Li
- §State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Yunzhi Wang
- From the ‡State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Yang Liu
- From the ‡State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Fan Zhong
- From the ‡State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Rui Ge
- From the ‡State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Jun Qin
- §State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Chen Ding
- From the ‡State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China; .,§State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Fuchu He
- From the ‡State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China; .,§State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine; National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| |
Collapse
|
20
|
Abstract
Small ubiquitin-like modifiers (SUMOs) are essential for the regulation of several cellular processes and are potential therapeutic targets owing to their involvement in diseases such as cancer and Alzheimer disease. In the past decade, we have witnessed a rapid expansion of proteomic approaches for identifying sumoylated proteins, with recent advances in detecting site-specific sumoylation. In this Analysis, we combined all human SUMO proteomics data currently available into one cohesive database. We provide proteomic evidence for sumoylation of 3,617 proteins at 7,327 sumoylation sites, and insight into SUMO group modification by clustering the sumoylated proteins into functional networks. The data support sumoylation being a frequent protein modification (on par with other major protein modifications) with multiple nuclear functions, including in transcription, mRNA processing, DNA replication and the DNA-damage response.
Collapse
|