1
|
Peliciari-Garcia RA, de Barros CF, Secio-Silva A, de Barros Peruchetti D, Romano RM, Bargi-Souza P. Multi-omics Investigations in Endocrine Systems and Their Clinical Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:187-209. [PMID: 38409422 DOI: 10.1007/978-3-031-50624-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Innovative techniques such as the "omics" can be a powerful tool for the understanding of intracellular pathways involved in homeostasis maintenance and identification of new potential therapeutic targets against endocrine-metabolic disorders. Over the last decades, proteomics has been extensively applied in the study of a wide variety of human diseases, including those involving the endocrine system. Among the most endocrine-related disorders investigated by proteomics in humans are diabetes mellitus and thyroid, pituitary, and reproductive system disorders. In diabetes, proteins implicated in insulin signaling, glucose metabolism, and β-cell activity have been investigated. In thyroid diseases, protein expression alterations were described in thyroid malignancies and autoimmune thyroid illnesses. Additionally, proteomics has been used to investigate the variations in protein expression in adrenal cancers and conditions, including Cushing's syndrome and Addison's disease. Pituitary tumors and disorders including acromegaly and hypopituitarism have been studied using proteomics to examine changes in protein expression. Reproductive problems such as polycystic ovarian syndrome and endometriosis are two examples of conditions where alterations in protein expression have been studied using proteomics. Proteomics has, in general, shed light on the molecular underpinnings of many endocrine-related illnesses and revealed promising biomarkers for both their detection and treatment. The capacity of proteomics to thoroughly and objectively examine complex protein mixtures is one of its main benefits. Mass spectrometry (MS) is a widely used method that identifies and measures proteins based on their mass-to-charge ratio and their fragmentation pattern. MS can perform the separation of proteins according to their physicochemical characteristics, such as hydrophobicity, charge, and size, in combination with liquid chromatography. Other proteomics techniques include protein arrays, which enable the simultaneous identification of several proteins in a single assay, and two-dimensional gel electrophoresis (2D-DIGE), which divides proteins depending on their isoelectric point and molecular weight. This chapter aims to summarize the most relevant proteomics data from targeted tissues, as well as the daily rhythmic variation of relevant biomarkers in both physiological and pathophysiological conditions within the involved endocrine system, especially because the actual modern lifestyle constantly imposes a chronic unentrained condition, which virtually affects all the circadian clock systems within human's body, being also correlated with innumerous endocrine-metabolic diseases.
Collapse
Affiliation(s)
- Rodrigo Antonio Peliciari-Garcia
- Department of Biological Sciences, Morphophysiology and Pathology Sector, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil.
| | - Carolina Fonseca de Barros
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ayla Secio-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Diogo de Barros Peruchetti
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Renata Marino Romano
- Department of Medicine, State University of Central-West (UNICENTRO), Guarapuava, Parana, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Li N, Desiderio DM, Zhan X. The use of mass spectrometry in a proteome-centered multiomics study of human pituitary adenomas. MASS SPECTROMETRY REVIEWS 2022; 41:964-1013. [PMID: 34109661 DOI: 10.1002/mas.21710] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
A pituitary adenoma (PA) is a common intracranial neoplasm, and is a complex, chronic, and whole-body disease with multicausing factors, multiprocesses, and multiconsequences. It is very difficult to clarify molecular mechanism and treat PAs from the single-factor strategy model. The rapid development of multiomics and systems biology changed the paradigms from a traditional single-factor strategy to a multiparameter systematic strategy for effective management of PAs. A series of molecular alterations at the genome, transcriptome, proteome, peptidome, metabolome, and radiome levels are involved in pituitary tumorigenesis, and mutually associate into a complex molecular network system. Also, the center of multiomics is moving from structural genomics to phenomics, including proteomics and metabolomics in the medical sciences. Mass spectrometry (MS) has been extensively used in phenomics studies of human PAs to clarify molecular mechanisms, and to discover biomarkers and therapeutic targets/drugs. MS-based proteomics and proteoform studies play central roles in the multiomics strategy of PAs. This article reviews the status of multiomics, multiomics-based molecular pathway networks, molecular pathway network-based pattern biomarkers and therapeutic targets/drugs, and future perspectives for personalized, predeictive, and preventive (3P) medicine in PAs.
Collapse
Affiliation(s)
- Na Li
- Shandong Key Laboratory of Radiation Oncology, Cancer Hospital of Shandong First Medical University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Dominic M Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Cancer Hospital of Shandong First Medical University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
3
|
Remaggi G, Barbaro F, Di Conza G, Trevisi G, Bergonzi C, Toni R, Elviri L. Decellularization Detergents As Methodological Variables in Mass Spectrometry of Stromal Matrices. Tissue Eng Part C Methods 2022; 28:148-157. [PMID: 35357965 DOI: 10.1089/ten.tec.2021.0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Collagens, elastin, fibrillin, decorin, and laminin are key constituents of the extracellular matrix and basement membrane of mammalian organs. Thus, changes in their quantities may influence the mechanochemical regulation of resident cells. Since maintenance of a native stromal composition is a requirement for three-dimensional (3D) matrix-based recellularization techniques in tissue engineering, we studied the influence of the decellularization detergents on these proteins in porcine kidney, liver, pancreas, and skin. Using a quick thawing/quick microwave-assisted decellularization protocol and two different detergents, sodium dodecyl sulfate (SDS) vs Triton X-100 (TX100), at identical concentration, variations in matrix conservation of stromal proteins were detected by liquid chromatography-mass spectrometry coupled to light and scanning electron microscopies, in dependence on each detergent. In all organs tested except pancreas, collagens were retained to a statistically significant level using the TX100-based protocol. In contrast fibrillin, elastin (except in kidney), and decorin (only in liver) were better preserved with the SDS-dependent protocol. Irrespective of the detergent used, laminin always remained at an irrelevant level. Our results prompt attention to the type of detergent in organ decellularization, suggesting that its choice may influence morphoregulatory inputs peculiar to the type of 3D bioartificial mammalian organ to be reconstructed. Impact statement Simple change of the protocol's main detergent leads to a very substantial difference in the panel of the stromal proteins detected by qualitative and semiquantitative mass spectrometry in acellular porcine matrices. This remarkable methodological variable promises to yield proteomic reference panels in a number of different species-specific acellular matrices allowing for selective retainment of peculiar mechanochemical inputs, to differently address the development of the seeded cells in relation to the type of organ to be bioartificially reconstructed.
Collapse
Affiliation(s)
- Giulia Remaggi
- Food and Drug Department, University of Parma, Parma, Italy
| | - Fulvio Barbaro
- Laboratory of Regenerative Morphology and Bioartificial Structures, Unit of Biomedicine, Biotechnology, and Translational Sciences, DIMEC, University of Parma, Parma, Italy
| | - Giusy Di Conza
- Laboratory of Regenerative Morphology and Bioartificial Structures, Unit of Biomedicine, Biotechnology, and Translational Sciences, DIMEC, University of Parma, Parma, Italy
| | - Giovanna Trevisi
- IMEM Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Carlo Bergonzi
- Food and Drug Department, University of Parma, Parma, Italy
| | - Roberto Toni
- Laboratory of Regenerative Morphology and Bioartificial Structures, Unit of Biomedicine, Biotechnology, and Translational Sciences, DIMEC, University of Parma, Parma, Italy.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Lisa Elviri
- Food and Drug Department, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Wang TY, Xia FY, Gong JW, Xu XK, Lv MC, Chatoo M, Shamsi BH, Zhang MC, Liu QR, Liu TX, Zhang DD, Lu XJ, Zhao Y, Du JZ, Chen XQ. CRHR1 mediates the transcriptional expression of pituitary hormones and their receptors under hypoxia. Front Endocrinol (Lausanne) 2022; 13:893238. [PMID: 36147561 PMCID: PMC9487150 DOI: 10.3389/fendo.2022.893238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Hypothalamus-pituitary-adrenal (HPA) axis plays critical roles in stress responses under challenging conditions such as hypoxia, via regulating gene expression and integrating activities of hypothalamus-pituitary-targets cells. However, the transcriptional regulatory mechanisms and signaling pathways of hypoxic stress in the pituitary remain to be defined. Here, we report that hypoxia induced dynamic changes in the transcription factors, hormones, and their receptors in the adult rat pituitary. Hypoxia-inducible factors (HIFs), oxidative phosphorylation, and cAMP signaling pathways were all differentially enriched in genes induced by hypoxic stress. In the pituitary gene network, hypoxia activated c-Fos and HIFs with specific pituitary transcription factors (Prop1), targeting the promoters of hormones and their receptors. HIF and its related signaling pathways can be a promising biomarker during acute or constant hypoxia. Hypoxia stimulated the transcription of marker genes for microglia, chemokines, and cytokine receptors of the inflammatory response. Corticotropin-releasing hormone receptor 1 (CRHR1) mediated the transcription of Pomc, Sstr2, and Hif2a, and regulated the function of HPA axis. Together with HIF, c-Fos initiated and modulated dynamic changes in the transcription of hormones and their receptors. The receptors were also implicated in the regulation of functions of target cells in the pituitary network under hypoxic stress. CRHR1 played an integrative role in the hypothalamus-pituitary-target axes. This study provides new evidence for CRHR1 involved changes of hormones, receptors, signaling molecules and pathways in the pituitary induced by hypoxia.
Collapse
Affiliation(s)
- Tong Ying Wang
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Department of Research and Development, Jiuyuan Gene Engineering, Hangzhou, China
| | - Fang Yuan Xia
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jing Wen Gong
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Kang Xu
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Min Chao Lv
- Department of Orthopedics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Mahanand Chatoo
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Bilal Haider Shamsi
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Meng Chen Zhang
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Qian Ru Liu
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Tian Xing Liu
- Department of Cell and System Biology, University of Toronto, St. George, NB, Canada
| | - Dan Dan Zhang
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Jiang Lu
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Zhao
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ji Zeng Du
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xue Qun Chen
- Department of Neurobiology, Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Yu M, Xie F, Liu X, Sun H, Guo Z, Liu X, Li W, Sun W, Wang Y, He C. Proteomic Study of Aqueous Humor and Its Application in the Treatment of Neovascular Glaucoma. Front Mol Biosci 2020; 7:587677. [PMID: 33195434 PMCID: PMC7580691 DOI: 10.3389/fmolb.2020.587677] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Aqueous humor (AH) proteins are involved in many physiological and pathological processes of the eye. The proteome analysis of AH is important to understand its physiological and pathophysiological functions. In the present study, AH samples obtained from 21 cataract volunteers were pooled together. After high-pH RPLC offline separation, the pooled sample was analyzed by LC-MS/MS to provide a comprehensive profile of AH proteome. The function analysis was provided by the GO and IPA annotation. In order to determine whether the AH proteome can reflect the pathophysiological changes of the disease, DIA technology was used to analyze the AH samples obtained from three neovascular glaucoma (NVG) patients (six samples) before and after drug treatment. The differential proteins were validated by PRM technology in an independent group (14 samples). In the AH proteome database, 802 proteins were identified, and 318 proteins were identified for the first time. Furthermore, 480 proteins were quantified based on the peak intensity-based semiquantification (iBAQ), which ranged by approximately 7 orders of magnitude. These proteins are primarily involved in immunity- and inflammation-related pathways. The differential AH proteomic analysis in NVG treatment revealed that the AH proteome can reflect the pathophysiological changes of drug treatment. Angiogenesis and thrombus coagulation progression are deeply involved in NVG treatment. The present experiment provided a comprehensive AH proteome analysis and expanded the profile of human AH proteome. The differential AH proteomic analysis of NVG treatment indicated that AH proteome can reflect the pathophysiological changes in drug intervention.
Collapse
Affiliation(s)
- Mengxi Yu
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Xie
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiang Liu
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd., Shanghai, China
| | - Haidan Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Peking, China
| | - Zhengguang Guo
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Peking, China
| | - Xiaoyan Liu
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Peking, China
| | - Wei Li
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Peking, China
| | - Ying Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Chengyan He
- China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Abstract
Iodothyronine deiodinases (Dios) are important selenoproteins that control the concentration of the active thyroid hormone (TH) triiodothyronine through regioselective deiodination. The X-ray structure of a truncated monomer of Type III Dio (Dio3), which deiodinates TH inner rings through a selenocysteine (Sec) residue, revealed a thioredoxin-fold catalytic domain supplemented with an unstructured Ω-loop. Loop dynamics are driven by interactions of the conserved Trp207 with solvent in multi-microsecond molecular dynamics simulations of the Dio3 thioredoxin(Trx)-fold domain. Hydrogen bonding interactions of Glu200 with residues conserved across the Dio family anchor the loop’s N-terminus to the active site Ser-Cys-Thr-Sec sequence. A key long-lived loop conformation coincides with the opening of a cryptic pocket that accommodates thyroxine (T4) through an I⋯Se halogen bond to Sec170 and the amino acid group with a polar cleft. The Dio3-T4 complex is stabilized by an I⋯O halogen bond between an outer ring iodine and Asp211, consistent with Dio3 selectivity for inner ring deiodination. Non-conservation of residues, such as Asp211, in other Dio types in the flexible portion of the loop sequence suggests a mechanism for regioselectivity through Dio type-specific loop conformations. Cys168 is proposed to attack the selenenyl iodide intermediate to regenerate Dio3 based upon structural comparison with related Trx-fold proteins.
Collapse
|
7
|
Moroni L, Barbaro F, Caiment F, Coleman O, Costagliola S, Di Conza G, Elviri L, Giselbrecht S, Krause C, Mota C, Nazzari M, Pennington SR, Ringwald A, Sandri M, Thomas S, Waddington J, Toni R. SCREENED: A Multistage Model of Thyroid Gland Function for Screening Endocrine-Disrupting Chemicals in a Biologically Sex-Specific Manner. Int J Mol Sci 2020; 21:E3648. [PMID: 32455722 PMCID: PMC7279272 DOI: 10.3390/ijms21103648] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Endocrine disruptors (EDs) are chemicals that contribute to health problems by interfering with the physiological production and target effects of hormones, with proven impacts on a number of endocrine systems including the thyroid gland. Exposure to EDs has also been associated with impairment of the reproductive system and incidence in occurrence of obesity, type 2 diabetes, and cardiovascular diseases during ageing. SCREENED aims at developing in vitro assays based on rodent and human thyroid cells organized in three different three-dimensional (3D) constructs. Due to different levels of anatomical complexity, each of these constructs has the potential to increasingly mimic the structure and function of the native thyroid gland, ultimately achieving relevant features of its 3D organization including: 1) a 3D organoid based on stem cell-derived thyrocytes, 2) a 3D organoid based on a decellularized thyroid lobe stromal matrix repopulated with stem cell-derived thyrocytes, and 3) a bioprinted organoid based on stem cell-derived thyrocytes able to mimic the spatial and geometrical features of a native thyroid gland. These 3D constructs will be hosted in a modular microbioreactor equipped with innovative sensing technology and enabling precise control of cell culture conditions. New superparamagnetic biocompatible and biomimetic particles will be used to produce "magnetic cells" to support precise spatiotemporal homing of the cells in the 3D decellularized and bioprinted constructs. Finally, these 3D constructs will be used to screen the effect of EDs on the thyroid function in a unique biological sex-specific manner. Their performance will be assessed individually, in comparison with each other, and against in vivo studies. The resulting 3D assays are expected to yield responses to low doses of different EDs, with sensitivity and specificity higher than that of classical 2D in vitro assays and animal models. Supporting the "Adverse Outcome Pathway" concept, proteogenomic analysis and biological computational modelling of the underlying mode of action of the tested EDs will be pursued to gain a mechanistic understanding of the chain of events from exposure to adverse toxic effects on thyroid function. For future uptake, SCREENED will engage discussion with relevant stakeholder groups, including regulatory bodies and industry, to ensure that the assays will fit with purposes of ED safety assessment. In this project review, we will briefly discuss the current state of the art in cellular assays of EDs and how our project aims at further advancing the field of cellular assays for EDs interfering with the thyroid gland.
Collapse
Affiliation(s)
- Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229ET Maastricht, The Netherlands;
| | - Fulvio Barbaro
- Department of Medicine and Surgery—DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S. Lab.), University of Parma, 43121 Parma, Italy; (F.B.); (G.D.C.); (R.T.)
| | - Florian Caiment
- Toxicogenomics, Maastricht University, 6229ET Maastricht, The Netherlands; (F.C.); (M.N.)
| | - Orla Coleman
- Atturos Ltd., c/o Conway Research Institute, University College Dublin, Dublin 4, Ireland; (O.C.); (S.R.P.)
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, 1050 Brussels, Belgium;
| | - Giusy Di Conza
- Department of Medicine and Surgery—DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S. Lab.), University of Parma, 43121 Parma, Italy; (F.B.); (G.D.C.); (R.T.)
| | - Lisa Elviri
- Food and Drug Department, University of Parma, 43121 Parma, Italy;
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instruct Biomaterials Engineering, Maastricht University, 6229ET Maastricht, The Netherlands;
| | | | - Carlos Mota
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229ET Maastricht, The Netherlands;
| | - Marta Nazzari
- Toxicogenomics, Maastricht University, 6229ET Maastricht, The Netherlands; (F.C.); (M.N.)
| | - Stephen R. Pennington
- Atturos Ltd., c/o Conway Research Institute, University College Dublin, Dublin 4, Ireland; (O.C.); (S.R.P.)
- UCD Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland;
| | | | - Monica Sandri
- Institute of Science and Technology for Ceramics, National Research Council of Italy (ISTEC-CNR), 48018 Faenza, Italy;
| | - Simon Thomas
- Cyprotex Discovery Ltd., No. 24 Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK;
| | - James Waddington
- UCD Conway Institute, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Roberto Toni
- Department of Medicine and Surgery—DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S. Lab.), University of Parma, 43121 Parma, Italy; (F.B.); (G.D.C.); (R.T.)
- Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center - Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
8
|
Li J, Li J, Zhao WG, Sun HD, Guo ZG, Liu XY, Tang XY, She ZF, Yuan T, Liu SN, Liu Q, Fu Y, Sun W. Comprehensive proteomics and functional annotation of mouse brown adipose tissue. PLoS One 2020; 15:e0232084. [PMID: 32374735 PMCID: PMC7202602 DOI: 10.1371/journal.pone.0232084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge about the mouse brown adipose tissue (BAT) proteome can provide a deeper understanding of the function of mammalian BAT. Herein, a comprehensive analysis of interscapular BAT from C57BL/6J female mice was conducted by 2DLC and high-resolution mass spectrometry to construct a comprehensive proteome dataset of mouse BAT proteins. A total of 4949 nonredundant proteins were identified, and 4495 were quantified using the iBAQ method. According to the iBAQ values, the BAT proteome was divided into high-, middle- and low-abundance proteins. The functions of the high-abundance proteins were mainly related to glucose and fatty acid oxidation to produce heat for thermoregulation, while the functions of the middle- and low-abundance proteins were mainly related to protein synthesis and apoptosis, respectively. Additionally, 497 proteins were predicted to have signal peptides using SignalP4 software, and 75 were confirmed in previous studies. This study, for the first time, comprehensively profiled and functionally annotated the BAT proteome. This study will be helpful for future studies focused on biomarker identification and BAT molecular mechanisms.
Collapse
Affiliation(s)
- Jing Li
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Juan Li
- Key Laboratory of Endocrinology of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei-Gang Zhao
- Key Laboratory of Endocrinology of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- * E-mail: (WS); (W-GZ)
| | - Hai-Dan Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zheng-Guang Guo
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiao-Yan Liu
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiao-Yue Tang
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhu-Fang She
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Yuan
- Key Laboratory of Endocrinology of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shuai-Nan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Quan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Fu
- Key Laboratory of Endocrinology of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
- * E-mail: (WS); (W-GZ)
| |
Collapse
|
9
|
Yelamanchi SD, Tyagi A, Mohanty V, Dutta P, Korbonits M, Chavan S, Advani J, Madugundu AK, Dey G, Datta KK, Rajyalakshmi M, Sahasrabuddhe NA, Chaturvedi A, Kumar A, Das AA, Ghosh D, Jogdand GM, Nair HH, Saini K, Panchal M, Sarvaiya MA, Mohanraj SS, Sengupta N, Saxena P, Subramani PA, Kumar P, Akkali R, Reshma SV, Santhosh RS, Rastogi S, Kumar S, Ghosh SK, Irlapati VK, Srinivasan A, Radotra BD, Mathur PP, Wong GW, Satishchandra P, Chatterjee A, Gowda H, Bhansali A, Pandey A, Shankar SK, Mahadevan A, Prasad TSK. Proteomic Analysis of the Human Anterior Pituitary Gland. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:759-769. [PMID: 30571610 DOI: 10.1089/omi.2018.0160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The pituitary function is regulated by a complex system involving the hypothalamus and biological networks within the pituitary. Although the hormones secreted from the pituitary have been well studied, comprehensive analyses of the pituitary proteome are limited. Pituitary proteomics is a field of postgenomic research that is crucial to understand human health and pituitary diseases. In this context, we report here a systematic proteomic profiling of human anterior pituitary gland (adenohypophysis) using high-resolution Fourier transform mass spectrometry. A total of 2164 proteins were identified in this study, of which 105 proteins were identified for the first time compared with high-throughput proteomic-based studies from human pituitary glands. In addition, we identified 480 proteins with secretory potential and 187 N-terminally acetylated proteins. These are the first region-specific data that could serve as a vital resource for further investigations on the physiological role of the human anterior pituitary glands and the proteins secreted by them. We anticipate that the identification of previously unknown proteins in the present study will accelerate biomedical research to decipher their role in functioning of the human anterior pituitary gland and associated human diseases.
Collapse
Affiliation(s)
| | - Ankur Tyagi
- 2 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Varshasnata Mohanty
- 2 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Pinaki Dutta
- 3 Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Márta Korbonits
- 4 Department of Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Sandip Chavan
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Jayshree Advani
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India.,5 Manipal Academy of Higher Education, Manipal, India
| | - Anil K Madugundu
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India.,5 Manipal Academy of Higher Education, Manipal, India.,6 Center for Molecular Medicine, National Institute of Mental Health & Neurosciences, Bangalore, India.,7 Department of Laboratory Medicine and Pathology and Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Gourav Dey
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India.,5 Manipal Academy of Higher Education, Manipal, India
| | - Keshava K Datta
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - M Rajyalakshmi
- 8 Department of Biotechnology, BMS College of Engineering, Bangalore, India
| | | | - Abhishek Chaturvedi
- 9 Department of Biochemistry, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Amit Kumar
- 10 Institute of Life Sciences, Nalco Square, Bhubaneswar, India
| | - Apabrita Ayan Das
- 11 Cell Biology and Physiology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Dhiman Ghosh
- 12 Protein Engineering and Neurobiology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, India
| | | | - Haritha H Nair
- 13 Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Keshav Saini
- 14 Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Manoj Panchal
- 15 Department of Life Science, Central University of South Bihar, Gaya, India
| | | | - Soundappan S Mohanraj
- 17 Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Nabonita Sengupta
- 18 Neuroinflammation Laboratory, National Brain Research Centre, Manesar, India
| | - Priti Saxena
- 14 Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | | | - Pradeep Kumar
- 20 Department of Biotechnology, VBS Purvanchal University, Jaunpur, India
| | - Rakhil Akkali
- 21 Department of Biotechnology, Indian Institute of Technology, Madras, India
| | | | | | - Sangita Rastogi
- 24 Microbiology Laboratory, National Institute of Pathology, New Delhi, India
| | - Sudarshan Kumar
- 25 Proteomics and Structural Biology Laboratory, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Susanta Kumar Ghosh
- 19 Department of Molecular Parasitology, National Institute of Malaria Research, Bangalore, India
| | | | - Anand Srinivasan
- 27 Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bishan Das Radotra
- 28 Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Premendu P Mathur
- 29 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - G William Wong
- 30 Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Aditi Chatterjee
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Harsha Gowda
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Anil Bhansali
- 3 Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Akhilesh Pandey
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India.,5 Manipal Academy of Higher Education, Manipal, India.,6 Center for Molecular Medicine, National Institute of Mental Health & Neurosciences, Bangalore, India.,7 Department of Laboratory Medicine and Pathology and Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.,32 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,33 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland.,34 Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,35 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susarla K Shankar
- 36 Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, India.,37 Human Brain Tissue Repository, National Institute of Mental Health and Neuro Sciences, Neurobiology Research Centre, Bangalore, India
| | - Anita Mahadevan
- 36 Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, India.,37 Human Brain Tissue Repository, National Institute of Mental Health and Neuro Sciences, Neurobiology Research Centre, Bangalore, India
| | - T S Keshava Prasad
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India.,2 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
10
|
Alfieri M, Barbaro F, Consolini E, Bassi E, Dallatana D, Bergonzi C, Bianchera A, Bettini R, Toni R, Elviri L. A targeted mass spectrometry method to screen collagen types I-V in the decellularized 3D extracellular matrix of the adult male rat thyroid. Talanta 2019; 193:1-8. [DOI: 10.1016/j.talanta.2018.09.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 09/20/2018] [Accepted: 09/23/2018] [Indexed: 11/26/2022]
|
11
|
Fernández-Irigoyen J, Corrales F, Santamaría E. The Human Brain Proteome Project: Biological and Technological Challenges. Methods Mol Biol 2019; 2044:3-23. [PMID: 31432403 DOI: 10.1007/978-1-4939-9706-0_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brain proteomics has become a method of choice that allows zooming-in where neuropathophysiological alterations are taking place, detecting protein mediators that might eventually be measured in cerebrospinal fluid (CSF) as potential neuropathologically derived biomarkers. Following this hypothesis, mass spectrometry-based neuroproteomics has emerged as a powerful approach to profile neural proteomes derived from brain structures and CSF in order to map the extensive protein catalog of the human brain. This chapter provides a historical perspective on the Human Brain Proteome Project (HBPP), some recommendation to the experimental design in neuroproteomic projects, and a brief description of relevant technological and computational innovations that are emerging in the neurobiology field thanks to the proteomics community. Importantly, this chapter highlights recent discoveries from the biology- and disease-oriented branch of the HBPP (B/D-HBPP) focused on spatiotemporal proteomic characterizations of mouse models of neurodegenerative diseases, elucidation of proteostatic networks in different types of dementia, the characterization of unresolved clinical phenotypes, and the discovery of novel biomarker candidates in CSF.
Collapse
Affiliation(s)
- Joaquín Fernández-Irigoyen
- Proteomics Unit, Clinical Neuroproteomics Laboratory, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Proteored-ISCIII, Pamplona, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory,, Proteored-ISCIII, CIBERehd, Madrid, Spain
| | - Enrique Santamaría
- Proteomics Unit, Clinical Neuroproteomics Laboratory, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Proteored-ISCIII, Pamplona, Spain.
| |
Collapse
|
12
|
Macron C, Lane L, Núñez Galindo A, Dayon L. Deep Dive on the Proteome of Human Cerebrospinal Fluid: A Valuable Data Resource for Biomarker Discovery and Missing Protein Identification. J Proteome Res 2018; 17:4113-4126. [PMID: 30124047 DOI: 10.1021/acs.jproteome.8b00300] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cerebrospinal fluid (CSF) is a body fluid of choice for biomarker studies of brain disorders but remains relatively under-studied compared with other biological fluids such as plasma, partly due to the more invasive means of its sample collection. The present study establishes an in-depth CSF proteome through the analysis of a unique CSF sample from a pool of donors. After immunoaffinity depletion, the CSF sample was fractionated using off-gel electrophoresis and analyzed with liquid chromatography tandem mass spectrometry (MS) using the latest generation of hybrid Orbitrap mass spectrometers. The shotgun proteomic analysis allowed the identification of 20 689 peptides mapping on 3379 proteins. To the best of our knowledge, the obtained data set constitutes the largest CSF proteome published so far. Among the CSF proteins identified, 34% correspond to genes whose transcripts are highly expressed in brain according to the Human Protein Atlas. The principal Alzheimer's disease biomarkers (e.g., tau protein, amyloid-β, apolipoprotein E, and neurogranin) were detected. Importantly, our data set significantly contributes to the Chromosome-centric Human Proteome Project (C-HPP), and 12 proteins considered as missing are proposed for validation in accordance with the HPP guidelines. Of these 12 proteins, 8 proteins are based on 2 to 6 uniquely mapping peptides from this CSF analysis, and 4 match a new peptide with a "stranded" single peptide in PeptideAtlas from previous CSF studies. The MS proteomic data are available to the ProteomeXchange Consortium ( http://www.proteomexchange.org/ ) with the data set identifier PXD009646.
Collapse
Affiliation(s)
- Charlotte Macron
- Proteomics , Nestlé Institute of Health Sciences , 1015 Lausanne , Switzerland
| | - Lydie Lane
- CALIPHO Group , SIB-Swiss Institute of Bioinformatics , CMU, rue Michel-Servet 1 , 1211 Geneva 4 , Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine , University of Geneva , rue Michel-Servet 1 , 1211 Geneva 4 , Switzerland
| | | | - Loïc Dayon
- Proteomics , Nestlé Institute of Health Sciences , 1015 Lausanne , Switzerland
| |
Collapse
|
13
|
A comprehensive profile and inter-individual variations analysis of the human normal amniotic fluid proteome. J Proteomics 2018; 192:1-9. [PMID: 29684686 DOI: 10.1016/j.jprot.2018.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/23/2018] [Accepted: 04/14/2018] [Indexed: 11/21/2022]
Abstract
Amniotic fluid contains large amounts of proteins produced by amnion epithelial cells, fetal tissues, fetal excretions and placental tissues; thus, it is an important potential source of biomarkers for identifying fetal pathologies. In this study, a pooled AF sample from 7 healthy volunteers was used to provide a comprehensive profile of normal human AF proteome using immunoaffinity depletion of 14 high-abundance proteins. Each individual AF sample was used to analyze inter-individual variations with iTRAQ method. As a result, a total of 2881 non-redundant proteins were identified, and 1624 proteins were quantified based on the peak intensity-based semi-quantification (iBAQ) method. Gene Ontology (GO) analysis showed that the AF proteome was enriched in extracellular region and extracellular matrix. Further function annotation showed that the top canonical pathway was axonal guidance signaling. The inter-individual variation analysis of 7 individual AF samples showed that the median inter-individual CV (Coefficient of variation) was 0.22. iBAQ quantification analysis revealed that the inter-individual variations were not correlated with protein abundance. GO analysis indicated that intracellular proteins tended to have higher CVs, and extracellular proteins tended to have lower CVs. These data will contribute to a better understanding of amniotic fluid proteomic analysis and biomarker discovery. SIGNIFICANCE: Amniotic fluid is an important potential source of biomarkers for identifying fetal pathologies. This study provided a large database for the normal human amniotic fluid proteome and analysis of inter-individual variations in amniotic fluid proteomes, which will offer a baseline reference for further AF proteomic analysis and pregnancy-related disease biomarker discovery.
Collapse
|
14
|
Feng J, Zhang Q, Zhou Y, Yu S, Hong L, Zhao S, Yang J, Wan H, Xu G, Zhang Y, Li C. Integration of Proteomics and Metabolomics Revealed Metabolite-Protein Networks in ACTH-Secreting Pituitary Adenoma. Front Endocrinol (Lausanne) 2018; 9:678. [PMID: 30532734 PMCID: PMC6266547 DOI: 10.3389/fendo.2018.00678] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
An effective treatment for the management of adrenocorticotropic hormone-secreting pituitary adenomas (ACTH-PA) is currently lacking, although surgery is a treatment option. We have integrated information obtained at the metabolomic and proteomic levels to identify critical networks and signaling pathways that may play important roles in the metabolic regulation of ACTH-PA and therefore hopefully represent potential therapeutic targets. Six ACTH-PAs and seven normal pituitary glands were investigated via gas chromatography-mass spectrometry (GC-MS) analysis for metabolomics. Five ACTH-PAs and five normal pituitary glands were subjected to proteomics analysis via nano liquid chromatography tandem-mass spectrometry (nanoLC-MS/MS). The joint pathway analysis and network analysis was performed using MetaboAnalyst 3.0. software. There were significant differences of metabolites and protein expression levels between the ACTH-PAs and normal pituitary glands. A proteomic analysis identified 417 differentially expressed proteins that were significantly enriched in the Myc signaling pathway. The protein-metabolite joint pathway analysis showed that differentially expressed proteins and metabolites were significantly enriched in glycolysis/gluconeogenesis, pyruvate metabolism, citrate cycle (TCA cycle), and the fatty acid metabolism pathway in ACTH-PA. The protein-metabolite molecular interaction network identified from the metabolomics and proteomics investigation resulted in four subnetworks. Ten nodes in subnetwork 1 were the most significantly enriched in cell amino acid metabolism and pyrimidine nucleotide metabolism. Additionally, the metabolite-gene-disease interaction network established nine subnetworks. Ninety-two nodes in subnetwork 1 were the most significantly enriched in carboxylic acid metabolism and organic acid metabolism. The present study clarified the pathway networks that function in ACTH-PA. Our results demonstrated the presence of downregulated glycolysis and fatty acid synthesis in this tumor type. We also revealed that the Myc signaling pathway significantly participated in the metabolic changes and tumorigenesis of ACTH-PA. This data may provide biomarkers for ACTH-PA diagnosis and monitoring, and could also lead to the development of novel strategies for treating pituitary adenomas.
Collapse
Affiliation(s)
- Jie Feng
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Brain Tumor Center, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Shenyuan Yu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lichuan Hong
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sida Zhao
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jingjing Yang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong Wan
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Brain Tumor Center, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Brain Tumor Center, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chuzhong Li
| |
Collapse
|