1
|
Kim E, Redwood S, Liu F, Roche DJO, Chen S, Bentley WE, Eaton WW, Čiháková D, Talor MV, Kelly DL, Payne GF. Pilot study indicates that a gluten-free diet lowers oxidative stress for gluten-sensitive persons with schizophrenia. Schizophr Res 2024; 269:71-78. [PMID: 38749320 PMCID: PMC11215979 DOI: 10.1016/j.schres.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
One-third of people with schizophrenia have elevated levels of anti-gliadin antibodies (AGA IgG). A 5-week randomized double-blind pilot study was performed in 2014-2017 in an inpatient setting to test the effect of a gluten-free diet (GFD) on participants with schizophrenia or schizoaffective disorder who also had elevated AGA IgG (≥ 20 U) but were negative for celiac disease. This earlier pilot study reported that the GFD-group showed improved gastrointestinal and psychiatric symptoms, and also improvements in TNF-α and the inflammatory cytokine IL-23. Here, we performed measurements of these banked plasma samples to detect levels of oxidative stress (OxSt) using a recently developed iridium (Ir)-reducing capacity assay. Triplicate measurements of these samples showed an Intraclass Correlation Coefficient of 0.84 which indicates good reproducibility. Further, a comparison of the OxSt measurements at the baseline and 5-week end-point for this small sample size shows that the GFD-group (N = 7) had lowered OxSt levels compared to the gluten-containing diet group (GCD; N = 9; p = 0.05). Finally, we showed that improvements in OxSt over these 5 weeks were correlated to improvements in gastrointestinal (r = +0.64, p = 0.0073) and psychiatric (r = +0.52, p = 0.039) symptoms. Also, we showed a possible association between the decrease in OxSt and the lowered levels of IL-23 (r = +0.44, p = 0.087), although without statistical significance. Thus, the Ir-reducing capacity assay provides a simple, objective measure of OxSt with the results providing further evidence that inflammation, redox dysregulation and OxSt may mediate interactions between the gut and brain.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, United States; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, United States
| | - Sidney Redwood
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - Fang Liu
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, United States
| | - Daniel J O Roche
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, United States
| | - Shuo Chen
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, United States
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, United States; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - William W Eaton
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Daniela Čiháková
- Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, United States; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States
| | - Monica V Talor
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, United States.
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, United States; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
2
|
Lúcio H, Anunciação P, da Silva B, da Silva A, Queiroz V, de Carvalho C, Pinheiro-Sant’Ana H, Martino H. Consumption of Extruded Sorghum SC319 Improved Gut Microbiota at Genus Level and Reduced Anthropometric Markers in Men with Overweight: A Randomized Controlled Clinical Trial. Nutrients 2023; 15:3786. [PMID: 37686818 PMCID: PMC10490362 DOI: 10.3390/nu15173786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Sorghum is a cereal source of energy, carbohydrates, resistant starch, proanthocyanidins, and 3-deoxyanthocyanins; it promotes satiety by slowing digestion and benefits intestinal health. OBJECTIVE This study investigated the effects of extruded sorghum SC319 consumption on intestinal health, weight loss, and inflammatory markers in men with overweight. METHODS This was a randomized, controlled, single-blind clinical trial. Twenty-one men were randomly allocated into one of two groups: the sorghum group (test), which received 40 g of extruded SC319 whole sorghum (n = 10), or the wheat group (control), which received 38 g of extruded whole wheat (n = 11) for eight weeks. RESULTS The sorghum consumption increased the weight loss intragroup, decreased the body fat percentage intergroup, and did not change inflammatory markers, while the wheat group had increased IL-6 levels compared to baseline. Short-chain fatty acid production, fecal pH, and α and β diversity indexes did not differ intra- and intergroup after interventions. However, sorghum consumption decreased genus levels of Clostridium_sensu_stricto 1, Dorea, and Odoribacter and increased CAG-873 and Turicibacter compared to baseline. Further, sorghum showed a tendency (p = 0.07) to decrease the proteobacteria phyla compared to wheat. CONCLUSION Extruded sorghum SC319 improved intestinal microbiota and body composition and promoted weight loss, demonstrating its prebiotic potential.
Collapse
Affiliation(s)
- Haira Lúcio
- Nutrition and Health Department, Federal University of Viçosa, Campus Universitário, Av. Purdue, s/n, Viçosa 36570-900, MG, Brazil; (H.L.); (P.A.); (B.d.S.); (A.d.S.); (H.P.-S.)
| | - Pamella Anunciação
- Nutrition and Health Department, Federal University of Viçosa, Campus Universitário, Av. Purdue, s/n, Viçosa 36570-900, MG, Brazil; (H.L.); (P.A.); (B.d.S.); (A.d.S.); (H.P.-S.)
| | - Barbara da Silva
- Nutrition and Health Department, Federal University of Viçosa, Campus Universitário, Av. Purdue, s/n, Viçosa 36570-900, MG, Brazil; (H.L.); (P.A.); (B.d.S.); (A.d.S.); (H.P.-S.)
| | - Alessandra da Silva
- Nutrition and Health Department, Federal University of Viçosa, Campus Universitário, Av. Purdue, s/n, Viçosa 36570-900, MG, Brazil; (H.L.); (P.A.); (B.d.S.); (A.d.S.); (H.P.-S.)
| | - Valéria Queiroz
- Embrapa Milho e Sorgo, Rote MG 424, Km 65, Sete Lagoas 35701-970, MG, Brazil;
| | - Carlos de Carvalho
- Embrapa Agroindústria de Alimentos, Av. das Américas, nº 29.501, Guaratiba, Rio de Janeiro 23020-470, RJ, Brazil;
| | - Helena Pinheiro-Sant’Ana
- Nutrition and Health Department, Federal University of Viçosa, Campus Universitário, Av. Purdue, s/n, Viçosa 36570-900, MG, Brazil; (H.L.); (P.A.); (B.d.S.); (A.d.S.); (H.P.-S.)
| | - Hercia Martino
- Nutrition and Health Department, Federal University of Viçosa, Campus Universitário, Av. Purdue, s/n, Viçosa 36570-900, MG, Brazil; (H.L.); (P.A.); (B.d.S.); (A.d.S.); (H.P.-S.)
| |
Collapse
|
3
|
Xie Q, Liu C, Fu W, Chen C, Gu S, Luo D, Xue W. Intestinal microenvironment-mediated allergic dynamic phenotypes and endotypes in the development of gluten allergy. Food Res Int 2023; 169:112840. [PMID: 37254413 DOI: 10.1016/j.foodres.2023.112840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
This study aimed to investigate the dynamic changes in intestinal microenvironment factors in the development of gluten-induced allergy (GA). Our results showed that GA provoked increasingly severe allergic phenotypes such as allergic and diarrheal symptoms with the gluten sensitization frequency, which was accompanied by dynamically rising levels of gluten-specific immunoglobulin (Ig) E, IgG2a and IgA, serum histamine, T cell-related inflammatory cytokines, and intestinal indexes. An increase in luminal pH was more significant in the large intestine versus the small intestine, which was due to a dynamic decline in colonic short-chain fatty acid levels. Both antioxidant capacity and intestinal permeability in the large intestine varied with the GA severity, as evidenced by a dynamic increase in the malondialdehyde content and a decrease in the superoxide dismutase activity and total antioxidant capacity. Moreover, we demonstrated that intestinal microenvironment dysbiosis occurred before a true allergy reaction began. Spearman correlation analysis suggested that the characteristic bacterial cluster, namely Alistipes, Desulfovibrio, Ileibacterium, Parabacteroides, and Ruminococcus torques group, are essential in the association between GA and intestinal microenvironment homeostasis.
Collapse
Affiliation(s)
- Qiang Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, PR China
| | - Chenglong Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, PR China
| | - Wenhui Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, PR China
| | - Chen Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, PR China
| | - Shimin Gu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, PR China
| | - Dan Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, PR China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, PR China.
| |
Collapse
|
4
|
Assessment of immune responses and intestinal flora in BALB/c mice model of wheat food allergy via different sensitization methods. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Chaykin A, Odintsova` E, Nedorubov A. Celiac Disease: Disease Models in Understanding Pathogenesis and Search for Therapy. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.11024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Celiac disease is a complex polygenic systemic disorder caused by dietary gluten exposure that selectively occurs in genetically susceptible people. The potential celiac disease is defined by the presence of celiac disease-specific antibodies and compatible human leukocyte antigen but without histological abnormalities in duodenal biopsies. At present, the only treatment is lifelong adherence to a gluten-free diet. Despite its effectiveness, the diet is difficult to maintain due to its cost, availability of gluten-free foods, and hidden gluten. The need to develop non-dietary treatment methods is widely recognized, but this is prevented by the absence of a pathophysiologically relevant preclinical model. Nonetheless, in vitro and in vivo models have made it possible to investigate the mechanisms of the disease and develop new treatment approaches: The use of foods with neutralized gluten, microbiota correction, cocktails of specific endoproteinase, polymer gluten binders, specific inhibitors of transglutaminases and inflammatory cytokines, and a vaccine based on allergen-specific therapy.
Collapse
|
6
|
Yu T, Hu S, Min F, Li J, Shen Y, Yuan J, Gao J, Wu Y, Chen H. Wheat Amylase Trypsin Inhibitors Aggravate Intestinal Inflammation Associated with Celiac Disease Mediated by Gliadin in BALB/c Mice. Foods 2022; 11:1559. [PMID: 35681310 PMCID: PMC9180791 DOI: 10.3390/foods11111559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Celiac disease (CD) is an autoimmune intestinal disorder caused by the ingestion of gluten in people who carry the susceptible gene. In current celiac disease research, wheat gluten is often the main target of attention, neglecting the role played by non-gluten proteins. This study aimed to describe the effects of wheat amylase trypsin inhibitors (ATI, non-gluten proteins) and gliadin in BALB/c mice while exploring the further role of relevant adjuvants (cholera toxin, polyinosinic: polycytidylic acid and dextran sulfate sodium) intervention. An ex vivo splenocyte and intestinal tissue were collected for analysis of the inflammatory profile. The consumption of gliadin and ATI caused intestinal inflammation in mice. Moreover, the histopathology staining of four intestinal sections (duodenum, jejunum, terminal ileum, and middle colon) indicated that adjuvants, especially polyinosinic: polycytidylic acid, enhanced the villi damage and crypt hyperplasia in co-stimulation with ATI and gliadin murine model. Immunohistochemical results showed that tissue transglutaminase and IL-15 expression were significantly increased in the jejunal tissue of mice treated with ATI and gliadin. Similarly, the expression of inflammatory factors (TNF-α, IL-1β, IL-4, IL-13) and Th1/Th2 balance also showed that the inflammation response was significantly increased after co-stimulation with ATI and gliadin. This study provided new evidence for the role of wheat amylase trypsin inhibitors in the pathogenesis of celiac disease.
Collapse
Affiliation(s)
- Tian Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China;
| | - Shuai Hu
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China;
| | - Fangfang Min
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China;
| | - Jingjing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China;
| | - Yunpeng Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China;
| | - Juanli Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- School of Pharmaceutical Science, Nanchang University, Nanchang 330006, China
| | - Jinyan Gao
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China;
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
7
|
Evaluation of Anti-Inflammatory and Atheroprotective Properties of Wheat Gluten Protein Hydrolysates in Primary Human Monocytes. Foods 2020; 9:foods9070854. [PMID: 32630013 PMCID: PMC7404777 DOI: 10.3390/foods9070854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/12/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Bioactive protein hydrolysates have been identified in several sources as possible agents in the prevention and treatment of many diseases. A wheat gluten (WG) concentrate was hydrolyzed by Alcalase under specific conditions. The resulting hydrolysates were evaluated by in vitro cell-free experiments leading to the identification of one bioactive WG protein hydrolysate (WGPH), which was used at 50 and 100 μg/mL on primary human monocytes. Reactive oxygen species (ROS) and nitrite levels and RT-qPCR and ELISA techniques were used to analyze the functional activity of WGPH. Our results showed that WGPH hydrolyzed in 45 min (WGPH45A) down-regulated gene expression of Interleukin (IL)-1β, IL-6, IL-17, and Interferon gamma (IFNγ) and reduced cytokine release in lipopolysaccharide (LPS)-stimulated monocytes. In addition, WGPH45A down-regulated gene-related to atherosclerotic onset. Our results suggest that WGPH45A has a potent anti-inflammatory and atheroprotective properties, reducing the expression of gene-related inflammation and atherosclerosis that could be instrumental in maintaining cardiovascular homeostasis.
Collapse
|
8
|
Ni WW, Zhang QM, Zhang X, Li Y, Yu SS, Wu HY, Chen Z, Li AL, Du P, Li C. Modulation effect of Lactobacillus acidophilus KLDS 1.0738 on gut microbiota and TLR4 expression in β-lactoglobulin-induced allergic mice model. Allergol Immunopathol (Madr) 2020; 48:149-157. [PMID: 31477403 DOI: 10.1016/j.aller.2019.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVES β-lactoglobulin (β-Lg)-sensitized mice model was employed to investigate the correlation between Lactobacillus acidophilus KLDS 1.0738 (Lap KLDS 1.0738) modulating gut microbiota and inducting Toll-like receptors (TLRs) expression. METHODS The alterations of mice fecal microbiota were analyzed by 16S rRNA gene sequencing. The serum cytokines production and TLR4/NF-κB mRNA expression in the colon tissues were measured by ELISA kit and quantitative RT-PCR, respectively. RESULTS The results showed that Lap KLDS 1.0738 pretreatment attenuated β-Lg-induced hypersensitivity, accompanied with a diminished expression of TLR4/NF-κB signaling. Moreover, oral administration of Lap KLDS 1.0738 improved the richness and diversity of fecal microbiota, which was characterized by fewer Proteobacteria phylum and Helicobacteraceae family, and higher Firmicutes phylum and Lachnospiraceae family than allergic group. Notably, TLR4/NF-κB expression was positively correlated with the family of Helicobacteraceae in allergic group, but negatively correlated with the family of Lachnospiraceae, Ruminococcaceae and anti-inflammatory cytokines level. A significant positive correlation was observed between TLR4/NF-κB expression and the production of histamine, total IgE and pro-inflammatory cytokines. CONCLUSIONS Intake of Lap KLDS 1.0738 can influence the gut bacterial composition, which might result in recognizing TLRs signaling so as to inhibit allergic response.
Collapse
Affiliation(s)
- W-W Ni
- Key Laboratory of Dairy Science, Food Science College, Northeast Agriculture University, Northeast Agriculture University, Harbin, China
| | - Q-M Zhang
- Key Laboratory of Dairy Science, Food Science College, Northeast Agriculture University, Northeast Agriculture University, Harbin, China
| | - X Zhang
- Key Laboratory of Dairy Science, Food Science College, Northeast Agriculture University, Northeast Agriculture University, Harbin, China
| | - Y Li
- Key Laboratory of Dairy Science, Food Science College, Northeast Agriculture University, Northeast Agriculture University, Harbin, China
| | - S-S Yu
- Key Laboratory of Dairy Science, Food Science College, Northeast Agriculture University, Northeast Agriculture University, Harbin, China
| | - H-Y Wu
- Key Laboratory of Dairy Science, Food Science College, Northeast Agriculture University, Northeast Agriculture University, Harbin, China
| | - Z Chen
- Key Laboratory of Dairy Science, Food Science College, Northeast Agriculture University, Northeast Agriculture University, Harbin, China
| | - A-L Li
- Key Laboratory of Dairy Science, Food Science College, Northeast Agriculture University, Northeast Agriculture University, Harbin, China.
| | - P Du
- Key Laboratory of Dairy Science, Food Science College, Northeast Agriculture University, Northeast Agriculture University, Harbin, China.
| | - C Li
- Key Laboratory of Dairy Science, Food Science College, Northeast Agriculture University, Northeast Agriculture University, Harbin, China
| |
Collapse
|
9
|
Mohan Kumar B, Vijaykrishnaraj M, Kurrey NK, Shinde VS, Prabhasankar P. Prolyl endopeptidase-degraded low immunoreactive wheat flour attenuates immune responses in Caco-2 intestinal cells and gluten-sensitized BALB/c mice. Food Chem Toxicol 2019; 129:466-475. [DOI: 10.1016/j.fct.2019.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/24/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022]
|
10
|
Kelly DL, Demyanovich HK, Eaton WW, Cascella N, Jackson J, Fasano A, Carpenter WT. Anti gliadin antibodies (AGA IgG) related to peripheral inflammation in schizophrenia. Brain Behav Immun 2018; 69:57-59. [PMID: 29074356 PMCID: PMC8582000 DOI: 10.1016/j.bbi.2017.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/10/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022] Open
Abstract
Altered immune function and inflammation are seen in schizophrenia, however, peripheral inflammatory markers are not consistently elevated in all people, suggesting inflammation may be present only in a subgroup. We measured TNF-α and IL-Iβ in 100 people with schizophrenia or schizoaffective disorder and correlated these with antibodies to gliadin, a protein found in wheat, barley and rye that has been found to be elevated in some people with schizophrenia. We hypothesized that higher peripheral antigliadin antibodies (AGA IgG) would be associated with higher peripheral inflammation as measured by TNF-α and IL-1β. Mean log transformed values of TNF-α, (p=.029) and IL-1β (p=.016) were over twofold higher in people with schizophrenia who had high levels of AGA IgG (≥7 U) compared to those who did not have positivity to AGA IgG. We found a significant positive correlation between AGA IgG and the log transformed TNF-α (r=0.42, p<.0001) as well as IL-Iβ (r=0.51, p<.0001). The relationship was independent of cigarette smoking, body mass index and antipsychotic medications. People with schizophrenia having higher levels of AGA IgG show higher levels of peripheral inflammation and may define a subgroup with distinct pathophysiology and potentially novel treatment targets.
Collapse
Affiliation(s)
- Deanna L. Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, United States,Corresponding author. (D.L. Kelly)
| | - Haley K. Demyanovich
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, United States
| | - William W. Eaton
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, United States
| | - Nicola Cascella
- Neuropsychiatry Program Sheppard Pratt Health System, 6501 N. Charles Street, Baltimore, MD 21204, United States
| | - Jessica Jackson
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, United States
| | - Alessio Fasano
- Center for Celiac Research and Treatment, Mucosal Immunology and Biology Research Center, and Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States
| | - William T. Carpenter
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, United States
| |
Collapse
|