1
|
Feng C, Li J, Yang W, Chen Z. Study on the inactivation effect and mechanism of EGCG disinfectant on Bacillus subtilis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124364. [PMID: 38878811 DOI: 10.1016/j.envpol.2024.124364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
The widespread use of chlorine-based disinfectants in drinking water treatment has led to the proliferation of chlorine-resistant bacteria and the risk of disinfection byproducts (DBPs), posing a serious threat to public health. This study aims to explore the effectiveness and potential applications of epigallocatechin gallate (EGCG) against chlorine-resistant Bacillus and its spores in water, providing new insights for the control of chlorine-resistant bacteria and improving the biological stability of distribution systems. The inactivation effects of EGCG on Bacillus subtilis (B. subtilis) and its spores were investigated using transmission electron microscopy, ATP measurement, and transcriptome sequencing analysis to determine changes in surface structure, energy metabolism, and gene expression levels, thereby elucidating the inactivation mechanism. The results demonstrate the potential application of EGCG in continuously inhibiting chlorine-resistant B. subtilis in water, effectively improving the biological stability of the distribution system. However, EGCG is not suitable for treating raw water with high spore content and is more suitable as a supplementary disinfectant for processes with strong spore removal capabilities, such as ozone, ultraviolet, or ultrafiltration. EGCG exhibits a disruptive effect on the morphological structure and energy metabolism of B. subtilis and suppresses the synthesis of substances, energy metabolism, and normal operation of the antioxidant system by inhibiting the expression of multiple genes, thereby achieving the inactivation of B. subtilis.
Collapse
Affiliation(s)
- Cuimin Feng
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Jing Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Weiqi Yang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Zexin Chen
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; National Demonstration Center for Experimental Water Environment Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
2
|
Aldeewan AB, Jaber NN, Abdulhameed MF, Abbas BA. Microbial risk assessment of dairy products from retail marketplaces in Basrah province, Iraq. Open Vet J 2024; 14:779-786. [PMID: 38682148 PMCID: PMC11052614 DOI: 10.5455/ovj.2024.v14.i3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/15/2024] [Indexed: 05/01/2024] Open
Abstract
Background Milk-borne bacteria cause degradation of milk products and constitute a significant risk to public health. Aim The objectives of the present study are to determine the microbiological quality of dairy products and to investigate pathogenic microorganisms. Methods A total of 60 samples of raw milk, homemade cheese, and yogurt were randomly selected from different retail marketplaces in Basrah. The bacteriological and biochemical tests were utilized to identify the pathogens in dairy samples, as well as the molecular technique was used as an accurate diagnostic test. Results The prevalence of contamination of milk products with various isolates was estimated as 50% (95% Cl: 36.8-63.2). The mean of total bacteria count for cheese was 7.29 ± 2.70, raw milk 4.62 ± 2.86, and yogurt 2.87 ± 1.05, with a significant p-value (p = 0.001). The mean count of aerobic spore-forming (ASF) contaminated raw milk was analyzed as 3.77 ± 1.18 and less contamination detected in the yogurt samples with mean of ASF was estimated as 2.52 ± 1.47 SD log 10 CFU/ml. A range of important microorganisms to human health were identified by employing the VITEK_2 system and sequencing 16S rDNA gene, including Staphylococcus aureus, Escherichia coli, Pseudomonas aerogenosa, and Bacillus cereus. Conclusion The study indicates that there is a high level of bacterial contamination in dairy products with different bacteria species, which is medically important. Therefore, food safety management must be implemented to reduce biological risks carried by dairy products and ensure healthy food for consumers.
Collapse
Affiliation(s)
- Ali Balbool Aldeewan
- Microbiology Department, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - Nawres Norri Jaber
- Microbiology Department, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | | | - Basil Abdulzahra Abbas
- Microbiology Department, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| |
Collapse
|
3
|
Changes in the Spore Proteome of Bacillus cereus in Response to Introduction of Plasmids. Microorganisms 2022; 10:microorganisms10091695. [PMID: 36144297 PMCID: PMC9503168 DOI: 10.3390/microorganisms10091695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Fluorescent fusion proteins were expressed in Bacillus cereus to visualize the germinosome by introducing a plasmid that carries fluorescent fusion proteins of germinant receptor GerR subunits or germinosome scaffold protein GerD. The effects of plasmid insertion and recombinant protein expression on the spore proteome were investigated. Proteomic analysis showed that overexpression of the target proteins had negligible effects on the spore proteome. However, plasmid-bearing spores displayed dramatic abundance changes in spore proteins involved in signaling and metabolism. Our findings indicate that the introduction of a plasmid alone alters the spore protein composition dramatically, with 993 proteins significantly down-regulated and 415 proteins significantly up-regulated among 3323 identified proteins. This shows that empty vector controls are more appropriate to compare proteome changes due to plasmid-encoded genes than is the wild-type strain, when using plasmid-based genetic tools. Therefore, researchers should keep in mind that molecular cloning techniques can alter more than their intended targets in a biological system, and interpret results with this in mind.
Collapse
|
4
|
Xu Z, Yang Q, Zhu Y. Transcriptome analysis reveals the molecular mechanisms of the novel Lactobacillus pentosus pentocin against Bacillus cereus. Food Res Int 2022; 151:110840. [PMID: 34980379 DOI: 10.1016/j.foodres.2021.110840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022]
Abstract
The objective of this study was to investigate the antibacterial effect and mechanism of Lactobacillus pentosus pentocin against Bacillus cereus. The dynamic growth of B. cereus showed that the pentocin had strong antibacterial activity against the strain. The antibacterial mechanism focused on cytomembrane destruction, biofilms formation, DNA replication and protein synthesis of B. cereus. The scanning electron microscopy, transmission electron microscopy and flow cytometry analysis illustrated that the cytomembranes were destroyed, causing the leakage of internal cellular components. Transcriptome sequencing indicated that the genes (KinB, KinC and Spo0B) in two component systems signal pathway were down-regulated, which resulted in the inhibition of the spores and biofilms formation of B. cereus. The phosphorylation and autoinducer-2 import were inhibited by down-regulating the expression levels of LuxS and LsrB genes in quorum sensing signal pathway, which also suppressed biofilms formation of B. cereus. The K+ leakage activated the K+ transport channels by up-relating the genes (KdpA, KdpB and KdpC), promoting the entry of K+ from the extracellular. In addition, the pentocin interfered DNA replication and protein synthesis by regulating the genes associated with DNA replication (dnaX and holB), RNA degradation (cshA, rho, rnj, deaD, rny, dnaK, groEL and hfq) and ribosome function (rpsA, rpsO and rplS). In this article, we provide some novel insights into the molecular mechanism responsible for high antibacterial activity of the L. pentosus pentocin against B. cereus. And the pentocin might be a very promising natural preservative for controlling the B. cereus contaminations in foods.
Collapse
Affiliation(s)
- Zhiqiang Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yinglian Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
5
|
Raghuraman BK, Bogdanova A, Moon H, Rzagalinski I, Geertsma ER, Hersemann L, Shevchenko A. Median-Based Absolute Quantification of Proteins Using Fully Unlabeled Generic Internal Standard (FUGIS). J Proteome Res 2021; 21:132-141. [PMID: 34807614 PMCID: PMC8749952 DOI: 10.1021/acs.jproteome.1c00596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
By reporting the
molar abundance of proteins, absolute quantification
determines their stoichiometry in complexes, pathways, or networks.
Typically, absolute quantification relies either on protein-specific
isotopically labeled peptide standards or on a semiempirical calibration
against the average abundance of peptides chosen from arbitrarily
selected proteins. In contrast, a generic protein standard FUGIS (fully
unlabeled generic internal standard) requires no isotopic labeling,
chemical synthesis, or external calibration and is applicable to quantifying
proteins of any organismal origin. The median intensity of the peptide
peaks produced by the tryptic digestion of FUGIS is used as a single-point
calibrant to determine the molar abundance of any codigested protein.
Powered by FUGIS, median-based absolute quantification (MBAQ) outperformed
other methods of untargeted proteome-wide absolute quantification.
Collapse
Affiliation(s)
- Bharath Kumar Raghuraman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Aliona Bogdanova
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - HongKee Moon
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Ignacy Rzagalinski
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Lena Hersemann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
6
|
The Membrane Proteome of Spores and Vegetative Cells of the Food-Borne Pathogen Bacillus cereus. Int J Mol Sci 2021; 22:ijms222212475. [PMID: 34830357 PMCID: PMC8624511 DOI: 10.3390/ijms222212475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Membrane proteins are fascinating since they play an important role in diverse cellular functions and constitute many drug targets. Membrane proteins are challenging to analyze. The spore, the most resistant form of known life, harbors a compressed inner membrane. This membrane acts not only as a barrier for undesired molecules but also as a scaffold for proteins involved in signal transduction and the transport of metabolites during spore germination and subsequent vegetative growth. In this study, we adapted a membrane enrichment method to study the membrane proteome of spores and cells of the food-borne pathogen Bacillus cereus using quantitative proteomics. Using bioinformatics filtering we identify and quantify 498 vegetative cell membrane proteins and 244 spore inner membrane proteins. Comparison of vegetative and spore membrane proteins showed there were 54 spore membrane-specific and 308 cell membrane-specific proteins. Functional characterization of these proteins showed that the cell membrane proteome has a far larger number of transporters, receptors and proteins related to cell division and motility. This was also reflected in the much higher expression level of many of these proteins in the cellular membrane for those proteins that were in common with the spore inner membrane. The spore inner membrane had specific expression of several germinant receptors and spore-specific proteins, but also seemed to show a preference towards the use of simple carbohydrates like glucose and fructose owing to only expressing transporters for these. These results show the differences in membrane proteome composition and show us the specific proteins necessary in the inner membrane of a dormant spore of this toxigenic spore-forming bacterium to survive adverse conditions.
Collapse
|
7
|
Han Z, Lu J, An W, Zhang Y, Yang M. Removal efficacy of opportunistic pathogen gene markers in drinking water supply systems: an in situ and large-scale molecular investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54153-54160. [PMID: 34389952 DOI: 10.1007/s11356-021-15744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The prevalence and interactions with biofilm and disinfectant of opportunistic pathogens in drinking water supply systems (DWSSs) have been extensively interpreted. In contrast, the large geographical distribution and in situ removal of opportunistic pathogens are overlooked aspects. Here, paired source and tap water samples of 36 parallel DWSSs across China were collected, with five common waterborne pathogens characterized by qPCR. From source to tap, the removal of bacterial biomass (16S rRNA gene copy number) was 1.10 log, and gene marker removal of five opportunistic pathogens ranged from 0.66 log to 2.27 log, with the order of Escherichia coli > Mycobacterium spp. > Clostridium perfringens > Bacillus cereus > Aeromonas hydrophila. Different with bacterial community, geographical location and source water types (river or reservoir) were not key contributor to variation of opportunistic pathogens. Gene marker removal efficacies of E. coli, Mycobacterium spp., and C. perfringens from source to tap were restricted to removal efficacy of overall bacterial biomass, while abundance of B. cereus in tap water linked to the input of B. cereus from source water. Although culture-dependent approach is important for pathogen enumeration in drinking water, qPCR-based molecular survey shows advantages of quantifiable high-throughput and easy operation, providing abundant and timely information on pathogen occurrence in water. This study provides the in situ, molecular-level evidence toward differential propagation features of multiple opportunistic pathogens in DWSSs and suggests the source protection and early warning of treatment-resistant pathogens.
Collapse
Affiliation(s)
- Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junying Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wei An
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Min Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
8
|
Mappa C, Pible O, Armengaud J, Alpha-Bazin B. Assessing the ratio of Bacillus spores and vegetative cells by shotgun proteomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25107-25115. [PMID: 30302730 DOI: 10.1007/s11356-018-3341-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Mass spectrometry for rapid identification of microorganisms is expanding over the last years because this approach is quick. This methodology provides a decisive interest to fight against bioterrorism as it is applicable whatever the pathogen to be considered and often allows subtyping which may be crucial for confirming a massive and widespread attack with biological agents. Here, we present a methodology based on next-generation proteomics and tandem mass spectrometry for discovering numerous protein biomarkers allowing the discrimination of spores and vegetative cells of Bacillus atrophaeus, a biowarfare simulant. We propose a global quantitative evaluation of the two groups of discriminant biomarkers based on their aggregated normalized spectral abundance factors.
Collapse
Affiliation(s)
- Charlotte Mappa
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, 30207, Bagnols sur Cèze, France
| | - Olivier Pible
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, 30207, Bagnols sur Cèze, France
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, 30207, Bagnols sur Cèze, France.
| | - Béatrice Alpha-Bazin
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, 30207, Bagnols sur Cèze, France
| |
Collapse
|
9
|
Beskrovnaya P, Sexton DL, Golmohammadzadeh M, Hashimi A, Tocheva EI. Structural, Metabolic and Evolutionary Comparison of Bacterial Endospore and Exospore Formation. Front Microbiol 2021; 12:630573. [PMID: 33767680 PMCID: PMC7985256 DOI: 10.3389/fmicb.2021.630573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Sporulation is a specialized developmental program employed by a diverse set of bacteria which culminates in the formation of dormant cells displaying increased resilience to stressors. This represents a major survival strategy for bacteria facing harsh environmental conditions, including nutrient limitation, heat, desiccation, and exposure to antimicrobial compounds. Through dispersal to new environments via biotic or abiotic factors, sporulation provides a means for disseminating genetic material and promotes encounters with preferable environments thus promoting environmental selection. Several types of bacterial sporulation have been characterized, each involving numerous morphological changes regulated and performed by non-homologous pathways. Despite their likely independent evolutionary origins, all known modes of sporulation are typically triggered by limited nutrients and require extensive membrane and peptidoglycan remodeling. While distinct modes of sporulation have been observed in diverse species, two major types are at the forefront of understanding the role of sporulation in human health, and microbial population dynamics and survival. Here, we outline endospore and exospore formation by members of the phyla Firmicutes and Actinobacteria, respectively. Using recent advances in molecular and structural biology, we point to the regulatory, genetic, and morphological differences unique to endo- and exospore formation, discuss shared characteristics that contribute to the enhanced environmental survival of spores and, finally, cover the evolutionary aspects of sporulation that contribute to bacterial species diversification.
Collapse
Affiliation(s)
| | | | | | | | - Elitza I. Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Xing Y, Harper WF. Bacillus spore awakening: recent discoveries and technological developments. Curr Opin Biotechnol 2020; 64:110-115. [DOI: 10.1016/j.copbio.2019.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022]
|
11
|
Ding W, Jin W, Cao S, Zhou X, Wang C, Jiang Q, Huang H, Tu R, Han SF, Wang Q. Ozone disinfection of chlorine-resistant bacteria in drinking water. WATER RESEARCH 2019; 160:339-349. [PMID: 31158616 DOI: 10.1016/j.watres.2019.05.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/26/2019] [Accepted: 05/04/2019] [Indexed: 05/05/2023]
Abstract
The wide application of chlorine disinfectant for drinking water treatment has led to the appearance of chlorine-resistant bacteria, which pose a severe threat to public health. This study was performed to explore the physiological-biochemical characteristics and environmental influence (pH, temperature, and turbidity) of seven strains of chlorine-resistant bacteria isolated from drinking water. Ozone disinfection was used to investigate the inactivation effect of bacteria and spores. The DNA concentration and cell surface structure variations of typical chlorine-resistant spores (Bacillus cereus spores) were also analysed by real-time qPCR, flow cytometry, and scanning electron microscopy to determine their inactivation mechanisms. The ozone resistance of bacteria (Aeromonas jandaei < Vogesella perlucida < Pelomonas < Bacillus cereus < Aeromonas sobria) was lower than that of spores (Bacillus alvei < Lysinibacillus fusiformis < Bacillus cereus) at an ozone concentration of 1.5 mg/L. More than 99.9% of Bacillus cereus spores were inactivated by increasing ozone concentration and treatment duration. Moreover, the DNA content of Bacillus cereus spores decreased sharply, but approximately 1/4 of the target genes remained. The spore structure exhibited shrinkage and folding after ozone treatment. Both cell structures and gene fragments were damaged by ozone disinfection. These results showed that ozone disinfection is a promising method for inactivating chlorine-resistant bacteria and spores in drinking water.
Collapse
Affiliation(s)
- Wanqing Ding
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wenbiao Jin
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Song Cao
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | | | - Qijun Jiang
- Shenshui Baoan Water Group Co., Ltd, Shenzhen, China
| | - Hui Huang
- Shenshui Baoan Water Group Co., Ltd, Shenzhen, China
| | - Renjie Tu
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Song-Fang Han
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
12
|
Abhyankar WR, Wen J, Swarge BN, Tu Z, de Boer R, Smelt JPPM, de Koning LJ, Manders E, de Koster CG, Brul S. Proteomics and microscopy tools for the study of antimicrobial resistance and germination mechanisms of bacterial spores. Food Microbiol 2018; 81:89-96. [PMID: 30910091 DOI: 10.1016/j.fm.2018.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/21/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
Bacterial spores are ubiquitous in nature and can withstand both chemical and physical stresses. Spores can survive food preservation processes and upon outgrowth cause food spoilage as well as safety risks. The heterogeneous germination and outgrowth behavior of isogenic spore populations exacerbates this risk. A major unknown factor of spores is likely to be the inherently heterogeneous spore protein composition. The proteomics methods discussed here help in broadening the knowledge about spore structure and identification of putative target proteins from spores of different spore formers. Approaches to synchronize Bacillus subtilis spore formation, and to analyze spore proteins as well as the physiology of spore germination and outgrowth are also discussed. Live-imaging and fluorescence microscopy techniques discussed here allow analysis, at single cell level, of the 'germinosome', the process of spore germination itself, spore outgrowth and the spore intracellular pH dynamics. For the latter, a recently published improved pHluorin (IpHluorin) under control of the ptsG promoter is applicable. While the data obtained from such tools offers novel insight in the mechanisms of bacterial spore awakening, it may also be used to probe candidate antimicrobial compounds for inhibitory effects on spore germination and strengthen microbial risk assessment.
Collapse
Affiliation(s)
- W R Abhyankar
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - J Wen
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - B N Swarge
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Z Tu
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - R de Boer
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - J P P M Smelt
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - L J de Koning
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - E Manders
- Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - C G de Koster
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - S Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|