1
|
Bao Q, Wan N, He Z, Cao J, Yuan W, Hao H, Ye H. Subcellular Proteomic Mapping of Lysine Lactylation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39569522 DOI: 10.1021/jasms.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Protein lactylation is a novel post-translational modification (PTM) involved in many important physiological processes such as macrophage polarization, immune regulation, and tumor cell growth. However, traditional methodologies for studying lactylation have predominantly relied on peptide enrichment from whole-cell lysates, which tend to favor the detection of high-abundance peptides, thus limiting the identification of low-abundance lactylated peptides. To address this limitation, here, we employed subcellular fractionation to separate proteins and map lactylated peptides from each isolated subcellular fraction using a model cell line. In brief, we identified 1,217 lysine lactylation (Kla) sites on 553 proteins across four subcellular fractions. Subsequent pathway enrichment analysis revealed that Kla proteins participate in distinct pathways depending on the subcellular contexts. In addition, this subcellular fractionation method enabled the discovery of 36 previously unreported Kla proteins and 223 novel Kla sites, many of which are present in low abundance. Notably, several proteins contain multiple newly identified Kla sites, exemplified by the transcriptional regulator ATRX. Furthermore, our results indicate the possibility of PTM crosstalk between Kla and other PTMs such as ubiquitination and sumoylation. In conclusion, subcellular fractionation facilitates the identification of Kla proteins that have been previously uncovered and could be overlooked by affinity enrichment of whole-cell lysates.
Collapse
Affiliation(s)
- Qiuyu Bao
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Ning Wan
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Zimeng He
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Ji Cao
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Wenjie Yuan
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Haiping Hao
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Hui Ye
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| |
Collapse
|
2
|
Pade LR, Stepler KE, Portero EP, DeLaney K, Nemes P. Biological mass spectrometry enables spatiotemporal 'omics: From tissues to cells to organelles. MASS SPECTROMETRY REVIEWS 2024; 43:106-138. [PMID: 36647247 PMCID: PMC10668589 DOI: 10.1002/mas.21824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 06/17/2023]
Abstract
Biological processes unfold across broad spatial and temporal dimensions, and measurement of the underlying molecular world is essential to their understanding. Interdisciplinary efforts advanced mass spectrometry (MS) into a tour de force for assessing virtually all levels of the molecular architecture, some in exquisite detection sensitivity and scalability in space-time. In this review, we offer vignettes of milestones in technology innovations that ushered sample collection and processing, chemical separation, ionization, and 'omics analyses to progressively finer resolutions in the realms of tissue biopsies and limited cell populations, single cells, and subcellular organelles. Also highlighted are methodologies that empowered the acquisition and analysis of multidimensional MS data sets to reveal proteomes, peptidomes, and metabolomes in ever-deepening coverage in these limited and dynamic specimens. In pursuit of richer knowledge of biological processes, we discuss efforts pioneering the integration of orthogonal approaches from molecular and functional studies, both within and beyond MS. With established and emerging community-wide efforts ensuring scientific rigor and reproducibility, spatiotemporal MS emerged as an exciting and powerful resource to study biological systems in space-time.
Collapse
Affiliation(s)
- Leena R. Pade
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Kaitlyn E. Stepler
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Erika P. Portero
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Kellen DeLaney
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| |
Collapse
|
3
|
Yajima K, Akiyoshi T, Sakamoto K, Suzuki Y, Oka T, Imaoka A, Yamamura H, Kurokawa J, Ohtani H. Determination of single-molecule transport activity of OATP2B1 by measuring the number of transporter molecules using electrophysiological approach. J Pharmacol Sci 2023; 153:153-160. [PMID: 37770156 DOI: 10.1016/j.jphs.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/12/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Transporter-mediated clearance is determined by two factors, its single-molecule clearance, and expression level. However, no reliable method has been developed to evaluate them separately. This study aimed to develop a reliable method for evaluating the single-molecule activity of membrane transporters, such as organic anion transporting polypeptide (OATP) 2B1. HEK293 cells that co-expressed large conductance calcium-activated potassium (BK) channel and OATP2B1 were established and used for the following experiments. i) BK channel-mediated whole-cell conductance was measured using patch-clamp technique and divided by its unitary conductance to estimate the number of channels on plasma membrane (QI). ii) Using plasma membrane fraction, quantitative targeted absolute proteomics determined the stoichiometric ratio (ρ) of OATP2B1 to BK channel. iii) The uptake of estrone 3-sulfate was evaluated to calculate the Michaelis constant and uptake clearance (CL) per cell. Single-molecule clearance (CLint) was calculated by dividing CL by QI·ρ. QI and ρ values were estimated to be 916 and 2.16, respectively, yielding CLint of 5.23 fL/min/molecule. We successfully developed a novel method to reliably measure the single-molecule activity of a transporter, which could be used to evaluate the influences of factors such as genetic variations and post-translational modifications on the intrinsic activity of transporters.
Collapse
Affiliation(s)
- Kodai Yajima
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan.
| | - Takeshi Akiyoshi
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan; Department of Clinical Pharmacy, School of Medicine, Keio University, 35, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Kazuho Sakamoto
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka, 422-8526, Japan.
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Takayuki Oka
- Nanion Technologies Japan K.K., Tokyo Laboratory, Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-0056, Japan.
| | - Ayuko Imaoka
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan.
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Junko Kurokawa
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka, 422-8526, Japan.
| | - Hisakazu Ohtani
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan; Department of Clinical Pharmacy, School of Medicine, Keio University, 35, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Pharmacy, Keio University Hospital, 35, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
4
|
Downs M, Zaia J, Sethi MK. Mass spectrometry methods for analysis of extracellular matrix components in neurological diseases. MASS SPECTROMETRY REVIEWS 2023; 42:1848-1875. [PMID: 35719114 PMCID: PMC9763553 DOI: 10.1002/mas.21792] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/12/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The brain extracellular matrix (ECM) is a highly glycosylated environment and plays important roles in many processes including cell communication, growth factor binding, and scaffolding. The formation of structures such as perineuronal nets (PNNs) is critical in neuroprotection and neural plasticity, and the formation of molecular networks is dependent in part on glycans. The ECM is also implicated in the neuropathophysiology of disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and Schizophrenia (SZ). As such, it is of interest to understand both the proteomic and glycomic makeup of healthy and diseased brain ECM. Further, there is a growing need for site-specific glycoproteomic information. Over the past decade, sample preparation, mass spectrometry, and bioinformatic methods have been developed and refined to provide comprehensive information about the glycoproteome. Core ECM molecules including versican, hyaluronan and proteoglycan link proteins, and tenascin are dysregulated in AD, PD, and SZ. Glycomic changes such as differential sialylation, sulfation, and branching are also associated with neurodegeneration. A more thorough understanding of the ECM and its proteomic, glycomic, and glycoproteomic changes in brain diseases may provide pathways to new therapeutic options.
Collapse
Affiliation(s)
- Margaret Downs
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Manveen K Sethi
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Han H, Akiyoshi T, Morita T, Tsuchitani T, Nabeta M, Yajima K, Imaoka A, Ohtani H. The Effects of Jabara Juice on the Intestinal Permeation of Fexofenadine. Biol Pharm Bull 2023; 46:1745-1752. [PMID: 38044133 DOI: 10.1248/bpb.b23-00479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Jabara juice and its component narirutin inhibit the activity of organic anion-transporting polypeptides (OATPs) 1A2 and OATP2B1, which are considered to play significant roles in the intestinal absorption of fexofenadine. In this study, we investigated the effects of jabara juice on the intestinal absorption of fexofenadine in mice and the inhibitory effects of jabara juice and narirutin on the permeation of fexofenadine using Caco-2 cell monolayers and LLC-GA5-COL300 cell monolayers. In the in vivo study, the area under the plasma concentration-time curve (AUC) of fexofenadine in mice was increased 1.8-fold by jabara juice. In the permeation study, 5% jabara juice significantly decreased the efflux ratio (ER) of fexofenadine for Caco-2 monolayers. Furthermore, the ERs of fexofenadine and digoxin, which is a typical substrate of P-glycoprotein (P-gp), for LLC-GA5-COL300 cell monolayers were decreased in a concentration-dependent manner by jabara juice extract, suggesting that jabara juice may increase the intestinal absorption of fexofenadine by inhibiting P-gp, rather than by narirutin inhibiting OATPs. The present study showed that jabara juice increases the intestinal absorption of fexofenadine both in vivo and in vitro. The intestinal absorption of fexofenadine may be altered by the co-administration of jabara juice in the clinical setting.
Collapse
Affiliation(s)
- Hongye Han
- Graduate School of Pharmaceutical Sciences, Keio University
| | - Takeshi Akiyoshi
- Graduate School of Pharmaceutical Sciences, Keio University
- Department of Clinical Pharmacokinetics, School of Medicine, Keio University
| | - Tokio Morita
- Graduate School of Pharmaceutical Sciences, Keio University
| | | | - Momoko Nabeta
- Graduate School of Pharmaceutical Sciences, Keio University
| | - Kodai Yajima
- Graduate School of Pharmaceutical Sciences, Keio University
| | - Ayuko Imaoka
- Graduate School of Pharmaceutical Sciences, Keio University
| | - Hisakazu Ohtani
- Graduate School of Pharmaceutical Sciences, Keio University
- Department of Clinical Pharmacokinetics, School of Medicine, Keio University
- Department of Pharmacy, Keio University Hospital
| |
Collapse
|
6
|
Nishino K, Yoshikawa H, Motani K, Kosako H. Optimized Workflow for Enrichment and Identification of Biotinylated Peptides Using Tamavidin 2-REV for BioID and Cell Surface Proteomics. J Proteome Res 2022; 21:2094-2103. [PMID: 35979633 DOI: 10.1021/acs.jproteome.2c00130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical or enzymatic biotinylation of proteins is widely used in various studies, and proximity-dependent biotinylation coupled to mass spectrometry is a powerful approach for analyzing protein-protein interactions in living cells. We recently developed a simple method to enrich biotinylated peptides using Tamavidin 2-REV, an engineered avidin-like protein with reversible biotin-binding capability. However, the level of biotinylated proteins in cells is low; therefore, large amounts of cellular proteins were required to detect biotinylated peptides. In addition, the enriched biotinylated peptide solution contained many contaminant ions. Here, we optimized the workflow for efficient enrichment of biotinylated peptides and removal of contaminant ions. The efficient recovery of biotinylated peptides with fewer contaminant ions was achieved by heat inactivation of trypsin, prewashing Tamavidin 2-REV beads, clean-up of biotin solution, mock elution, and using optimal temperature and salt concentration for elution. The optimized workflow enabled identification of nearly 4-fold more biotinylated peptides with higher purity from RAW264.7 macrophages expressing TurboID-fused STING (stimulator of interferon genes). In addition, sequential digestion with Glu-C and trypsin revealed biotinylation sites that were not identified by trypsin digestion alone. Furthermore, the combination of this workflow with TMT labeling enabled large-scale quantification of cell surface proteome changes upon epidermal growth factor (EGF) stimulation. This workflow will be useful for BioID and cell surface proteomics and for various other applications based on protein biotinylation.
Collapse
Affiliation(s)
- Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.,Kuramoto Division, Technical Support Department, Tokushima University, Tokushima 770-8503, Japan
| | - Harunori Yoshikawa
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Kou Motani
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
7
|
James Sanford E, Bustamante Smolka M. A field guide to the proteomics of post-translational modifications in DNA repair. Proteomics 2022; 22:e2200064. [PMID: 35695711 PMCID: PMC9950963 DOI: 10.1002/pmic.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 12/15/2022]
Abstract
All cells incur DNA damage from exogenous and endogenous sources and possess pathways to detect and repair DNA damage. Post-translational modifications (PTMs), in the past 20 years, have risen to ineluctable importance in the study of the regulation of DNA repair mechanisms. For example, DNA damage response kinases are critical in both the initial sensing of DNA damage as well as in orchestrating downstream activities of DNA repair factors. Mass spectrometry-based proteomics revolutionized the study of the role of PTMs in the DNA damage response and has canonized PTMs as central modulators of nearly all aspects of DNA damage signaling and repair. This review provides a biologist-friendly guide for the mass spectrometry analysis of PTMs in the context of DNA repair and DNA damage responses. We reflect on the current state of proteomics for exploring new mechanisms of PTM-based regulation and outline a roadmap for designing PTM mapping experiments that focus on the DNA repair and DNA damage responses.
Collapse
Key Words
- LC-MS/MS, technology, bottom-up proteomics, technology, signal transduction, cell biology
- phosphoproteomics, technology, post-translational modification analysis, technology, post-translational modifications, cell biology, mass spectrometry
Collapse
Affiliation(s)
- Ethan James Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Marcus Bustamante Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853,Corresponding author:
| |
Collapse
|
8
|
Rogawski R, Sharon M. Characterizing Endogenous Protein Complexes with Biological Mass Spectrometry. Chem Rev 2022; 122:7386-7414. [PMID: 34406752 PMCID: PMC9052418 DOI: 10.1021/acs.chemrev.1c00217] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 01/11/2023]
Abstract
Biological mass spectrometry (MS) encompasses a range of methods for characterizing proteins and other biomolecules. MS is uniquely powerful for the structural analysis of endogenous protein complexes, which are often heterogeneous, poorly abundant, and refractive to characterization by other methods. Here, we focus on how biological MS can contribute to the study of endogenous protein complexes, which we define as complexes expressed in the physiological host and purified intact, as opposed to reconstituted complexes assembled from heterologously expressed components. Biological MS can yield information on complex stoichiometry, heterogeneity, topology, stability, activity, modes of regulation, and even structural dynamics. We begin with a review of methods for isolating endogenous complexes. We then describe the various biological MS approaches, focusing on the type of information that each method yields. We end with future directions and challenges for these MS-based methods.
Collapse
Affiliation(s)
- Rivkah Rogawski
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
9
|
Vieira-Vieira CH, Dauksaite V, Sporbert A, Gotthardt M, Selbach M. Proteome-wide quantitative RNA-interactome capture identifies phosphorylation sites with regulatory potential in RBM20. Mol Cell 2022; 82:2069-2083.e8. [DOI: 10.1016/j.molcel.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/14/2021] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
|
10
|
Christopher JA, Geladaki A, Dawson CS, Vennard OL, Lilley KS. Subcellular Transcriptomics and Proteomics: A Comparative Methods Review. Mol Cell Proteomics 2022; 21:100186. [PMID: 34922010 PMCID: PMC8864473 DOI: 10.1016/j.mcpro.2021.100186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
The internal environment of cells is molecularly crowded, which requires spatial organization via subcellular compartmentalization. These compartments harbor specific conditions for molecules to perform their biological functions, such as coordination of the cell cycle, cell survival, and growth. This compartmentalization is also not static, with molecules trafficking between these subcellular neighborhoods to carry out their functions. For example, some biomolecules are multifunctional, requiring an environment with differing conditions or interacting partners, and others traffic to export such molecules. Aberrant localization of proteins or RNA species has been linked to many pathological conditions, such as neurological, cancer, and pulmonary diseases. Differential expression studies in transcriptomics and proteomics are relatively common, but the majority have overlooked the importance of subcellular information. In addition, subcellular transcriptomics and proteomics data do not always colocate because of the biochemical processes that occur during and after translation, highlighting the complementary nature of these fields. In this review, we discuss and directly compare the current methods in spatial proteomics and transcriptomics, which include sequencing- and imaging-based strategies, to give the reader an overview of the current tools available. We also discuss current limitations of these strategies as well as future developments in the field of spatial -omics.
Collapse
Affiliation(s)
- Josie A Christopher
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Aikaterini Geladaki
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Department of Genetics, University of Cambridge, Cambridge, UK
| | - Charlotte S Dawson
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Owen L Vennard
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
| |
Collapse
|
11
|
Taylor DF, Bishop DJ. Transcription Factor Movement and Exercise-Induced Mitochondrial Biogenesis in Human Skeletal Muscle: Current Knowledge and Future Perspectives. Int J Mol Sci 2022; 23:1517. [PMID: 35163441 PMCID: PMC8836245 DOI: 10.3390/ijms23031517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
In response to exercise, the oxidative capacity of mitochondria within skeletal muscle increases through the coordinated expression of mitochondrial proteins in a process termed mitochondrial biogenesis. Controlling the expression of mitochondrial proteins are transcription factors-a group of proteins that regulate messenger RNA transcription from DNA in the nucleus and mitochondria. To fulfil other functions or to limit gene expression, transcription factors are often localised away from DNA to different subcellular compartments and undergo rapid movement or accumulation only when required. Although many transcription factors involved in exercise-induced mitochondrial biogenesis have been identified, numerous conflicting findings and gaps exist within our knowledge of their subcellular movement. This review aims to summarise and provide a critical analysis of the published literature regarding the exercise-induced movement of transcription factors involved in mitochondria biogenesis in skeletal muscle.
Collapse
Affiliation(s)
| | - David J. Bishop
- Institute for Health and Sport (iHeS), Footscray Park, Victoria University, Melbourne 8001, Australia;
| |
Collapse
|
12
|
Advances in sample preparation for membrane proteome quantification. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:23-29. [PMID: 34906323 DOI: 10.1016/j.ddtec.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 12/21/2022]
Abstract
Membrane proteins mediate various biological processes. Most drugs commercially available target proteins on the cell surface. Therefore, proteomics of plasma membrane proteins provides useful information for drug discovery. However, membrane proteins are one of the most difficult biological groups to quantify by proteomics because of their hydrophobicity and low protein content. To obtain unbiased quantitative membrane proteomics data, specific strategies should be followed during sample preparation. This review explores the most recent advances in sample preparation for the quantitative analysis of the membrane proteome, including enrichment by subcellular fractionation and trypsin digestion.
Collapse
|
13
|
Pino L, Schilling B. Proximity labeling and other novel mass spectrometric approaches for spatiotemporal protein dynamics. Expert Rev Proteomics 2021; 18:757-765. [PMID: 34496693 PMCID: PMC8650568 DOI: 10.1080/14789450.2021.1976149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Proteins are highly dynamic and their biological function is controlled by not only temporal abundance changes but also via regulated protein-protein interaction networks, which respond to internal and external perturbations. A wealth of novel analytical reagents and workflows allow studying spatiotemporal protein environments with great granularity while maintaining high throughput and ease of analysis. AREAS COVERED We review technology advances for measuring protein-protein proximity interactions with an emphasis on proximity labeling, and briefly summarize other spatiotemporal approaches including protein localization, and their dynamic changes over time, specifically in human cells and mammalian tissues. We focus especially on novel technologies and workflows emerging within the past 5 years. This includes enrichment-based techniques (proximity labeling and crosslinking), separation-based techniques (organelle fractionation and size exclusion chromatography), and finally sorting-based techniques (laser capture microdissection and mass spectrometry imaging). EXPERT OPINION Spatiotemporal proteomics is a key step in assessing biological complexity, understanding refined regulatory mechanisms, and forming protein complexes and networks. Studying protein dynamics across space and time holds promise for gaining deep insights into how protein networks may be perturbed during disease and aging processes, and offer potential avenues for therapeutic interventions, drug discovery, and biomarker development.
Collapse
Affiliation(s)
- Lindsay Pino
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, California, CA 94945, USA
| |
Collapse
|
14
|
Vieira-Vieira CH, Selbach M. Opportunities and Challenges in Global Quantification of RNA-Protein Interaction via UV Cross-Linking. Front Mol Biosci 2021; 8:669939. [PMID: 34055886 PMCID: PMC8155585 DOI: 10.3389/fmolb.2021.669939] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
RNA-binding proteins (RBPs) are key mediators of posttranscriptional gene expression control. However, the links between cell signaling on the one hand and RBP function on the other are understudied. While thousands of posttranslational modification (PTM) sites on RBPs have been identified, their functional roles are only poorly characterized. RNA-interactome capture (RIC) and cross-linking and immunoprecipitation (CLIP) are attractive methods that provide information about RBP-RNA interactions on a genome-wide scale. Both approaches rely on the in situ UV cross-linking of RBPs and RNAs, biochemical enrichment and analysis by RNA-sequencing (CLIP) or mass spectrometry (RIC). In principle, RIC- and CLIP-like methods could be used to globally quantify RBP-RNA interactions in response to perturbations. However, several biases have to be taken into account to avoid misinterpretation of the results obtained. Here, we focus on RIC-like methods and discuss four key aspects relevant for quantitative interpretation: (1) the RNA isolation efficiency, (2) the inefficient and highly variable UV cross-linking, (3) the baseline RNA occupancy of RBPs, and (4) indirect factors affecting RBP-RNA interaction. We highlight these points by presenting selected examples of PTMs that might induce differential quantification in RIC-like experiments without necessarily affecting RNA-binding. We conclude that quantifying RBP-RNA interactions via RIC or CLIP-like methods should not be regarded as an end in itself but rather as starting points for deeper analysis.
Collapse
Affiliation(s)
- Carlos H Vieira-Vieira
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Matthias Selbach
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
15
|
Christopher JA, Stadler C, Martin CE, Morgenstern M, Pan Y, Betsinger CN, Rattray DG, Mahdessian D, Gingras AC, Warscheid B, Lehtiö J, Cristea IM, Foster LJ, Emili A, Lilley KS. Subcellular proteomics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:32. [PMID: 34549195 PMCID: PMC8451152 DOI: 10.1038/s43586-021-00029-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 12/11/2022]
Abstract
The eukaryotic cell is compartmentalized into subcellular niches, including membrane-bound and membrane-less organelles. Proteins localize to these niches to fulfil their function, enabling discreet biological processes to occur in synchrony. Dynamic movement of proteins between niches is essential for cellular processes such as signalling, growth, proliferation, motility and programmed cell death, and mutations causing aberrant protein localization are associated with a wide range of diseases. Determining the location of proteins in different cell states and cell types and how proteins relocalize following perturbation is important for understanding their functions, related cellular processes and pathologies associated with their mislocalization. In this Primer, we cover the major spatial proteomics methods for determining the location, distribution and abundance of proteins within subcellular structures. These technologies include fluorescent imaging, protein proximity labelling, organelle purification and cell-wide biochemical fractionation. We describe their workflows, data outputs and applications in exploring different cell biological scenarios, and discuss their main limitations. Finally, we describe emerging technologies and identify areas that require technological innovation to allow better characterization of the spatial proteome.
Collapse
Affiliation(s)
- Josie A. Christopher
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Charlotte Stadler
- Department of Protein Sciences, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Claire E. Martin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Marcel Morgenstern
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yanbo Pan
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David G. Rattray
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Diana Mahdessian
- Department of Protein Sciences, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bettina Warscheid
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS and CIBSS Signaling Research Centers, University of Freiburg, Freiburg, Germany
| | - Janne Lehtiö
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA, USA
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| |
Collapse
|
16
|
Kobayashi H, Wada H, Imai K. Phenyl-bonded monolithic silica capillary column liquid chromatographic separation and detection of fluorogenic derivatized intact proteins. Biomed Chromatogr 2021; 35:e5078. [PMID: 33491229 DOI: 10.1002/bmc.5078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/31/2022]
Abstract
Prior to the identification of proteins for proteomics analysis in human cells, separation of fluorogenic derivatized proteins with a fluorogenic reagent, 7-chloro-N-[2-(dimethylamino)ethyl]-2,1,3-benzoxadiazole-4-sulfonamide, has typically been performed by using a conventional reversed-phase HPLC column. However, the number of proteins in human cells (HepaRG) that are separated by this conventional approach is limited to approximately 500. In this study, a nanoflow liquid chromatography system with an evaluated phenyl-bonded monolithic silica capillary column (0.1 mm i.d., 700 mm length) was used to increase the number of separated fluorogenic derivatized proteins. This system was used to separate derivatized human cell proteins (K562) and yeast (Saccharomyces cerevisiae) proteins as model cell proteomes. More than 1,300 protein peaks were separated/detected from both cell proteomes. We present a straightforward comparison of multiple separation profiles using a novel chromatogram display approach, termed the "spiderweb" chromatogram. In addition, to validate that the detected peaks are derived from proteins, a mass spectrometer was connected to the capillary column and deconvolution of the obtained mass spectra was performed. Furthermore, different molecular weight distribution profiles of the expressed proteins were observed between the two cell proteomes.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Laboratory of Proteomics Analysis, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan.,R&D group, Shinwa Chemical Industries Ltd, Kyoto, Japan
| | - Hiroo Wada
- R&D group, Shinwa Chemical Industries Ltd, Kyoto, Japan
| | - Kazuhiro Imai
- Laboratory of Proteomics Analysis, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| |
Collapse
|
17
|
Abstract
The elucidation of the subcellular localization of proteins is very important in order to deeply understand their functions. In fact, proteins activities are strictly correlated to the cellular compartment and microenvironment in which they are present.In recent years, several effective and reliable proteomics techniques and computational methods have been developed and implemented in order to identify the proteins subcellular localization. This process is often time-consuming and expensive, but the recent technological and bioinformatics progress allowed the development of more accurate and simple workflows to determine the localization, interactions, and functions of proteins.In the following chapter, a brief introduction on the importance of knowing subcellular localization of proteins will be presented. Then, sample preparation protocols, proteomic methods, data analysis strategies, and software for the prediction of proteins localization will be presented and discussed. Finally, the more recent and advanced spatial proteomics techniques will be shown.
Collapse
Affiliation(s)
- Elettra Barberis
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, CAAD, University of Piemonte Orientale, Novara, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, CAAD, University of Piemonte Orientale, Novara, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.
- Center for Translational Research on Autoimmune and Allergic Diseases, CAAD, University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
18
|
Tannous A, Boonen M, Zheng H, Zhao C, Germain CJ, Moore DF, Sleat DE, Jadot M, Lobel P. Comparative Analysis of Quantitative Mass Spectrometric Methods for Subcellular Proteomics. J Proteome Res 2020; 19:1718-1730. [PMID: 32134668 DOI: 10.1021/acs.jproteome.9b00862] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Knowledge of intracellular location can provide important insights into the function of proteins and their respective organelles, and there is interest in combining classical subcellular fractionation with quantitative mass spectrometry to create global cellular maps. To evaluate mass spectrometric approaches specifically for this application, we analyzed rat liver differential centrifugation and Nycodenz density gradient subcellular fractions by tandem mass tag (TMT) isobaric labeling with reporter ion measurement at the MS2 and MS3 level and with two different label-free peak integration approaches, MS1 and data independent acquisition (DIA). TMT-MS2 provided the greatest proteome coverage, but ratio compression from contaminating background ions resulted in a narrower accurate dynamic range compared to TMT-MS3, MS1, and DIA, which were similar. Using a protein clustering approach to evaluate data quality by assignment of reference proteins to their correct compartments, all methods performed well, with isobaric labeling approaches providing the highest quality localization. Finally, TMT-MS2 gave the lowest percentage of missing quantifiable data when analyzing orthogonal fractionation methods containing overlapping proteomes. In summary, despite inaccuracies resulting from ratio compression, data obtained by TMT-MS2 assigned protein localization as well as other methods but achieved the highest proteome coverage with the lowest proportion of missing values.
Collapse
Affiliation(s)
- Abla Tannous
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, United States
| | - Marielle Boonen
- URPhyM-Intracellular Trafficking Biology, NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000, Belgium
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, United States
| | - Caifeng Zhao
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, United States
| | - Colin J Germain
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, United States
| | - Dirk F Moore
- Department of Biostatistics, School of Public Health, Rutgers - The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - David E Sleat
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, United States.,Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Piscataway, New Jersey 08854, United States
| | - Michel Jadot
- URPhyM-Physiological Chemistry, NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000, Belgium
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, United States.,Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Piscataway, New Jersey 08854, United States
| |
Collapse
|