1
|
Maity S, Huang Y, Kilgore MD, Thurmon AN, Vaasjo LO, Galazo MJ, Xu X, Cao J, Wang X, Ning B, Liu N, Fan J. Mapping dynamic molecular changes in hippocampal subregions after traumatic brain injury through spatial proteomics. Clin Proteomics 2024; 21:32. [PMID: 38735925 PMCID: PMC11089002 DOI: 10.1186/s12014-024-09485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) often results in diverse molecular responses, challenging traditional proteomic studies that measure average changes at tissue levels and fail to capture the complexity and heterogeneity of the affected tissues. Spatial proteomics offers a solution by providing insights into sub-region-specific alterations within tissues. This study focuses on the hippocampal sub-regions, analyzing proteomic expression profiles in mice at the acute (1 day) and subacute (7 days) phases of post-TBI to understand subregion-specific vulnerabilities and long-term consequences. METHODS Three mice brains were collected from each group, including Sham, 1-day post-TBI and 7-day post-TBI. Hippocampal subregions were extracted using Laser Microdissection (LMD) and subsequently analyzed by label-free quantitative proteomics. RESULTS The spatial analysis reveals region-specific protein abundance changes, highlighting the elevation of FN1, LGALS3BP, HP, and MUG-1 in the stratum moleculare (SM), suggesting potential immune cell enrichment post-TBI. Notably, established markers of chronic traumatic encephalopathy, IGHM and B2M, exhibit specific upregulation in the dentate gyrus bottom (DG2) independent of direct mechanical injury. Metabolic pathway analysis identifies disturbances in glucose and lipid metabolism, coupled with activated cholesterol synthesis pathways enriched in SM at 7-Day post-TBI and subsequently in deeper DG1 and DG2 suggesting a role in neurogenesis and the onset of recovery. Coordinated activation of neuroglia and microtubule dynamics in DG2 suggest recovery mechanisms in less affected regions. Cluster analysis revealed spatial variations post-TBI, indicative of dysregulated neuronal plasticity and neurogenesis and further predisposition to neurological disorders. TBI-induced protein upregulation (MUG-1, PZP, GFAP, TJP, STAT-1, and CD44) across hippocampal sub-regions indicates shared molecular responses and links to neurological disorders. Spatial variations were demonstrated by proteins dysregulated in both or either of the time-points exclusively in each subregion (ELAVL2, CLIC1 in PL, CD44 and MUG-1 in SM, and SHOC2, LGALS3 in DG). CONCLUSIONS Utilizing advanced spatial proteomics techniques, the study unveils the dynamic molecular responses in distinct hippocampal subregions post-TBI. It uncovers region-specific vulnerabilities and dysregulated neuronal processes, and potential recovery-related pathways that contribute to our understanding of TBI's neurological consequences and provides valuable insights for biomarker discovery and therapeutic targets.
Collapse
Affiliation(s)
- Sudipa Maity
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yuanyu Huang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mitchell D Kilgore
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Abbigail N Thurmon
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, New Orleans, LA, USA
| | | | - Maria J Galazo
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, New Orleans, LA, USA
| | - Xiaojiang Xu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jing Cao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bo Ning
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ning Liu
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane University Translational Sciences Institute, New Orleans, LA, USA.
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, LA, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
2
|
Bolinger AA, Frazier A, La JH, Allen JA, Zhou J. Orphan G Protein-Coupled Receptor GPR37 as an Emerging Therapeutic Target. ACS Chem Neurosci 2023; 14:3318-3334. [PMID: 37676000 PMCID: PMC11144446 DOI: 10.1021/acschemneuro.3c00479] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are successful druggable targets, making up around 35% of all FDA-approved medications. However, a large number of receptors remain orphaned, with no known endogenous ligand, representing a challenging but untapped area to discover new therapeutic targets. Among orphan GPCRs (oGPCRs) of interest, G protein-coupled receptor 37 (GPR37) is highly expressed in the central nervous system (CNS), particularly in the spinal cord and oligodendrocytes. While its cellular signaling mechanisms and endogenous receptor ligands remain elusive, GPR37 has been implicated in several important neurological conditions, including Parkinson's disease (PD), inflammation, pain, autism, and brain tumors. GPR37 structure, signaling, emerging physiology, and pharmacology are reviewed while integrating a discussion on potential therapeutic indications and opportunities.
Collapse
Affiliation(s)
- Andrew A. Bolinger
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Andrew Frazier
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jun-Ho La
- Department of Neurobiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - John A. Allen
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
3
|
Nguyen TT, Camp CR, Doan JK, Traynelis SF, Sloan SA, Hall RA. GPR37L1 controls maturation and organization of cortical astrocytes during development. Glia 2023; 71:1921-1946. [PMID: 37029775 PMCID: PMC10315172 DOI: 10.1002/glia.24375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/24/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023]
Abstract
Astrocyte maturation is crucial to proper brain development and function. This maturation process includes the ramification of astrocytic morphology and the establishment of astrocytic domains. While this process has been well-studied, the mechanisms by which astrocyte maturation is initiated are not well understood. GPR37L1 is an astrocyte-specific G protein-coupled receptor (GPCR) that is predominantly expressed in mature astrocytes and has been linked to the modulation of seizure susceptibility in both humans and mice. To investigate the role of GPR37L1 in astrocyte biology, RNA-seq analyses were performed on astrocytes immunopanned from P7 Gpr37L1-/- knockout (L1KO) mouse cortex and compared to those from wild-type (WT) mouse cortex. These RNA-seq studies revealed that pathways involved in central nervous system development were altered and that L1KO cortical astrocytes express lower amounts of mature astrocytic genes compared to WT astrocytes. Immunohistochemical studies of astrocytes from L1KO mouse brain revealed that these astrocytes exhibit overall shorter total process length, and are also less complex and spaced further apart from each other in the mouse cortex. This work sheds light on how GPR37L1 regulates cellular processes involved in the control of astrocyte biology and maturation.
Collapse
Affiliation(s)
| | - Chad R. Camp
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology
| | - Juleva K. Doan
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology
| | - Stephen F. Traynelis
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology
| | - Steven A. Sloan
- Emory University School of Medicine, Department of Human Genetics
| | - Randy A. Hall
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology
| |
Collapse
|
4
|
Impaired Aversive Memory Formation in GPR37L1KO Mice. Int J Mol Sci 2022; 23:ijms232214290. [PMID: 36430766 PMCID: PMC9696904 DOI: 10.3390/ijms232214290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
GPR37L1 is an orphan G-protein-coupled receptor, which is implicated in neurological disorders, but its normal physiological role is poorly understood. Its close homologue, GPR37, is implicated in Parkinson's disease and affective disorders. In this study, we set out to characterize adult and middle-aged global GPR37L1 knock-out (KO) mice regarding emotional behaviors. Our results showed that GPR37L1KO animals, except adult GPR37L1KO males, exhibited impaired retention of aversive memory formation as assessed by the shorter retention latency in a passive avoidance task. Interestingly, the viral-mediated deletion of GPR37L1 in conditional knockout mice in the hippocampus of middle-aged mice also showed impaired retention in passive avoidance tasks, similar to what was observed in global GPR37L1KO mice, suggesting that hippocampal GPR37L1 is involved in aversive learning processes. We also observed that middle-aged GPR37L1KO male and female mice exhibited a higher body weight than their wild-type counterparts. Adult and middle-aged GPR37L1KO female mice exhibited a reduced level of serum corticosterone and middle-aged GPR37L1KO females showed a reduced level of epinephrine in the dorsal hippocampus in the aftermath of passive avoidance task, with no such effects observed in GPR37L1KO male mice, suggesting that lack of GPR37L1 influences behavior and biochemical readouts in age- and sex-specific manners.
Collapse
|
5
|
Massimi M, Di Pietro C, La Sala G, Matteoni R. Mouse Mutants of Gpr37 and Gpr37l1 Receptor Genes: Disease Modeling Applications. Int J Mol Sci 2022; 23:ijms23084288. [PMID: 35457105 PMCID: PMC9025225 DOI: 10.3390/ijms23084288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
The vertebrate G protein–coupled receptor 37 and G protein–coupled receptor 37-like 1 (GPR37 and GPR37L1) proteins have amino acid sequence homology to endothelin and bombesin-specific receptors. The prosaposin glycoprotein, its derived peptides, and analogues have been reported to interact with and activate both putative receptors. The GPR37 and GPR37L1 genes are highly expressed in human and rodent brains. GPR37 transcripts are most abundant in oligodendrocytes and in the neurons of the substantia nigra and hippocampus, while the GPR37L1 gene is markedly expressed in cerebellar Bergmann glia astrocytes. The human GPR37 protein is a substrate of parkin, and its insoluble form accumulates in brain samples from patients of inherited juvenile Parkinson’s disease. Several Gpr37 and Gpr37l1 mouse mutant strains have been produced and applied to extensive in vivo and ex vivo analyses of respective receptor functions and involvement in brain and other organ pathologies. The genotypic and phenotypic characteristics of the different mouse strains so far published are reported and discussed, and their current and proposed applications to human disease modeling are highlighted.
Collapse
|
6
|
Veenit V, Zhang X, Ambrosini A, Sousa V, Svenningsson P. The Effect of Early Life Stress on Emotional Behaviors in GPR37KO Mice. Int J Mol Sci 2021; 23:410. [PMID: 35008836 PMCID: PMC8745300 DOI: 10.3390/ijms23010410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
GPR37 is an orphan G-protein-coupled receptor, a substrate of parkin which is linked to Parkinson's disease (PD) and affective disorders. In this study, we sought to address the effects of early life stress (ELS) by employing the paradigm of limited nesting material on emotional behaviors in adult GPR37 knockout (KO) mice. Our results showed that, while there was an adverse effect of ELS on various domains of emotional behaviors in wild type (WT) mice in a sex specific manner (anxiety in females, depression and context-dependent fear memory in males), GPR37KO mice subjected to ELS exhibited less deteriorated emotional behaviors. GPR37KO female mice under ELS conditions displayed reduced anxiety compared to WT mice. This was paralleled by lower plasma corticosterone in GPR37KO females and a lower increase in P-T286-CaMKII by ELS in the amygdala. GPR37KO male mice, under ELS conditions, showed better retention of hippocampal-dependent emotional processing in the passive avoidance behavioral task. GPR37KO male mice showed increased immobility in the forced swim task and increased P-T286-CaMKII in the ventral hippocampus under baseline conditions. Taken together, our data showed overall long-term effects of ELS-deleterious or beneficial depending on the genotype, sex of the mice and the emotional context.
Collapse
Affiliation(s)
- Vandana Veenit
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (X.Z.); (A.A.); (V.S.)
| | | | | | | | - Per Svenningsson
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (X.Z.); (A.A.); (V.S.)
| |
Collapse
|
7
|
Hertz E, Saarinen M, Svenningsson P. GM1 Is Cytoprotective in GPR37-Expressing Cells and Downregulates Signaling. Int J Mol Sci 2021; 22:ijms222312859. [PMID: 34884663 PMCID: PMC8657933 DOI: 10.3390/ijms222312859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/02/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are commonly pharmacologically modulated due to their ability to translate extracellular events to intracellular changes. Previously, studies have mostly focused on protein–protein interactions, but the focus has now expanded also to protein–lipid connections. GM1, a brain-expressed ganglioside known for neuroprotective effects, and GPR37, an orphan GPCR often reported as a potential drug target for diseases in the central nervous system, have been shown to form a complex. In this study, we looked into the functional effects. Endogenous GM1 was downregulated when stably overexpressing GPR37 in N2a cells (N2aGPR37-eGFP). However, exogenous GM1 specifically rescued N2aGPR37-eGFP from toxicity induced by the neurotoxin MPP+. The treatment did not alter transcription levels of GPR37 or the enzyme responsible for GM1 production, both potential mechanisms for the effect. However, GM1 treatment inhibited cAMP-dependent signaling from GPR37, here reported as potentially consecutively active, possibly contributing to the protective effects. We propose an interplay between GPR37 and GM1 as one of the many cytoprotective effects reported for GM1.
Collapse
Affiliation(s)
- Ellen Hertz
- Correspondence: (E.H.); (P.S.); Tel.: +46-8517-74-614 (E.H.)
| | | | | |
Collapse
|
8
|
Kozinova M, Joshi S, Ye S, Belinsky MG, Sharipova D, Farma JM, Reddy SS, Litwin S, Devarajan K, Campos AR, Yu Y, Schwartz B, von Mehren M, Rink L. Combined Inhibition of AKT and KIT Restores Expression of Programmed Cell Death 4 (PDCD4) in Gastrointestinal Stromal Tumor. Cancers (Basel) 2021; 13:cancers13153699. [PMID: 34359600 PMCID: PMC8345102 DOI: 10.3390/cancers13153699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
The majority of gastrointestinal stromal tumor (GIST) patients develop resistance to the first-line KIT inhibitor, imatinib mesylate (IM), through acquisition of secondary mutations in KIT or bypass signaling pathway activation. In addition to KIT, AKT is a relevant target for inhibition, since the PI3K/AKT pathway is crucial for IM-resistant GIST survival. We evaluated the activity of a novel pan-AKT inhibitor, MK-4440 (formerly ARQ 751), as monotherapy and in combination with IM in GIST cell lines and preclinical models with varying IM sensitivities. Dual inhibition of KIT and AKT demonstrated synergistic effects in IM-sensitive and -resistant GIST cell lines. Proteomic analyses revealed upregulation of the tumor suppressor, PDCD4, in combination treated cells. Enhanced PDCD4 expression correlated to increased cell death. In vivo studies revealed superior efficacy of MK-4440/IM combination in an IM-sensitive preclinical model of GIST compared with either single agent. The combination demonstrated limited efficacy in two IM-resistant models, including a GIST patient-derived xenograft model possessing an exon 9 KIT mutation. These studies provide strong rationale for further use of AKT inhibition in combination with IM in primary GIST; however, alternative agents will need to be tested in combination with AKT inhibition in the resistant setting.
Collapse
Affiliation(s)
- Marya Kozinova
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (M.K.); (S.J.); (S.Y.); (M.G.B.); (D.S.); (M.v.M.)
- Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Shalina Joshi
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (M.K.); (S.J.); (S.Y.); (M.G.B.); (D.S.); (M.v.M.)
| | - Shuai Ye
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (M.K.); (S.J.); (S.Y.); (M.G.B.); (D.S.); (M.v.M.)
| | - Martin G. Belinsky
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (M.K.); (S.J.); (S.Y.); (M.G.B.); (D.S.); (M.v.M.)
| | - Dinara Sharipova
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (M.K.); (S.J.); (S.Y.); (M.G.B.); (D.S.); (M.v.M.)
| | - Jeffrey M. Farma
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.M.F.); (S.S.R.)
| | - Sanjay S. Reddy
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.M.F.); (S.S.R.)
| | - Samuel Litwin
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (S.L.); (K.D.)
| | - Karthik Devarajan
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (S.L.); (K.D.)
| | - Alex Rosa Campos
- Proteomics Core Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
| | - Yi Yu
- ArQuIe Inc., A Wholly-Owned Subsidiary of Merck & Co., Inc. (Known as MSD Outside the United States and Canada), Kenilworth, NJ 07033, USA; (Y.Y.); (B.S.)
| | - Brian Schwartz
- ArQuIe Inc., A Wholly-Owned Subsidiary of Merck & Co., Inc. (Known as MSD Outside the United States and Canada), Kenilworth, NJ 07033, USA; (Y.Y.); (B.S.)
| | - Margaret von Mehren
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (M.K.); (S.J.); (S.Y.); (M.G.B.); (D.S.); (M.v.M.)
- Department of Hematology and Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Lori Rink
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (M.K.); (S.J.); (S.Y.); (M.G.B.); (D.S.); (M.v.M.)
- Correspondence: ; Tel.: +1-(215)-214-1608
| |
Collapse
|