1
|
Lee J, Christopher P. Does H 2 Temperature-Programmed Reduction Always Probe Solid-State Redox Chemistry? The Case of Pt/CeO 2. Angew Chem Int Ed Engl 2024:e202414388. [PMID: 39380162 DOI: 10.1002/anie.202414388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 10/07/2024] [Indexed: 10/10/2024]
Abstract
Redox reactions on the surface of transition metal oxides are of broad interest in thermo, photo, and electrocatalysis. H2 temperature-programmed reduction (H2-TPR) is commonly used to probe oxide reducibility by measuring the rate of H2 consumption during temperature ramps, assuming that this rate is controlled by oxide reduction. However, oxide reduction involves several elementary steps, such as H2 dissociation and H-spillover, before surface reduction and H2O formation occur. In this study, we evaluated the kinetics of H2 consumption over CeO2 and Pt/CeO2 with varying Pt loadings and structures to identify the elementary steps probed by H2-TPR. Literature often attributes changes in H2-TPR characteristics with Pt addition to increased CeO2 reducibility. However, our analysis revealed that the H2 consumption rate is measurement of the rate of H-spillover at Pt-CeO2 interfaces and is determined by the concentration of Pt species on Pt nanoclusters that dissociate H2. Therefore, lower temperature H2 consumption observed with Pt addition does not indicate higher CeO2 reducibility. Measurements on samples with mixtures of Pt single-atoms and nanoclusters demonstrated that H2-TPR can effectively quantify dilute Pt nanocluster concentrations, suggesting caution in directly linking H2-TPR characteristics to oxide reducibility while highlighting alternative material insights that can be gleaned.
Collapse
Affiliation(s)
- Jaeha Lee
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106-5080, United States
- Department of Applied Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106-5080, United States
| |
Collapse
|
2
|
Yang J, Xiao S, Deng J, Li Y, Hu H, Wang J, Lu C, Li G, Zheng L, Wei Q, Zhong J. Oxygen vacancy-engineered cerium oxide mediated by copper-platinum exhibit enhanced SOD/CAT-mimicking activities to regulate the microenvironment for osteoarthritis therapy. J Nanobiotechnology 2024; 22:491. [PMID: 39155382 PMCID: PMC11330606 DOI: 10.1186/s12951-024-02678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/30/2024] [Indexed: 08/20/2024] Open
Abstract
Cerium oxide (CeO2) nanospheres have limited enzymatic activity that hinders further application in catalytic therapy, but they have an "oxidation switch" to enhance their catalytic activity by increasing oxygen vacancies. In this study, according to the defect-engineering strategy, we developed PtCuOX/CeO2-X nanozymes as highly efficient SOD/CAT mimics by introducing bimetallic copper (Cu) and platinum (Pt) into CeO2 nanospheres to enhance the oxygen vacancies, in an attempt to combine near-infrared (NIR) irradiation to regulate microenvironment for osteoarthritis (OA) therapy. As expected, the Cu and Pt increased the Ce3+/Ce4+ ratio of CeO2 to significantly enhance the oxygen vacancies, and simultaneously CeO2 (111) facilitated the uniform dispersion of Cu and Pt. The strong metal-carrier interaction synergy endowed the PtCuOX/CeO2-X nanozymes with highly efficient SOD/CAT-like activity by the decreased formation energy of oxygen vacancy, promoted electron transfer, the increased adsorption energy of intermediates, and the decreased reaction activation energy. Besides, the nanozymes have excellent photothermal conversion efficiency (55.41%). Further, the PtCuOX/CeO2-X antioxidant system effectively scavenged intracellular ROS and RNS, protected mitochondrial function, and inhibited the inflammatory factors, thus reducing chondrocyte apoptosis. In vivo, experiments demonstrated the biosafety of PtCuOX/CeO2-X and its potent effect on OA suppression. In particular, NIR radiation further enhanced the effects. Mechanistically, PtCuOX/CeO2-X nanozymes reduced ras-related C3 botulinum toxin substrate 1 (Rac-1) and p-p65 protein expression, as well as ROS levels to remodel the inflammatory microenvironment by inhibiting the ROS/Rac-1/nuclear factor kappa-B (NF-κB) signaling pathway. This study introduces new clinical concepts and perspectives that can be applied to inflammatory diseases.
Collapse
Affiliation(s)
- Junxu Yang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Shihui Xiao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Jiejia Deng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Life Sciences Institute, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Yuquan Li
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, No. 166 East University Road, Nanning, Guangxi, 530005, People's Republic of China
| | - Hao Hu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jiawei Wang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Chun Lu
- School of Materials and Environment, Guangxi Minzu University, Nanning, Guangxi, 53000, People's Republic of China
| | - Guanhua Li
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Qingjun Wei
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, No. 166 East University Road, Nanning, Guangxi, 530005, People's Republic of China.
| | - Jingping Zhong
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
3
|
Pu Z, Fu X, Qin J, Yang H, Shuai M, Li F. Spectroscopic and Theoretical Insights into H 2 Activation on Uranium Monoxide: Homolytic H 2 Cleavage Mediated by Intermediate OU(η 2-H 2). Inorg Chem 2024; 63:13304-13310. [PMID: 38986152 DOI: 10.1021/acs.inorgchem.4c01059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Elucidating molecular-level interactions between dihydrogen (H2) and uranium oxides reveals fundamental insights into the intrinsic H2 activation mechanisms underlying processes such as heterogeneous catalysis over uranium oxides and corrosion of uranium induced by H2. Herein, the reactions of H2 with uranium monoxide (UO) molecules have been investigated via a combination of matrix-isolation infrared spectroscopy and quantum chemical calculations. A side-on bonded H2 complex, OU(η2-H2), is identified at 3733.7 and 800.3 cm-1. This species is regarded as a crucial intermediate along H2 activation pathways. Bonding analysis reveals cooperative U(π5f/6d) → H2(σ*) π// backdonation and U ← H2(σ) σ donation in OU(η2-H2) that facilitate the activation of the H2 moiety. Upon λ > 550 nm photoirradiation, OU(η2-H2) isomerizes into H2UO, indicating the homolytic H2 cleavage on UO. Mechanistic details of H2 adsorption and dissociation on UO molecules have been further elucidated.
Collapse
Affiliation(s)
- Zhen Pu
- Institute of Materials, China Academy of Engineering Physics, Mailbox No.9-21, Huafengxincun, Jiangyou, Sichuan 621908, PR China
| | - Xiaoguo Fu
- Institute of Materials, China Academy of Engineering Physics, Mailbox No.9-21, Huafengxincun, Jiangyou, Sichuan 621908, PR China
| | - Jianwei Qin
- Institute of Materials, China Academy of Engineering Physics, Mailbox No.9-21, Huafengxincun, Jiangyou, Sichuan 621908, PR China
| | - Hu Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, 59 Middle Section of Qinglong Road, Mianyang 621010, PR China
| | - Maobing Shuai
- Institute of Materials, China Academy of Engineering Physics, Mailbox No.9-21, Huafengxincun, Jiangyou, Sichuan 621908, PR China
| | - Fang Li
- School of Materials and Chemistry, Southwest University of Science and Technology, 59 Middle Section of Qinglong Road, Mianyang 621010, PR China
| |
Collapse
|
4
|
Lee J, Tieu P, Finzel J, Zang W, Yan X, Graham G, Pan X, Christopher P. How Pt Influences H 2 Reactions on High Surface-Area Pt/CeO 2 Powder Catalyst Surfaces. JACS AU 2023; 3:2299-2313. [PMID: 37654595 PMCID: PMC10466333 DOI: 10.1021/jacsau.3c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023]
Abstract
The addition of platinum-group metals (PGMs, e.g., Pt) to CeO2 is used in heterogeneous catalysis to promote the rate of redox surface reactions. Well-defined model system studies have shown that PGMs facilitate H2 dissociation, H-spillover onto CeO2 surfaces, and CeO2 surface reduction. However, it remains unclear how the heterogeneous structures and interfaces that exist on powder catalysts influence the mechanistic picture of PGM-promoted H2 reactions on CeO2 surfaces developed from model system studies. Here, controlled catalyst synthesis, temperature-programmed reduction (TPR), in situ infrared spectroscopy (IR), and in situ electron energy loss spectroscopy (EELS) were used to interrogate the mechanisms of how Pt nanoclusters and single atoms influence H2 reactions on high-surface area Pt/CeO2 powder catalysts. TPR showed that Pt promotes H2 consumption rates on Pt/CeO2 even when Pt exists on a small fraction of CeO2 particles, suggesting that H-spillover proceeds far from Pt-CeO2 interfaces and across CeO2-CeO2 particle interfaces. IR and EELS measurements provided evidence that Pt changes the mechanism of H2 activation and the rate limiting step for Ce3+, oxygen vacancy, and water formation as compared to pure CeO2. As a result, higher-saturation surface hydroxyl coverages can be achieved on Pt/CeO2 compared to pure CeO2. Further, Ce3+ formed by spillover-H from Pt is heterogeneously distributed and localized at and around interparticle CeO2-CeO2 boundaries, while activated H2 on pure CeO2 results in homogeneously distributed Ce3+. Ce3+ localization at and around CeO2-CeO2 boundaries for Pt/CeO2 is accompanied by surface reconstruction that enables faster rates of H2 consumption. This study reconciles the materials gap between model structures and powder catalysts for H2 reactions with Pt/CeO2 and highlights how the spatial heterogeneity of powder catalysts dictates the influence of Pt on H2 reactions at CeO2 surfaces.
Collapse
Affiliation(s)
- Jaeha Lee
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Peter Tieu
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Jordan Finzel
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Wenjie Zang
- Department
of Materials Science and Engineering, University
of California Irvine, Irvine, California 92697, United States
| | - Xingxu Yan
- Department
of Materials Science and Engineering, University
of California Irvine, Irvine, California 92697, United States
| | - George Graham
- Department
of Materials Science and Engineering, University
of California Irvine, Irvine, California 92697, United States
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiaoqing Pan
- Department
of Materials Science and Engineering, University
of California Irvine, Irvine, California 92697, United States
- Department
of Physics and Astronomy, University of
California Irvine, Irvine, California 92697, United States
- Irvine
Materials Research Institute (IMRI), University
of California Irvine, Irvine, California 92697, United States
| | - Phillip Christopher
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| |
Collapse
|
5
|
Wang J, Liu Y, Zhuang W, Zhu W, Huang J, Tian L. Thermally Methanol Oxidation via the Mn 1@Co 3O 4(111) Facet: Non-CO Reaction Pathway. ACS OMEGA 2023; 8:27293-27299. [PMID: 37546628 PMCID: PMC10399189 DOI: 10.1021/acsomega.3c02667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
Co3O4, as the support of single-atom catalysts, is effective in electron-structure modulation to get distinct methanol adsorption behaviors and adjustable reaction pathways for the methanol oxidation reaction. Herein, we considered the facets that constitute a Co vacancy of the Co3O4(111) facet and a foreign metal atom M (M = Fe, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, Mn) leading to single-atom catalysts. The Mn1@Co3O4(111) facet is the facet considered the most favorable among all of the possible terminations. Oxygen adsorption, decomposition, and its co-adsorption with methanol are the vital steps of methanol oxidation at the exposed Mn1@Co3O4(111) facet, giving rise to the stable configuration: two O* and one CH3OH* adsorbates. Then, the Mn1@Co3O4(111) facet activates the O-H and C-H bonds within CH3OH*, advances CH3O* → H2CO* → HCOO* → COO*, and releases the products H2, H2O, and CO2 consecutively.
Collapse
|
6
|
Hao X, Zhang X, Xu Y, Zhou Y, Wei T, Hu Z, Wu L, Feng X, Zhang J, Liu Y, Yin D, Ma S, Xu B. Atomic-scale insights into the interfacial charge transfer in a NiO/CeO 2 heterostructure for electrocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 643:282-291. [PMID: 37068362 DOI: 10.1016/j.jcis.2023.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
To understand the underlying mechanism of the interfacial charge transfer and local chemical state variation in the nonprecious-based hydrogen evolution reaction (HER) electrocatalysts, a model system of the NiO/CeO2 heterostructure was chosen for investigation using a combination of the advanced electron microscopic characterization and first-principles calculations. The results directly proved that interfacial charge transfer occurs from Ni to Ce, leading to reduction in the valence state of Ce and increased formation of VO. This would optimize ΔGH* and facilitate the hydrogen evolution process, resulting in outstanding HER performance in 1 M KOH with a low overpotential of 99 mV at the current density of 10 mA•cm-2 and a modest Tafel slope of 78.4 mV•dec-1 for the NiO/CeO2 heterostructure sample. Therefore, the improved HER performance could be attributed to the synergistic coupling interactions and electron redistribution at the interface of NiO and CeO2. These results concretely demonstrate the direct determination of the interfacial structure of the heterostructure and provide atomistic insights to unravel the underlying mechanism of interfacial charge transfer induced HER performance improvement.
Collapse
Affiliation(s)
- Xiaodong Hao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China.
| | - Xishuo Zhang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China; School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yang Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China; School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yuhao Zhou
- School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Tingting Wei
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhuangzhuang Hu
- School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lei Wu
- School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xinyi Feng
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China; School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jin Zhang
- School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yi Liu
- School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Deqiang Yin
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Shufang Ma
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| |
Collapse
|
7
|
Su Z, Li X, Si W, Artiglia L, Peng Y, Chen J, Wang H, Chen D, Li J. Probing the Actual Role and Activity of Oxygen Vacancies in Toluene Catalytic Oxidation: Evidence from In Situ XPS/NEXAFS and DFT + U Calculation. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Ziang Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Xiansheng Li
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Luca Artiglia
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Houlin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Deli Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
8
|
Ban T, Yu XY, Kang HZ, Huang ZQ, Li J, Chang CR. Design of SA-FLP Dual Active Sites for Nonoxidative Coupling of Methane. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tao Ban
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Xi-Yang Yu
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Hao-Zhe Kang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Zheng-Qing Huang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Jun Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chun-Ran Chang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin, Shaanxi 719000, China
| |
Collapse
|
9
|
Xie S, Liu L, Lu Y, Wang C, Cao S, Diao W, Deng J, Tan W, Ma L, Ehrlich SN, Li Y, Zhang Y, Ye K, Xin H, Flytzani-Stephanopoulos M, Liu F. Pt Atomic Single-Layer Catalyst Embedded in Defect-Enriched Ceria for Efficient CO Oxidation. J Am Chem Soc 2022; 144:21255-21266. [DOI: 10.1021/jacs.2c08902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Liping Liu
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Yue Lu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Chunying Wang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Sufeng Cao
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Weijian Diao
- Department of Chemical and Biological Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Jiguang Deng
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Tan
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Lu Ma
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Steven N. Ehrlich
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yaobin Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yan Zhang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kailong Ye
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Hongliang Xin
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | | | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
10
|
Liu R, Qu W, Hu X, Chen J, Dong Y, Xu D, Liu J, Ma Z, Tang X. Valence states of single Au atoms dictate the catalytic activity of Au 1/CeO 2(100). Chem Commun (Camb) 2022; 58:11587-11590. [PMID: 36168912 DOI: 10.1039/d2cc04219c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We tune the valence state of single Au atoms anchored on CeO2(100) by treating the catalyst in H2 at different temperatures and obtain a series of Au1/CeO2(100). The transition from Au1+0.9 to Au1+0.3 leads to an enhancement of the CO oxidation activity of Au1/CeO2(100) by one order of magnitude. This work is of significance for an in-depth understanding of reaction mechanisms and rational design of high-performance catalysts.
Collapse
Affiliation(s)
- Rui Liu
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Weiye Qu
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Xiaolei Hu
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Junxiao Chen
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Yangyang Dong
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Dongrun Xu
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Jing Liu
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Zhen Ma
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China. .,Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xingfu Tang
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China. .,Jiangsu Collaborative Innovation Center of Atmospheric Environment & Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
11
|
Wang H, Shi F, Pu M, Lei M. Theoretical Study on Nitrobenzene Hydrogenation by N-Doped Carbon-Supported Late Transition Metal Single-Atom Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haohao Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fuxing Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
12
|
Zhou S, Wan Q, Lin S, Guo H. Acetylene hydrogenation catalyzed by bare and Ni doped CeO 2(110): the role of frustrated Lewis pairs. Phys Chem Chem Phys 2022; 24:11295-11304. [PMID: 35485282 DOI: 10.1039/d2cp00925k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ceria (CeO2) has recently been found to catalyze the selective hydrogenation of alkynes, which has stimulated much discussion on the catalytic mechanism on various facets of reducible oxides. In this work, H2 dissociation and acetylene hydrogenation on bare and Ni doped CeO2(110) surfaces are investigated using density functional theory (DFT). Similar to that on the CeO2(111) surface, our results suggest that catalysis is facilitated by frustrated Lewis pairs (FLPs) formed by oxygen vacancies (Ovs) on the oxide surfaces. On bare CeO2(110) with a single Ov (CeO2(110)-Ov), two surface Ce cations with one non-adjacent O anion are shown to form (Ce3+-Ce4+)/O quasi-FLPs, while for the Ni doped CeO2(110) surface with one (Ni-CeO2(110)-Ov) or two (Ni-CeO2(110)-2Ov) Ovs, one Ce and a non-adjacent O counterions are found to form a mono-Ce/O FLP. DFT calculations indicate that Ce/O FLPs facilitate the H2 dissociation via a heterolytic mechanism, while the resulting surface O-H and Ce-H species catalyze the subsequent acetylene hydrogenation. With CeO2(110)-Ov and Ni-CeO2(110)-2Ov, our DFT calculations suggest that the first hydrogenation step is the rate-determining step with a barrier of 0.43 and 0.40 eV, respectively. For Ni-CeO2(110)-Ov, the reaction is shown to be controlled by the H2 dissociation with a barrier of 0.41 eV. These barriers are significantly lower than that (about 0.7 eV) on CeO2(111), explaining the experimentally observed higher catalytic efficiency of the (110) facet of ceria. The change of the rate-determining step is attributed to the different electronic properties of Ce in the Ce/O FLPs - the Ce f states closer to the Fermi level not only facilitate the heterolytic dissociation of H2 but also lead to a higher barrier of acetylene hydrogenation.
Collapse
Affiliation(s)
- Shulan Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China. .,Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Qiang Wan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
13
|
Wang J, Cheng DG, Chen F, Zhan X. Chlorine-Decorated Ceria Nanocubes for Facilitating Low-Temperature Cyclohexane Oxidative Dehydrogenation: Unveiling the Decisive Role of Surface Species and Acid Properties. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jinling Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dang-guo Cheng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Fengqiu Chen
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Xiaoli Zhan
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
14
|
Using XRD extrapolation method to design Ce-Cu-O solid solution catalysts for methanol steam reforming to produce H2: The effect of CuO lattice capacity on the reaction performance. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Ban T, Yu XY, Kang HZ, Zhang HX, Gao X, Huang ZQ, Chang CR. Design of Single-Atom and Frustrated-Lewis-Pair Dual Active Sites for Direct Conversion of CH4 and CO2 to Acetic Acid. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Zhou M, Wang HF. Insight into the photoexcitation effect on the catalytic activation of H2 and C-H bonds on TiO2(110) surface. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Xu Y, Hao X, Zhang X, Wang T, Hu Z, Chen Y, Feng X, Liu W, Hao F, Kong X, He C, Ma S, Xu B. Increasing Oxygen Vacancy of CeO2 Nanocrystals by Ni Doping and reduced Graphene Oxides Decoration towards the Electrocatalytic Hydrogen Evolution. CrystEngComm 2022. [DOI: 10.1039/d2ce00209d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxygen vacancy (VO) engineering is proved to be an effective approach for improving the hydrogen evolution reaction (HER) performance of low-cost metal oxides electrocatalysts. Cerium dioxide (CeO2), one of...
Collapse
|
18
|
Tan Y, Li F, Zhao B, Chen W, Tian M. Hydrothermal Synthesis of a Ce-Zr-Ti Mixed Oxide Catalyst with Enhanced Catalytic Performance for a NH 3-SCR Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14823-14832. [PMID: 34915697 DOI: 10.1021/acs.langmuir.1c02597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A series of mesoporous CeZrTiOx catalysts were prepared by a facile hydrothermal method. Compared with CeTiOx catalysts synthesized under the same conditions, the catalytic activity and anti-SO2 performance of the Ce1Zr1TiOx catalyst are greatly improved, and at the gas hourly space velocity (GHSV) of 60 000 h-1, the NOx removal efficiency is maintained at 90% in the temperature range of 290-500 °C. The catalytic effect of ZrO2 on the Ce-Ti catalyst NH3-SCR activity was elucidated through a series of characterizations. The results revealed that the doping of Zr could significantly improve and optimize the structure of Ce-Ti catalysts. At the same time, due to the doping of Zr, the synergistic effect between Ce and Zr in the CeZrTiOx catalyst can effectively increase oxygen mobility, total acid content, and surface adsorbed oxygen species and lead to a larger pore volume. In addition, the introduction of ZrO2 made the transformation of Ce4+ into Ce3+ more obvious, and the 2Ce4+ + Zr2+ ↔ 2Ce3+ + Zr4+ reaction greatly improved the reducibility of Ce1Zr1TiOx. Among them, the improvement of SCR performance and H2O/SO2 tolerance is due to the electronic interaction between Zr and Ce.
Collapse
Affiliation(s)
- Yifeng Tan
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Fan Li
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Bing Zhao
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Wenlin Chen
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Mengkui Tian
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
19
|
Alonso G, López E, Huarte-Larrañaga F, Sayós R, Prats H, Gamallo P. Zeolite-encapsulated single-atom catalysts for efficient CO2 conversion. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Murakami K, Mizutani Y, Sampei H, Ishikawa A, Tanaka Y, Hayashi S, Doi S, Higo T, Tsuneki H, Nakai H, Sekine Y. Theoretical prediction by DFT and experimental observation of heterocation-doping effects on hydrogen adsorption and migration over the CeO 2(111) surface. Phys Chem Chem Phys 2021; 23:4509-4516. [PMID: 33523062 DOI: 10.1039/d0cp05752e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogen (H) atom adsorption and migration over the CeO2-based materials surface are of great importance because of its wide applications to catalytic reactions and electrochemical devices. Therefore, comprehensive knowledge for controlling the H atom adsorption and migration over CeO2-based materials is crucially important. For controlling H atom adsorption and migration, we investigated irreducible divalent, trivalent, and quadrivalent heterocation-doping effects on H atom adsorption and migration over the CeO2(111) surface using density functional theory (DFT) calculations. Results revealed that the electron-deficient lattice oxygen (Olat) and the flexible CeO2 matrix played key roles in strong adsorption of H atoms. Heterocations with smaller valence and smaller ionic radius induced the electron-deficient Olat. In addition, smaller cation doping enhanced the CeO2 matrix flexibility. Moreover, we confirmed the influence of H atom adsorption controlled by doping on surface proton migration (i.e. surface protonics) and catalytic reaction involving surface protonics (NH3 synthesis in an electric field). Results confirmed clear correlation between H atom adsorption energy and surface protonics.
Collapse
Affiliation(s)
- Kota Murakami
- Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|