1
|
Talwar T, Barreto J, Fernández CC, Steinrück HP, Maier F. Ultrathin Films of a Nitrile-Functionalized Ionic Liquid [C 3CNC 1Im][Tf 2N] on Au(111) and Pt(111): Adsorption, Growth, and Thermal Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27565-27578. [PMID: 39680877 DOI: 10.1021/acs.langmuir.4c04022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
We studied the adsorption and thermal behavior of the nitrile-functionalized ionic liquid (IL) [C3CNC1Im][Tf2N] on Au(111) and Pt(111) between 150 and 600 K. Ultrathin films were prepared at 150 K by physical vapor deposition (PVD) and were characterized by angle resolved X-ray photoelectron spectroscopy (ARXPS). At 150 K, the IL adsorbs intact with a similar orientation on both surfaces: In the first layer, the so-called wetting layer, the cation lies flat on the surface and the anion is bound in cis-configuration with the SO2 groups toward the surface and the CF3 groups away from the surface. On Au(111), subsequent deposition of IL in the multilayer regime at 150 K shows 2D growth up until ∼0.75 ML and a transition to moderate 3D at higher coverages. Temperature-programmed XPS indicates a change in surface morphology toward more pronounced 3D islands for the multilayers on top of the wetting layer between 220 and 290 K. From 350 to 440 K, desorption of multilayers occurs, with IL decomposition starting at 375-400 K. On the more reactive Pt(111) surface, decomposition starts already above 280 K. Notably, this temperature is ∼80 K higher than the onset for decomposition of related nonfunctionalized imidazolium-based ILs, that is, [C2C1Im][OTf], [C1C1Im][Tf2N], and [C8C1Im][Tf2N] on Pt(111). This difference is attributed to the nitrile functionality. Our findings demonstrate that functionalizing ILs significantly modifies their thermal properties, which is of high relevance for SCILL (solid catalyst with an ionic liquid layer) systems.
Collapse
Affiliation(s)
- Timo Talwar
- Lehrstuhl für Physikalische Chemie 2, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Jade Barreto
- Lehrstuhl für Physikalische Chemie 2, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Cynthia Carolina Fernández
- Lehrstuhl für Physikalische Chemie 2, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Hans-Peter Steinrück
- Lehrstuhl für Physikalische Chemie 2, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Florian Maier
- Lehrstuhl für Physikalische Chemie 2, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
2
|
Carvalho RM, Santos LMNBF, Bastos M, Costa JCS. Carbon-Induced Changes in the Morphology and Wetting Behavior of Ionic Liquids on the Mesoscale. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38343280 PMCID: PMC10883047 DOI: 10.1021/acs.langmuir.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Thin films of ionic liquids (ILs) have gained significant attention due to their unique properties and broad applications. Extensive research has focused on studying the influence of ILs' chemical composition and substrate characteristics on the structure and morphology of IL films at the nano- and mesoscopic scales. This study explores the impact of carbon-coated surfaces on the morphology and wetting behavior of a series of alkylimidazolium-based ILs. Specifically, this work investigates the effect of carbon coating on the morphology and wetting behavior of short-chain ([C2C1im][NTf2] and [C2C1im][OTf]) and long-chain ([C8C1im][NTf2] and [C8C1im][OTf]) ILs deposited on indium tin oxide (ITO), silver (Ag), and gold (Au) substrates. A reproducible vapor deposition methodology was utilized for the deposition process. High-resolution scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy were used to analyze the morphological and structural characteristics of the substrates and obtained IL films. The experimental data revealed that the IL films deposited on carbon-coated Au substrates showed minor changes in their morphology compared to that of the films deposited on clean Au surfaces. However, the presence of carbon coatings on the ITO and Ag surfaces led to significant morphological alterations in the IL films. Specifically, for short-chain ILs, the carbon film surface induced 2D growth of the IL film, followed by subsequent island growth. In contrast, for long-chain ILs deposited on carbon surfaces, layer-by-layer growth occurred without island formation, resulting in highly uniform and coalesced IL films. The extent of morphological changes observed in the IL films was found to be influenced by two crucial factors: the thickness of the carbon film on the substrate surface and the amount of IL deposition.
Collapse
Affiliation(s)
- Rita M Carvalho
- CIQUP, Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre s/n, P4169-007 Porto, Portugal
| | - Luís M N B F Santos
- CIQUP, Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre s/n, P4169-007 Porto, Portugal
| | - Margarida Bastos
- CIQUP, Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre s/n, P4169-007 Porto, Portugal
| | - José C S Costa
- CIQUP, Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre s/n, P4169-007 Porto, Portugal
| |
Collapse
|
3
|
Massicot S, Gezmis A, Talwar T, Meusel M, Jaekel S, Adhikari R, Winter L, Fernández CC, Bayer A, Maier F, Steinrück HP. Adsorption and thermal evolution of [C 1C 1Im][Tf 2N] on Pt(111). Phys Chem Chem Phys 2023; 25:27953-27966. [PMID: 37655794 DOI: 10.1039/d3cp02743k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In the context of ionic liquid (IL)-assisted catalysis, we have investigated the adsorption and thermal evolution of the IL 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([C1C1Im][Tf2N]) on Pt(111) between 100 and 800 K by angle-resolved X-ray photoelectron spectroscopy and scanning tunneling microscopy. Defined amounts of IL in the coverage range of a complete first wetting layer were deposited at low temperature (100-200 K), and subsequently heated to 300 K, or directly at 300 K. At 100 K, the IL adsorbs as an intact disordered layer. Upon heating to 200 K, the IL stays intact, but forms an ordered and well-oriented structure. Upon heating to 250 K, the surface order increases, but at the same time STM and XPS indicate the onset of decomposition. Upon heating to 300 K, decomposition progresses, such that 50-60% of the IL is decomposed. The anion-related reaction products desorb instantaneously, and the cation-related products remain on the surface. Thereby, the surface is partly passivated, enabling the remaining IL to still be adsorbed intact at 300 K. For IL deposition directly at 300 K, a fraction of the IL instantaneously decomposes, with the anion-related products desorbing, opening free space for further deposition of IL. Hence, cation-related species accumulate at the expense of anions, until one fully closed wetting layer is formed. As a consequence, a higher dose is required to reach this coverage at 300 K, compared to 100-200 K.
Collapse
Affiliation(s)
- Stephen Massicot
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - Afra Gezmis
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - Timo Talwar
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - Manuel Meusel
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - Simon Jaekel
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - Rajan Adhikari
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - Leonhard Winter
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - Cynthia C Fernández
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - Andreas Bayer
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - Florian Maier
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - Hans-Peter Steinrück
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| |
Collapse
|
4
|
Nucleation, Coalescence, and Thin-Film Growth of Triflate-Based Ionic Liquids on ITO, Ag, and Au Surfaces. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigates the nucleation and growth of micro-/nanodroplets of triflate-based ionic liquids (ILs) fabricated by vapor deposition on different surfaces: indium tin oxide (ITO); silver (Ag); gold (Au). The ILs studied are constituted by the alkylimidazolium cation and the triflate anion—[CnC1im][OTF] series. One of the key issues that determine the potential applications of ILs is the wettability of surfaces. Herein, the wetting behavior was evaluated by changing the cation alkyl chain length (C2 to C10). A reproducible control of the deposition rate was conducted employing Knudsen cells, and the thin-film morphology was evaluated by high-resolution scanning electron microscopy (SEM). The study reported here for the [CnC1im][OTF] series agrees with recent data for the [CnC1im][NTf2] congeners, highlighting the higher wettability of the solid substrates to long-chain alkylimidazolium cations. Compared to [NTf2], the [OTF] series evidenced an even more pronounced wetting ability on Au and coalescence processes of droplets highly intense on ITO. Higher homogeneity and film cohesion were found for cationic groups associated with larger alkyl side chains. An island growth was observed on both Ag and ITO substrates independently of the cation alkyl chain length. The Ag surface promoted the formation of smaller-size droplets. A quantitative analysis of the number of microdroplets formed on Ag and ITO revealed a trend shift around [C6C1im][OTF], emphasizing the effect of the nanostructuration intensification due to the formation of nonpolar continuous domains.
Collapse
|
5
|
Sun T, Lu Y, Lu J, Dong H, Ding W, Wang Y, Yang X, He H. Water-Controlled Structural Transition and Charge Transfer of Interfacial Ionic Liquids. J Phys Chem Lett 2022; 13:7113-7120. [PMID: 35900378 DOI: 10.1021/acs.jpclett.2c01822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Clarification of the water-induced structural transitions and electron transfer between ionic liquids (ILs) and a solid surface allows for establishing a unified view of the electrical properties of interfacial ILs via a hitherto unexplored pathway. Here, we propose a simple and effective method to quantitatively identify and extract the transferred electrons between ILs and a solid surface, while demonstrating the critical structural transition of interfacial ILs from ordered stripe structures to disordered aggregation structures. The formation of hydrated anions, rooted in the hydrogen bonds of O-H···O between the anion and water, lies at the tipping point where electron transfer ends and aggregation structure begins. In addition, it is discovered to what extent the hydrophilicity of substrates can affect electron transfer, and a regulation method based on the electric field is explored. These experimental findings may refresh our knowledge of interfacial ILs and provide an effective method for evaluating the intrinsic electrical features of the ILs-solid surface.
Collapse
Affiliation(s)
- Tinglan Sun
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yumiao Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Dong
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilu Ding
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiuhong Yang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Costa JCS, Alves A, Bastos M, Santos LMNBF. The impact of the cation alkyl chain length on the wettability of alkylimidazolium-based ionic liquids at the nanoscale. Phys Chem Chem Phys 2022; 24:13343-13355. [PMID: 35608141 DOI: 10.1039/d2cp01868c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquids (ILs) have been widely used for energy storage and conversion devices due to their negligible vapor pressure, high thermal stability, and outstanding interfacial properties. Notably, the interfacial nanostructure and the wettability of thin ionic liquid films on solid surfaces are of utmost relevance in nanosurface science and technology. Herein, a reproducible physical vapor deposition methodology was used to fabricate thin films of four alkylimidazolium bis(trifluoromethylsulfonyl)imide ILs. The effect of the cation alkyl chain length on the wettability of ILs was explored on different surfaces: gold (Au); silver (Ag); indium-tin oxide (ITO). High-resolution scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to evaluate the morphology of the produced micro- and nanodroplets and films. SEM and AFM results revealed an island growth for all the ILs deposited on ITO and Ag surfaces, with a lower minimum free area to promote nucleation (MFAN) in Ag and higher wettability for ILs having larger non-polar domains. The low wettability of ITO by the studied ILs was highlighted. For long-chain ILs, nucleation and growth mechanisms were strongly conditioned by coalescence processes. The results also supported the higher affinity of the ILs to the Au surface. The increase in the length of the cation alkyl chain was found to promote a better film adhesion inducing a 2D growth and higher wetting ability.
Collapse
Affiliation(s)
- José C S Costa
- CIQUP, Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, P4169-007, Porto, Portugal.
| | - Alexandre Alves
- CIQUP, Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, P4169-007, Porto, Portugal.
| | - Margarida Bastos
- CIQUP, Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, P4169-007, Porto, Portugal.
| | - Luís M N B F Santos
- CIQUP, Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, P4169-007, Porto, Portugal.
| |
Collapse
|
7
|
Du Hill L, De Keersmaecker M, Colbert AE, Hill JW, Placencia D, Boercker JE, Armstrong NR, Ratcliff EL. Rationalizing energy level alignment by characterizing Lewis acid/base and ionic interactions at printable semiconductor/ionic liquid interfaces. MATERIALS HORIZONS 2022; 9:471-481. [PMID: 34859805 DOI: 10.1039/d1mh01306h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Charge transfer and energy conversion processes at semiconductor/electrolyte interfaces are controlled by local electric field distributions, which can be especially challenging to measure. Herein we leverage the low vapor pressure and vacuum compatibility of ionic liquid electrolytes to undertake a layer-by-layer, ultra-high vacuum deposition of a prototypical ionic liquid EMIM+ (1-ethyl-3-methylimidazolium) and TFSI- (bis(trifluoromethylsulfonyl)-imide) on the surfaces of different electronic materials. We consider a case-by-case study between a standard metal (Au) and four printed electronic materials, where interfaces are characterized by a combination of X-ray and ultraviolet photoemission spectroscopies (XPS/UPS). For template-stripped gold surfaces, we observe through XPS a preferential orientation of the TFSI anion at the gold surface, enabling large electric fields (∼108 eV m-1) within the first two monolayers detected by a large surface vacuum level shift (0.7 eV) in UPS. Conversely, we observe a much more random orientation on four printable semiconductor surfaces: methyl ammonium lead triiodide (MAPbI3), regioregular poly(3-hexylthiophene-2,5-diyl (P3HT)), sol-gel nickel oxide (NiOx), and PbIx-capped PbS quantum dots. For the semiconductors considered, the ionization energy (IE) of the ionic liquid at 3 ML coverage is highly substrate dependent, indicating that underlying chemical reactions are dominating interface level alignment (electronic equilibration) prior to reaching bulk electronic structure. This indicates there is no universal rule for energy level alignment, but that relative strengths of Lewis acid/base sites and ion-molecular interactions should be considered. Specifically, for P3HT, interactions are found to be relatively weak and occurring through the π-bonding structure in the thiophene ring. Alternatively, for NiOx, PbS/PbIx quantum dots, and MAPbI3, our XPS data suggest a combination of ionic bonding and Lewis acid/base reactions between the semiconductor and IL, with MAPbI3 being the most reactive surface. Collectively, our results point towards new directions in interface engineering, where strategically chosen ionic liquid-based anions and cations can be used to preferentially passivate and/or titrate surface defects of heterogeneous surfaces while simultaneously providing highly localized electric fields. These opportunities are expected to be translatable to opto-electronic and electrochemical devices, including energy conversion and storage and biosensing applications.
Collapse
Affiliation(s)
- Linze Du Hill
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721, USA.
| | - Michel De Keersmaecker
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721, USA.
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA
| | - Adam E Colbert
- US. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC. 20375, USA
| | - Joshua W Hill
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721, USA.
| | - Diogenes Placencia
- US. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC. 20375, USA
| | - Janice E Boercker
- US. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC. 20375, USA
| | - Neal R Armstrong
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA
| | - Erin L Ratcliff
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721, USA.
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA
- Department of Materials Science and Engineering, University of Arizona, 1235 E. James E. Rogers Way, Tucson, AZ 85721, USA
| |
Collapse
|
8
|
Wang B, Li L. Effect of Solid Substrates on the Molecular Structure of Ionic Liquid Nanofilms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14753-14759. [PMID: 34878792 DOI: 10.1021/acs.langmuir.1c02722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fundamental understandings of the interfacial molecular structure of solid-confined ionic liquids (ILs) have significant impacts on the development of many cutting-edge applications. Among the extensive studies on the molecular structure at the IL/solid interface, direct observation of a double-layering quantized growth of [Cnmim][FAP] on mica was recently reported. In the current work, the atomic force microscopy (AFM) results directly show that the growths of [Bmim][FAP] nanofilms on silica and amorphous carbon are different from the double-layering growth on mica. The growth of [Bmim][FAP] nanofilms on silica is dominated by the aggregation of the IL molecules, which can be attributed to the inadequate negative charging of the silica surface resulting in a weak electrostatic interaction between silica and the IL cation. [Bmim][FAP] on amorphous carbon shows a fairly smooth film for the thinner nanofilms, which can be attributed to the π-π+ parallel stacking between the cation imidazolium ring and the randomly distributed sp2 carbon on the amorphous carbon surface. Our findings highlight the effect of different IL/solid interactions, among the several competing interactions at the interface, on the resulting molecular arrangements of various IL.
Collapse
Affiliation(s)
- Bingchen Wang
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Lei Li
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
9
|
Hohner C, Fromm L, Schuschke C, Taccardi N, Xu T, Wasserscheid P, Görling A, Libuda J. Adsorption Motifs and Molecular Orientation at the Ionic Liquid/Noble Metal Interface: [C 2C 1Im][NTf 2] on Pt(111). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12596-12607. [PMID: 34661413 DOI: 10.1021/acs.langmuir.1c01900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In solid catalysts with ionic liquid layers (SCILLs), ionic liquid (IL) thin films are used to modify the activity and selectivity of catalytic materials. In this work, we investigated the adsorption behavior of the IL 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide [C2C1Im][NTf2] on Pt(111) by combining experimental and theoretical studies. Under ultrahigh vacuum (UHV) conditions, the IL was deposited onto a Pt(111) single crystal surface by physical vapor deposition (PVD) at different surface temperatures (200, 300, and 400 K). The adsorption process was monitored by in situ infrared reflection absorption spectroscopy (IRAS). Complementary to the IRAS studies, we performed density functional theory (DFT) calculations and analyzed the adsorption motifs and orientation of the IL ions. In total, we calculated four different systems: (a) [C2C1Im]+ and [NTf2]- ions in the gas phase; [NTf2]- anions in (b) small (4 × 4) and (c) large (6 × 6) Pt(111) supercells; and (d) a complete ion pair of [C2C1Im][NTf2] in a (6 × 6) Pt(111) supercell. Based on DFT, we simulated IR spectra and compared them to the experimental data. Our results suggest that the binding motif and orientation of the IL is strongly dependent on the actual IL coverage. In the monolayer (ML), [NTf2]- interacts strongly with the metal surface and adopts a specific orientation in which it interacts with the Pt surface via the SO2 groups. Also the [C2C1Im]+ cations adopt a preferential orientation up to coverages of 1 ML. Upon transition to the multilayer region, the specific orientation of the ions is gradually lost.
Collapse
Affiliation(s)
- Chantal Hohner
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Lukas Fromm
- Lehrstuhl für Theoretische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Christian Schuschke
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Nicola Taccardi
- Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Tao Xu
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Peter Wasserscheid
- Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Andreas Görling
- Lehrstuhl für Theoretische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Jörg Libuda
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
10
|
Eschenbacher R, Schuschke C, Bühlmeyer H, Taccardi N, Wasserscheid P, Bauer T, Xu T, Libuda J. Interaction between Ionic Liquids and a Pt(111) Surface Probed by Coadsorbed CO as a Test Molecule. J Phys Chem Lett 2021; 12:10079-10085. [PMID: 34624196 DOI: 10.1021/acs.jpclett.1c02983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We used temperature-programmed infrared reflection absorption spectroscopy (TP-IRAS) to study the desorption behavior of CO on Pt(111) coadsorbed with four kinds of ionic liquids (ILs), namely 1-butyl-1-methyl-pyrrolidinium-bis(trifluoromethylsulfonyl)imide ([C4C1Pyr][NTf2]), 1-ethyl-3-methyl-imidazolium-bis(trifluoromethylsulfonyl)imide ([C2C1Im][NTf2]), 1-butyl-1-methyl-pyrrolidinium-trifluoro-methanesulfonate ([C4C1Pyr][OTf]), and 1-butyl-1-methyl-pyrrolidinium-hexafluorophosphate ([C4C1Pyr][PF6]). We found that CO desorbs earlier from a Pt(111) surface with coadsorbed ILs than without. In addition, the CO desorption temperature varies between different types of coadsorbed ILs, which follows the order: [C4C1Pyr][PF6] (365 K) > [C4C1Pyr][NTf2] (362 K) > [C2C1Im][NTf2] (352 K) > [C4C1Pyr][OTf] (348 K). We ascribe the difference in CO desorption temperature to the different interaction strength between ILs and the Pt(111) surface. A stronger IL-Pt(111) interaction leads to a lower CO desorption temperature. We suggest that TP-IRAS experiments of CO coadsorbed with ILs can be a useful method to aid the characterization of the interaction strength between ILs and metal surfaces such as Pt(111).
Collapse
Affiliation(s)
- Roman Eschenbacher
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Christian Schuschke
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Hanna Bühlmeyer
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Nicola Taccardi
- Institute of Chemical Reaction Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Peter Wasserscheid
- Institute of Chemical Reaction Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, 91058 Erlangen, Germany
| | - Tanja Bauer
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Tao Xu
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Jörg Libuda
- Interface Research and Catalysis, ECRC, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
11
|
Meusel M, Gezmis A, Jaekel S, Lexow M, Bayer A, Maier F, Steinrück HP. Time- and Temperature-Dependent Growth Behavior of Ionic Liquids on Au(111) Studied by Atomic Force Microscopy in Ultrahigh Vacuum. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:20439-20449. [PMID: 34594432 PMCID: PMC8474146 DOI: 10.1021/acs.jpcc.1c06613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Indexed: 06/13/2023]
Abstract
We deposited defined amounts of [C1C1Im][Tf2N] on Au(111) at different temperatures and investigated the morphology and wetting behavior of the deposited films by atomic force microscopy. For multilayer coverages, we observe a drastically different growth behavior when comparing deposition at room temperature (RT) and deposition below 170 K followed by slow annealing to RT. Upon deposition at RT, we find the formation of 2-30 nm high and 50-500 nm wide metastable 3D droplets on top of a checkerboard-type wetting layer. These droplets spread out into stable 2D bilayers, on the time scale of hours and days. The same 2D bilayer structure is obtained after deposition below 170 K and slow annealing to RT. We present a statistical analysis on the time-dependent changes of the shape and volume of the 3D droplets and the 2D bilayers. We attribute the stabilization of the 2D bilayers on the wetting layer and on already formed bilayers to the high degree of order in these layers. Notably, the transformation process from the 3D droplets to 2D bilayer islands is accelerated by tip effects and also X-ray radiation.
Collapse
|