1
|
Hu Y, Ou J, Amirfazli A. Application of Surface Wettability to Control Spreading of an Impacting Droplet. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4623-4634. [PMID: 38300846 DOI: 10.1021/acs.langmuir.3c03153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
While the simplest outcome of a normal impact on a flat stationary solid surface is radially symmetric spreading, it is important to note that asymmetric spreading can intrinsically occur with a tangential velocity along the surface. However, no previous attempt has been made to restore the symmetry of a lamella that intrinsically spreads asymmetrically. Adjusting the lamella's asymmetric shape to a symmetric one is achieved in this work by varying wettability to affect the receding velocity of the contact line, according to the Taylor-Culick theory. Here we theoretically and practically show how restoring the symmetry can be achieved. Theoretically we built a framework to map the needed receding velocity at every given point of the contact line to allow for symmetry to be restored, and then this framework was applied to generate a wetting map that shows how at each local the wettability of the surface needs to be defined. Simulated results confirmed the effectiveness of our framework and identified the envelope of its applicability. Next, to apply the idea experimentally, the wetting map was transformed to a single wettability contrast area dubbed the "patch". Experimental results showed the effectiveness of the patch design in correcting the asymmetric spreading lamella for water droplets impacting a surface for the following Weber number conditions: Wen ≤ 300, Wet ≤ 300, and 0.51 ≤ Wen/Wet ≤ 2.04.
Collapse
Affiliation(s)
- Yating Hu
- School of Materials Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China
- Department of Mechanical Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| | - Junfei Ou
- School of Materials Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China
| | - Alidad Amirfazli
- Department of Mechanical Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
2
|
Yılmaz K, Gürsoy M, Karaman M. Environmentally Friendly and All-Dry Hydrophobic Patterning of Graphene Oxide for Fog Harvesting. ACS OMEGA 2024; 9:8810-8817. [PMID: 38434806 PMCID: PMC10905578 DOI: 10.1021/acsomega.3c06197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 03/05/2024]
Abstract
This study examines the fog-harvesting ability of graphene oxide surfaces patterned by hydrophobic domains. The samples were prepared from graphene deposited using low pressure chemical vapor deposition, which was later plasma oxidized to obtain hydrophilic graphene oxide (GO) surfaces. Hydrophobic domains on GO surfaces were formed by initiated CVD (iCVD) of a low-surface-energy poly(perfluorodecyl alkylate) (PPFDA) polymer. Hence, patterned surfaces with hydrophobic/hydrophilic contrast were produced with ease in an all-dry manner. The structures of the as-deposited graphene and PPFDA films were characterized using Raman and Fourier transform infrared spectrophotometer analyses, respectively. The fog harvesting performance of the samples was measured using the fog generated by a nebulizer, in which the average diameter of the fog droplets is comparable to meteorological fog. According to the fog harvesting experiment results, 100 cm2 of the as-patterned surface can collect fog up to 2.5 L in 10 h in a foggy environment. Hence, hydrophilic/hydrophobic patterned surfaces in this study can be considered as promising fog harvesting materials. Both CVD techniques used in the production of hydrophilic/hydrophobic patterned surfaces can be easily applied to the production of large-scale materials.
Collapse
Affiliation(s)
- Kurtuluş Yılmaz
- Chemical Engineering Department, Konya Technical University, Konya 42030, Turkey
| | - Mehmet Gürsoy
- . Phone: +(90) 332 223 1972. Fax: +(90) 332 241
0635
| | | |
Collapse
|
3
|
Kwaczyński K, Szymaniec O, Bobrowska DM, Poltorak L. Solvent-activated 3D-printed electrodes and their electroanalytical potential. Sci Rep 2023; 13:22797. [PMID: 38129451 PMCID: PMC10739953 DOI: 10.1038/s41598-023-49599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
This work is a comprehensive study describing the optimization of the solvent-activated carbon-based 3D printed electrodes. Three different conductive filaments were used for the preparation of 3D-printed electrodes. Electrodes treatment with organic solvents, electrochemical characterization, and finally electroanalytical application was performed in a dedicated polyamide-based cell also created using 3D printing. We have investigated the effect of the used solvent (acetone, dichloromethane, dichloroethane, acetonitrile, and tetrahydrofuran), time of activation (from immersion up to 3600 s), and the type of commercially available filament (three different options were studied, each being a formulation of a polylactic acid and conductive carbon material). We have obtained and analysed a significant amount of collected data which cover the solvent-activated carbon-based electrodes surface wettability, microscopic insights into the surface topography analysed with scanning electron microscopy and atomic force microscopy, and finally voltammetric evaluation of the obtained carbon electrodes electrochemical response. All data are tabulated, discussed, and compared to finally provide the superior activation procedure. The electroanalytical performance of the chosen electrode is discussed based on the voltammetric detection of ferrocenemethanol.
Collapse
Affiliation(s)
- Karolina Kwaczyński
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland.
| | - Olga Szymaniec
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Diana M Bobrowska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Lukasz Poltorak
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland.
| |
Collapse
|
4
|
Garcia R. Interfacial Liquid Water on Graphite, Graphene, and 2D Materials. ACS NANO 2023; 17:51-69. [PMID: 36507725 PMCID: PMC10664075 DOI: 10.1021/acsnano.2c10215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The optical, electronic, and mechanical properties of graphite, few-layer, and two-dimensional (2D) materials have prompted a considerable number of applications. Biosensing, energy storage, and water desalination illustrate applications that require a molecular-scale understanding of the interfacial water structure on 2D materials. This review introduces the most recent experimental and theoretical advances on the structure of interfacial liquid water on graphite-like and 2D materials surfaces. On pristine conditions, atomic-scale resolution experiments revealed the existence of 1-3 hydration layers. Those layers were separated by ∼0.3 nm. The experimental data were supported by molecular dynamics simulations. However, under standard working conditions, atomic-scale resolution experiments revealed the presence of 2-3 hydrocarbon layers. Those layers were separated by ∼0.5 nm. Linear alkanes were the dominant molecular specie within the hydrocarbon layers. Paradoxically, the interface of an aged 2D material surface immersed in water does not have water molecules on its vicinity. Free-energy considerations favored the replacement of water by alkanes.
Collapse
Affiliation(s)
- Ricardo Garcia
- Instituto de Ciencia de Materiales
de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049Madrid, Spain
| |
Collapse
|
5
|
Kafle P, Huang S, Park KS, Zhang F, Yu H, Kasprzak CE, Kim H, Schroeder CM, van der Zande AM, Diao Y. Role of Interfacial Interactions in the Graphene-Directed Assembly of Monolayer Conjugated Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6984-6995. [PMID: 35613042 DOI: 10.1021/acs.langmuir.2c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Development of graphene-organic hybrid electronics is one of the most promising directions for next-generation electronic materials. However, it remains challenging to understand the graphene-organic semiconductor interactions right at the interface, which is key to designing hybrid electronics. Herein, we study the influence of graphene on the multiscale morphology of solution-processed monolayers of conjugated polymers (PII-2T, DPP-BTz, DPP2T-TT, and DPP-T-TMS). The strong interaction between graphene and PII-2T was manifested in the high fiber density and high film coverage of monolayer films deposited on graphene compared to plasma SiO2 substrates. The monolayer films on graphene also exhibited a higher relative degree of crystallinity and dichroic ratio or polymer alignment, i.e., higher degree of order. Raman spectroscopy revealed the increased backbone planarity of the conjugated polymers upon deposition on graphene as well as the existence of electronic interaction across the interface. This speculation was further substantiated by the results of photoelectron spectroscopy (XPS and UPS) of PII-2T, which showed a decrease in binding energy of several atomic energy levels, movement of the Fermi level toward HOMO, and an increase in work function, all of which indicate p-doping of the polymer. Our results provide a new level of understanding on graphene-polymer interactions at nanoscopic interfaces and the consequent impact on multiscale morphology, which will aid in the design of efficient graphene-organic hybrid electronics.
Collapse
Affiliation(s)
- Prapti Kafle
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Siyuan Huang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kyung Sun Park
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Caroline E Kasprzak
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hyunchul Kim
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles M Schroeder
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Arend M van der Zande
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Kim E, Kim D, Kwak K, Nagata Y, Bonn M, Cho M. Wettability of graphene, water contact angle, and interfacial water structure. Chem 2022. [DOI: 10.1016/j.chempr.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Yang M, Sheng Q, Guo L, Zhang H, Tang G. How Gas-Solid Interaction Matters in Graphene-Doped Silica Aerogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2238-2247. [PMID: 35129991 DOI: 10.1021/acs.langmuir.1c02777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It was interesting to experimentally find that the thermal insulation of silica aerogels was improved by doping graphene sheets with high heat conductivity. The underlying mechanism is investigated in the present work from the perspective of gas-solid interaction using a comprehensive analysis of molecular dynamics (MD) simulations, theoretical modeling, and experimental data. The MD-modeled small pores are demonstrated to effectively represent big pores in silica aerogels because of similar heat conduction physics, because it is found that adsorption does not contribute to gas heat conduction. Meanwhile, based on the experimentally measured density, the porous structures are schematically re-engineered using molecular modeling for the first time. The evaluated pore size distributions numerically present a consistency with available experimental data. Inspired by the visualization of the 3D pore structure, we proposed a graphene/silica/nitrogen model to evaluate the role of graphene in heat conduction: it can not only reduce effective gas collision (impede heat transport) but also enhance the gas-solid coupling effect. The former is dominant because of the high porosity, leading to an improvement in thermal insulation. The competition between them can be the reason for the "trade-off" phenomenon in the graphene doping effect in the available experiment.
Collapse
Affiliation(s)
- Mingyang Yang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Qiang Sheng
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Lin Guo
- Energy Research Institute, Qilu University of Technology, Jinan 250014, P.R. China
| | - Hu Zhang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guihua Tang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
8
|
Oviroh PO, Jen TC, Ren J, Mohlala LM, Warmbier R, Karimzadeh S. Nanoporous MoS 2 Membrane for Water Desalination: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7127-7137. [PMID: 34048656 DOI: 10.1021/acs.langmuir.1c00708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Molybdenum disulfide (MoS2), a two-dimensional (2D) material, promises better desalination efficiency, benefiting from the small diffusion length. While the monolayer nanoporous MoS2 membrane has great potential in the reverse osmosis (RO) desalination membrane, multilayer MoS2 membranes are more feasible to synthesize and economical than the monolayer MoS2 membrane. Building on the monolayer MoS2 membrane knowledge, the effects of the multilayer MoS2 membrane in water desalination were explored, and the results showed that increasing the pore size from 3 to 6 Å resulted in higher permeability but with lower salt rejection. The salt rejection increases from 85% in a monolayer MoS2 membrane to about 98% in a trilayer MoS2 membrane. When averaged over all three types of membranes studied, the ions rejection follows the trend of trilayer > bilayer > monolayer. Besides, a narrow layer separation was found to play an important role in the successful rejection of salt ions in bilayer and trilayer membranes. This study aims to provide a collective understanding of this high permiselective MoS2 membrane's realization for water desalination, and the findings showed that the water permeability of the MoS2 monolayer membrane was in the order of magnitude greater than that of the conventional RO membrane and the nanoporous MoS2 membrane can have an important place in the purification of water.
Collapse
Affiliation(s)
- Peter Ozaveshe Oviroh
- Department of Mechanical Engineering Science, University of Johannesburg, Corner Kingsway and University Road, Auckland Park, 2092, Johannesburg, South Africa
| | - Tien-Chien Jen
- Department of Mechanical Engineering Science, University of Johannesburg, Corner Kingsway and University Road, Auckland Park, 2092, Johannesburg, South Africa
| | - Jianwei Ren
- Department of Mechanical Engineering Science, University of Johannesburg, Corner Kingsway and University Road, Auckland Park, 2092, Johannesburg, South Africa
| | - Lesego M Mohlala
- Department of Metallurgical Engineering, University of Johannesburg, Doornfontein, 2006, Johannesburg, South Africa
| | - Robert Warmbier
- Department of Physics, University of Johannesburg, Corner Kingsway and University Road, Auckland Park, 2092, Johannesburg, South Africa
| | - Sina Karimzadeh
- Department of Mechanical Engineering Science, University of Johannesburg, Corner Kingsway and University Road, Auckland Park, 2092, Johannesburg, South Africa
| |
Collapse
|