1
|
Del Duca G, Parisi E, Artusio F, Calì E, Fraterrigo Garofalo S, Rosso C, Cauda V, Chierotti MR, Simone E. A crystal engineering approach for rational design of curcumin crystals for Pickering stabilization of emulsions. Food Res Int 2024; 194:114871. [PMID: 39232509 DOI: 10.1016/j.foodres.2024.114871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Emulsions stabilized via Pickering particles are becoming more and more popular due to their high stability and biocompatibility. Hence, developing new ways to produce effective Pickering particles is essential. In this work, we present a crystal engineering approach to obtain precise control over particle properties such as size, shape, and crystal structure, which may affect wettability and surface chemistry. A highly reproducible synthesis method via anti-solvent crystallization was developed to produce sub-micron sized curcumin crystals of the metastable form III, to be used as Pickering stabilizers. The produced crystals presented a clear hydrophobic nature, which was demonstrated by their preference to stabilize water-in-oil (W/O) emulsions. A comprehensive experimental and computational characterization of curcumin crystals was performed to rationalize their hydrophobic nature. Analytical techniques including Raman spectroscopy, powder X-ray diffraction (PXRD), Solid-State Nuclear Magnetic Resonance (SSNMR), scanning electron microscopy (SEM), Differential Scanning Calorimetry (DSC), confocal fluorescence microscopy and contact angle measurements were used to characterize curcumin particles in terms of shape, size and interfacial activity. The attachment energy model was instead applied to study relevant surface features of curcumin crystals, such as topology and facet-specific surface chemistry. This work contributes to the understanding of the effect of crystal properties on the mechanism of Pickering stabilization, and paves the way for the formulation of innovative products in fields ranging from pharmaceuticals to food science.
Collapse
Affiliation(s)
- Giulia Del Duca
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy
| | - Emmanuele Parisi
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy
| | - Fiora Artusio
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy
| | - Eleonora Calì
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy
| | | | - Chiara Rosso
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy
| | - Michele R Chierotti
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy
| | - Elena Simone
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy.
| |
Collapse
|
2
|
Alhasan FH, Tehrani MM, Varidi M. Producing superior oleofoams: Unraveling the impact of oil type, surfactant concentration, and production temperature on foam stability and functional characteristics. Food Chem X 2024; 21:101033. [PMID: 38205159 PMCID: PMC10776775 DOI: 10.1016/j.fochx.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 01/12/2024] Open
Abstract
This study explores the impact of oil type, surfactant concentration, and production temperature on oleofoam properties. Oleofoams were prepared using different concentrations (5, 8, and 10 % w/w) of monoglyceride (MG) in olive, soybean, and sunflower oils at temperatures of 25 °C and 5 °C. The results indicate that higher surfactant concentrations and lower production temperatures enhance the stability, foamability, melting behavior, and hardness of the oleofoams, while minimizing oil drainage. Microscopic analysis reveals that lower production temperatures result in smaller bubble sizes in all oil blends which reduces oil loss and increases the hardness of the oleofoam. Also, oleofoams derived from different oils exhibit solid-like behavior. Among the oils studied, the oleofoam prepared with sunflower oil, at a concentration of 10 % MG and a production temperature of 5 °C, demonstrates superior properties. These findings provide valuable insights into optimizing oleofoam properties by controlling the oil type, surfactant concentration, and production temperature.
Collapse
Affiliation(s)
- Fayza Hussein Alhasan
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mehdi Varidi
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
3
|
Simone E, Rappolt M, Ewens H, Rutherford T, Marty Terrade S, Giuffrida F, Marmet C. A synchrotron X-ray scattering study of the crystallization behavior of mixtures of confectionary triacylglycerides: Effect of chemical composition and shear on polymorphism and kinetics. Food Res Int 2024; 177:113864. [PMID: 38225135 DOI: 10.1016/j.foodres.2023.113864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Cocoa butter equivalents (CBE) are mixtures of triglycerides from multiple sources (e.g., sunflower oil, mango kernel and sal), which resemble cocoa butter (CB) in both physical and chemical properties. Despite being widely used to replace CB in chocolate products, the crystallization behavior of many CBEs is still poorly understood. The aim of this work was to develop a fundamental understanding, at the molecular level, of the crystallization behavior of selected CBEs, and compare it with that of CB. Chromatography was used to determine the composition of CBEs, in terms of fatty acids and triacylglycerides (TAGs), while their thermodynamic behavior and crystallization kinetics were studied using polarized microscopy, differential calorimetry and three different synchrotron X-ray scattering setups. CBEs of different origin and chemical composition (e.g., different ratios of the main CB TAGs, namely POP, SOS and POS) crystallized in different polymorphs and with different kinetics of nucleation, growth and polymorphic transformation. SOS rich CBEs presented showed more polymorphs than CB and POP rich samples; whereas, CBEs with high concentration of POP showed slow kinetic of polymorphic transformation towards the stable β(3L) form. Additionally, it was observed that the presence of small amounts (<1% w/w) of specific TAGs, such as OOO, PPP or SSS, could significantly affect the crystallization behavior of CBEs and CBs in terms of kinetics of polymorphic transformation and number of phases detected (multiple high melting β(2L) polymorphs were identified in all samples studied). Finally, it was found that, regardless of the CBE composition, the presence of shear could promote the formation of stable β polymorphs over metastable β' and γ forms, and reduced the size of the crystal agglomerates formed due to increased secondary nucleation.
Collapse
Affiliation(s)
- Elena Simone
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Torino, Italy; School of Food Science and Nutrition, Food Colloids and Bioprocessing Group, University of Leeds, Leeds, United Kingdom.
| | - Michael Rappolt
- School of Food Science and Nutrition, Food Colloids and Bioprocessing Group, University of Leeds, Leeds, United Kingdom
| | - Holly Ewens
- School of Food Science and Nutrition, Food Colloids and Bioprocessing Group, University of Leeds, Leeds, United Kingdom
| | - Tom Rutherford
- Nestlé Product Technology Centre Confectionery, Haxby Road, York, YO31 8TA, United Kingdom
| | | | | | - Cynthia Marmet
- Nestlé Research, Vers-chez-les-Blanc, Lausanne 26, 1000, Switzerland
| |
Collapse
|
4
|
Hu X, Meng Z. An overview of edible foams in food and modern cuisine: Destabilization and stabilization mechanisms and applications. Compr Rev Food Sci Food Saf 2024; 23:e13284. [PMID: 38284578 DOI: 10.1111/1541-4337.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024]
Abstract
Foam, as a structured multi-scale colloidal system, is becoming increasingly popular in food because it gives a series of unique textures, structures, and appearances to foods while maintaining clean labels. Recently, developing green and healthy food-grade foaming agents, improving the stability of edible foams, and exploring the application of foam structures and new foaming agents have been the focus of foam systems. This review comprehensively introduces the destabilization mechanisms of foam and summarizes the main mechanisms controlling the foam stability and progress of different food-grade materials (small-molecular surfactants, biopolymers, and edible Pickering particles). Furthermore, the classic foam systems in food and modern cuisine, their applications, developments, and challenges are also underlined. Natural small-molecular surfactants, novel plant/microalgae proteins, and edible colloidal particles are the research hotspots of high-efficiency food-grade foam stabilizers. They have apparent differences in foam stability mechanisms, and each exerts its advantages. However, the development of foam stabilizers remains to be enriched compared with emulsions. Food foams are diverse and widely used, bringing unique enjoyment and benefit to consumers regarding sense, innovation, and health attributes. In addition to industrial inflatable foods, the foam foods in molecular gastronomy are also worthy of exploration. Moreover, edible foams may have greater potential in structured food design, 3D/4D printing, and controlled flavor release in the future. This review will provide a reference for the efficient development of functional inflatable foods and the advancement of foam technologies in modern cuisine.
Collapse
Affiliation(s)
- Xiangfang Hu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
5
|
Li Z, Ying Lee Y, Wang Y, Qiu C. Interfacial behavior, gelation and foaming properties of diacylglycerols with different acyl chain lengths and isomer ratios. Food Chem 2023; 427:136696. [PMID: 37392626 DOI: 10.1016/j.foodchem.2023.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
Diacylglycerols (DAG) of varying chain lengths were synthesized and the acyl migrated samples with different 1,3-DAG/1,2-DAG ratios were obtained. The crystallization profile and surface adsorption differed depending on DAG structure. C12 and C14 DAGs formed small platelet- and needle-like crystals at the oil-air interface which can better reduce surface tension and pack in an ordered lamellar structure in oil. The acyl migrated DAGs with higher ratios of 1,2-DAG showed reduced crystal size and lower oil-air interfacial activity. C14 and C12 DAG oleogels exhibited higher elasticity and whipping ability with crystal shells surrounding bubbles, whereas C16 and C18 DAG oleogels had low elasticity and limited whipping ability due to the formation of aggregated needle-like crystals and loose gel network. Thus, acyl chain length dramatically influences the gelation and foaming behaviors of DAGs whereas the isomers exert little influence. This study provides basis for applying DAG of different structures in food products.
Collapse
Affiliation(s)
- Ziwei Li
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
6
|
Gu X, Du L, Meng Z. Thermal-reversible lacquer wax-based oleofoams in dual stabilization with high ambient stability. Food Res Int 2023; 167:112650. [PMID: 37087239 DOI: 10.1016/j.foodres.2023.112650] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
In this study, the effect of the content of the lacquer wax and whipping time on the overrun was explored. It was found that an appropriate amount of wax content and whipping time could promote crystal dual stabilization through the Pickering mechanism and the close packing in the bulk phase. Otherwise, it would result in low overrun caused by high viscous and crystal bridging. The addition of polyglycerol polyricinoleate (PGPR) could effectively enhance the overrun by apace absorbing. At the same time, adding PGPR also improved the contact angle, which was beneficial to the adsorption at the A-O interface. The 8 wt% oleogel was partially substituted by high-melting fat palm stearin (POs) and oleofoams were prepared based on blended fat. POs increased the melting point, structural strength, and β'-form crystal of oleofoams, thus improving the storage and temperature stability. The oleofoam has a maximum overrun of 189% and could maintain the shape of the decorating over 15 d at the ambient temperature, showing great potential in low-fat food applications and other delivery systems.
Collapse
Affiliation(s)
- Xinya Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China
| | - Liyang Du
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China
| | - Zong Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|