1
|
Zhang WX, Kong SL, Wang WW, Cheng YM, Li Z, He C. Enhanced electrocatalytic performance of LCO-NiFe-C 3N 4 composite material for highly efficient overall water splitting. J Colloid Interface Sci 2024; 680:787-796. [PMID: 39591791 DOI: 10.1016/j.jcis.2024.11.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
The rising global energy demand & environmental crisis spur exploration of traditional fuel alternatives. Hydrogen, with high energy density & pollution-free potential, is seen as a promising energy carrier. The development of efficient and durable electrocatalysts for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of paramount importance for renewable energy conversion and storage systems. Developing efficient and stable catalysts is crucial for improving OER performance, but the scarcity, high cost, and stability issues of precious metal oxide catalysts hinder their industrial application. Herein, the composite material was synthesized using a combination of sol-gel and one-step hydrothermal methods, followed by an annealing process. The inherent electrocatalytic activity of LaCoO3, a perovskite oxide, towards both OER and HER was harnessed. In an alkaline electrolyte, the LCO-NiFe-C3N4 demonstrated remarkable electrocatalytic performance with overpotentials of 251.4 mV for OER and 186.7 mV for HER at a current density of 10 mA cm-2. The Tafel slopes were 60.8 mV dec-1 for OER and 138.53 mV dec-1 for HER, suggesting that the LCO-NiFe-C3N4 composite material is a promising candidate as a bifunctional catalyst. Theoretical calculations also confirm that doped elements can effectively regulate the electronic properties of active sites, thereby reducing the energy barrier of the rate-limiting step in the OER reaction and significantly enhancing the electrocatalytic activity of the catalyst. This study presents the synthesis and electrocatalytic performance evaluation of a novel (LCoO3-NiFe-C3N4) LCO-NiFe-C3N4 composite material, showcasing its potential as an effective bifunctional catalyst.
Collapse
Affiliation(s)
- W X Zhang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| | - S L Kong
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| | - W W Wang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| | - Y M Cheng
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Z Li
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
| | - C He
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Sundararaj SB, Amir H, Viswanathan C, Thangavelu S. Photoelectrochemical Water Splitting: A Visible-Light-Driven CoTiO 3@g-C 3N 4-Based Photoanode Interface Follows the Type II Heterojunction Scheme. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16582-16594. [PMID: 39046450 DOI: 10.1021/acs.langmuir.4c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Harnessing solar energy can be efficiently used to generate hydrogen by photochemical water splitting, which is a sustainable and environmentally benign energy source. Here, a unique visible-light-driven CoTiO3@g-C3N4 (CTOCN)-based photoanode interface has been optimized and developed with modification to follow the type II heterojunction for the enhancement of photoelectrochemical water splitting. Initially, a graphitic carbon nitride-loaded CoTiO3 (with 10 wt % g-C3N4) composite was obtained using a one-pot solvothermal method. Accordingly, the type II heterojunction interface between g-C3N4 and CoTiO3 has been successfully created and confirmed by the acquired phase, morphological, and optical examinations. Thereby, heterostructure generations with interfacial interaction were enabled to decrease photogenerated electron-hole pair recombination, leading to enhanced charge transfer for water oxidation kinetics. The minimal charge transfer resistance and hole relaxation lifetime (p) shown in Nyquist and Bode plots have further confirmed the rapid electron transport across the electrode/electrolyte interfaces, which is attributed to an enhanced absorption of holes for the water splitting process. Additionally, UV-vis spectroscopy, Mott-Schottky analysis, and UPS studies were used to determine the band edge locations of g-C3N4 and CoTiO3. In comparison to previously developed nanohybrids and their equivalents, the CTOCN-d photoanode follows the type II charge transfer mechanism, resulting in a higher photocurrent density of 55.51 mA cm-2.
Collapse
Affiliation(s)
| | - Humayun Amir
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046, India
| | | | | |
Collapse
|
3
|
Lu S, Liu H. Molecular Doping on Carbon Nitride for Efficient Photocatalytic Hydrogen Production. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13331-13338. [PMID: 38872351 DOI: 10.1021/acs.langmuir.4c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Molecular doping is an innovative approach to modify the electronic configuration of carbon nitride (CN) photocatalysts, enhancing visible light absorption and optimizing the recombination of electron-hole pairs in photocatalytic H2 generation. Unlike the conventional heteroatom incorporation strategy, molecular doping offers a more effective means of structure optimization and conjugated framework. This Perspective studies recent advancements in benzene-ring doping for CN, emphasizing the correlation between structure and photocatalytic activity. The advantages and disadvantages of molecular doping in CN are thoroughly demonstrated, underscoring the importance of utilizing molecular doping to fine-tune both electronic and physical structures for enhanced photocatalytic efficacy. Insights are provided on strategies to address limitations and explore new prospects in the field of molecular doping methodologies.
Collapse
Affiliation(s)
- Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
4
|
Jesudass SC, Surendran S, Moon DJ, Shanmugapriya S, Kim JY, Janani G, Veeramani K, Mahadik S, Kim IG, Jung P, Kwon G, Jin K, Kim JK, Hong K, Park YI, Kim TH, Heo J, Sim U. Defect engineered ternary metal spinel-type Ni-Fe-Co oxide as bifunctional electrocatalyst for overall electrochemical water splitting. J Colloid Interface Sci 2024; 663:566-576. [PMID: 38428114 DOI: 10.1016/j.jcis.2024.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 03/03/2024]
Abstract
Transition metal spinel oxides were engineered with active elements as bifunctional water splitting electrocatalysts to deliver superior intrinsic activity, stability, and improved conductivity to support green hydrogen production. In this study, we reported the ternary metal Ni-Fe-Co spinel oxide electrocatalysts prepared by defect engineering strategy with rich and deficient Na+ ions, termed NFCO-Na and NFCO, which suggest the formation of defects with Na+ forming tensile strain. The Na-rich NiFeCoO4 spinel oxide reveals lattice expansion, resulting in the formation of a defective crystal structure, suggesting higher electrocatalytic active sites. The spherical NFCO-Na electrocatalysts exhibit lower OER and HER overpotentials of 248 mV and 153 mV at 10 mA cm-2 and smaller Tafel slope values of about 78 mV dec-1 and 129 mV dec-1, respectively. Notably, the bifunctional NFCO-Na electrocatalyst requires a minimum cell voltage of about 1.67 V to drive a current density of 10 mA cm-2. The present work highlights the significant electrochemical activity of defect-engineered ternary metal oxides, which can be further upgraded as highly active electrocatalysts for water splitting applications.
Collapse
Affiliation(s)
- Sebastian Cyril Jesudass
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Subramani Surendran
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea
| | - Dae Jun Moon
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Sathyanarayanan Shanmugapriya
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea
| | - Joon Young Kim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Gnanaprakasam Janani
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea
| | - Krishnan Veeramani
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shivraj Mahadik
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Il Goo Kim
- Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Pildo Jung
- Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Gibum Kwon
- Department of Mechanical Engineering, University of Kansas Lawrence, KS 66045, United States
| | - Kyoungsuk Jin
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Kootak Hong
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong Il Park
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Tae-Hoon Kim
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jaeyeong Heo
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Uk Sim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea; Center for Energy Storage System, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
5
|
Nallakumar S, Muthurakku UR. Chemically sprayed pristine and Cd 2+ incorporated Co 2SnO 4 thin films for low ppm level enhanced chemi - resistive behaviour towards dimethylamine detection at room temperature. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134041. [PMID: 38522203 DOI: 10.1016/j.jhazmat.2024.134041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
The surge in hazardous volatile organic liquid emissions driven by the rapid growth of the manufacturing industry has compelled a rising demand for gas sensors, which exhibit remarkable sensitivity, selectivity, and room temperature operation. Ternary metal oxide spinel has indeed garnered significant attention in chemi-resistive gas sensors due to their large reactive surface area, physicochemical, and other unique properties. In this work, we have studied chemically sprayed pristine and Cd 2+ incorporated Co2SnO4 thin film as a sensing layer under room temperature (300 K) conditions. The 5 wt% Cd 2+ incorporated Co2SnO4 films unveiled a high sensor response to dimethylamine (DMA) gas (S = Igas/Iair = 6153 at 1 ppm), which was boosted by 8.89-fold times compared to pristine Co2SnO4 film, due to the large reactive surface area and enhanced defective oxygen vacancies. It has superior selectivity towards DMA gas, good response time (154 s) / recovery time (90 s), superior pro-longevity (S = 6138) after 60 days, stable repeatability (7 cycles), excellent cross-selectivity, and relative humid resistance at 300 K. This research work provides insights on Cd 2+ incorporated Co2SnO4 thin films and their feasibility in real-time gas sensing devices.
Collapse
Affiliation(s)
- Santhosh Nallakumar
- Department of Physics, School of Advanced Sciences, VIT, Vellore 632014, India
| | | |
Collapse
|
6
|
Miera GG, Heinz O, Hong W, Walker GC. Virtual Issue: Electrode Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18171-18174. [PMID: 38111359 DOI: 10.1021/acs.langmuir.3c03655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
|
7
|
Mehtab A, Mao Y, M Alshehri S, Ahmad T. Photo/electrocatalytic hydrogen evolution using Type-II Cu 2O/g-C 3N 4 Heterostructure: Density functional theory addresses the improved charge transport efficiency. J Colloid Interface Sci 2023; 652:1467-1480. [PMID: 37659315 DOI: 10.1016/j.jcis.2023.08.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
One of the most efficient ways for the photogenerated charge carriers is by the development of heterojunction between p-type and n-type semiconductors, which creates an interfacial charge transfer between two semiconductors. By enhancing the bifunctional characteristics for hydrogen generation via photocatalytic and electrocatalytic water splitting reaction, we report the type-II Cu2O/g-C3N4 heterostructure in this article. Due to significantly increased catalytically active sites for the hydrogen evolution reaction (HER) reaction during electrocatalysis and decreased charge transfer resistance, the as-prepared heterostructure exhibits a lower overpotential of 47 and 72 mVdec-1 for the HER and oxygen evolution reactions (OER), respectively, when compared to alone g-C3N4. In addition, Cu2O/g-C3N4 heterostructures have a higher photocatalytic hydrogen evolution of 3492 µmol gcat-1 in the presence of Triethanolamine as a sacrificial agent, which is nearly 2-fold times greater than g-C3N4 (1818 µmol gcat-1) after 5 h of continuous light-irradiation. Moreover, produced heterostructure exhibits 81% of Faradaic efficiency and 18% of apparent quantum yield. This work successfully explains how the rise in water splitting is induced by the transfer of photogenerated electrons in a cascade way from p-type Cu2O to the n-type g-C3N4 using density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Amir Mehtab
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Yuanbing Mao
- Department of Chemistry, Illinois Institute of Technology, 3105 South Dearborn Street, Chicago, IL 60616, USA
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
8
|
Wei Y, Hao JG, Zhang JL, Huang WY, Ouyang SB, Yang K, Lu KQ. Integrating Co(OH) 2 nanosheet arrays on graphene for efficient noble-metal-free EY-sensitized photocatalytic H 2 evolution. Dalton Trans 2023; 52:13923-13929. [PMID: 37750679 DOI: 10.1039/d3dt02513f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The development of an efficient noble-metal-free cocatalyst is the key to photocatalytic hydrogen production technology. In this study, hierarchical Co(OH)2 nanosheet array-graphene (GR) composite cocatalysts are developed. With Eosin Y (EY) as a photosensitizer, the optimal Co(OH)2-10%GR hybrid cocatalyst presents excellent photocatalytic activity with an H2 production rate of 17 539 μmol g-1 h-1, and the apparent quantum yield for hydrogen production can reach 12.8% at 520 nm, which remarkably surpasses that of pure Co(OH)2 and most similar hybrid cocatalyst systems. Experimental investigations demonstrate that the excellent photocatalytic activity of Co(OH)2-GR arises from its unique nanosheet array architecture, which can collaboratively expose rich active sites for photocatalytic hydrogen evolution and facilitate the migration and separation of photogenerated charge carriers. It is desired that this study would supply a meaningful direction for the rational optimization of the constitute and structure of cocatalysts to achieve efficient photocatalytic hydrogen generation.
Collapse
Affiliation(s)
- Yu Wei
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Jin-Ge Hao
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Jia-Lin Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Wei-Ya Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Shao-Bo Ouyang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Kai Yang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Kang-Qiang Lu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| |
Collapse
|
9
|
Zabielaite A, Balciunaite A, Upskuviene D, Simkunaite D, Levinas R, Niaura G, Vaiciuniene J, Jasulaitiene V, Tamasauskaite-Tamasiunaite L, Norkus E. Investigation of Hydrogen and Oxygen Evolution on Cobalt-Nanoparticles-Supported Graphitic Carbon Nitride. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5923. [PMID: 37687616 PMCID: PMC10488936 DOI: 10.3390/ma16175923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
This study focuses on fabricating cobalt particles deposited on graphitic carbon nitride (Co/gCN) using annealing, microwave-assisted and hydrothermal syntheses, and their employment in hydrogen and oxygen evolution (HER and OER) reactions. Composition, surface morphology, and structure were examined using inductively coupled plasma optical emission spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The performance of Co-modified gCN composites for the HER and OER were investigated in an alkaline media (1 M KOH). Compared to the metal-free gCN, the modification of gCN with Co enhances the electrocatalytic activity towards the HER and OER. Additionally, thermal annealing of both Co(NO3)2 and melamine at 520 °C for 4 h results in the preparation of an effective bifunctional Co3O4/gCN catalyst for the HER with the lower Eonset of -0.24 V, a small overpotential of -294.1 mV at 10 mA cm-2, and a low Tafel slope of -29.6 mV dec-1 in a 1.0 M KOH solution and for the OER with the onset overpotential of 286.2 mV and overpotential of 422.3 mV to achieve a current density of 10 mA cm-2 with the Tafel slope of 72.8 mV dec-1.
Collapse
Affiliation(s)
- Ausrine Zabielaite
- Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania; (A.B.); (D.U.); (D.S.); (R.L.); (G.N.); (J.V.); (V.J.); (E.N.)
| | | | | | | | | | | | | | | | - Loreta Tamasauskaite-Tamasiunaite
- Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania; (A.B.); (D.U.); (D.S.); (R.L.); (G.N.); (J.V.); (V.J.); (E.N.)
| | | |
Collapse
|
10
|
Venegas CJ, Gutierrez FA, Reeves-McLaren N, Rivas GA, Ruiz-León D, Bollo S. In situ or Ex situ Synthesis for Electrochemical Detection of Hydrogen Peroxide-An Evaluation of Co 2SnO 4/RGO Nanohybrids. MICROMACHINES 2023; 14:mi14051059. [PMID: 37241682 DOI: 10.3390/mi14051059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
Nowadays, there is no doubt about the high electrocatalytic efficiency that is obtained when using hybrid materials between carbonaceous nanomaterials and transition metal oxides. However, the method to prepare them may involve differences in the observed analytical responses, making it necessary to evaluate them for each new material. The goal of this work was to obtain for the first time Co2SnO4 (CSO)/RGO nanohybrids via in situ and ex situ methods and to evaluate their performance in the amperometric detection of hydrogen peroxide. The electroanalytical response was evaluated in NaOH pH 12 solution using detection potentials of -0.400 V or 0.300 V for the reduction or oxidation of H2O2. The results show that for CSO there were no differences between the nanohybrids either by oxidation or by reduction, unlike what we previously observed with cobalt titanate hybrids, in which the in situ nanohybrid clearly had the best performance. On the other hand, no influence in the study of interferents and more stable signals were obtained when the reduction mode was used. In conclusion, for detecting hydrogen peroxide, any of the nanohybrids studied, i.e., in situ or ex situ, are suitable to be used, and more efficiency is obtained using the reduction mode.
Collapse
Affiliation(s)
- Constanza J Venegas
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquín 8320000, Santiago, Chile
| | - Fabiana A Gutierrez
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe 3000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz CP C1425FQB, Buenos Aires 2290, Argentina
| | - Nik Reeves-McLaren
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Gustavo A Rivas
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Departamento de Físicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Domingo Ruiz-León
- Laboratorio de Fisicoquímica y Electroquímica del Estado Sólido, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins n◦ 3363, Estación Central 9160000, Santiago, Chile
| | - Soledad Bollo
- Centro de Investigación de Procesos Redox (CiPRex), Universidad de Chile, Sergio Livingstone Polhammer 1007, Independencia 8330015, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone Polhammer 1007, Independencia 8330015, Santiago, Chile
| |
Collapse
|
11
|
Guo F, Li W, Liu Y, Chen Q, Zhong Q. Heterogeneous Fe-Doped NiCoP-MoO 3 Efficient Electrocatalysts for Overall Water Splitting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1042-1050. [PMID: 36625757 DOI: 10.1021/acs.langmuir.2c02678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Transition metal phosphides with excellent performance are one of the effective alternatives to noble metal catalysts in overall water splitting. In this paper, the Fe-NiCoP-MoO3 composite was prepared by a facile synthesis as the bifunctional electrocatalyst. Fe-NiCoP-MoO3 achieves an operating current density of 10 mA/cm2 at a low overpotential of 65 mV for hydrogen evolution reaction and drives an operating current density of 50 mA/cm2 at only 293 mV for oxygen evolution reaction. Significantly, Fe-NiCoP-MoO3 was employed as the anode and cathode for overall water splitting, which only requires a cell voltage of 1.586 V to reach 10 mA/cm2 as well as shows excellent stability. The electrocatalytic activity of Fe-NiCoP-MoO3 exceeds most of the recently reported typical bifunctional electrocatalysts. This may be due to the coupling effect between the polymetallic phosphides. In addition, heterogeneous catalysts generally expose more active sites than homogeneous catalysts. In addition, replacing MoO3 with WO3 and VO3 can also improve the performance of Fe-NiCoP. This work provides an idea for the modification of phosphides.
Collapse
Affiliation(s)
- Fengye Guo
- Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Wenhua Li
- Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Yefan Liu
- Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Qianqiao Chen
- Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Qin Zhong
- Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| |
Collapse
|
12
|
Wang S, Zhao R, Zheng T, Lu Z, Fang Y, Xie H, Wang W, Xue W. Rational Design of a Low-Dimensional and Metal-free Heterostructure for Efficient Water Oxidation: DFT and Experimental Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12562-12569. [PMID: 36191260 DOI: 10.1021/acs.langmuir.2c02011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A nitrogen-doped fullerene dimer is synthesized and compounded with multi-walled carbon nanotubes (MWCNTs) to construct a low-dimensional and metal-free 0D-1D heterostructure for electrocatalytic water oxidation. The (C59N)2/MWCNTs heterostructure exhibits a highly efficient performance, as verified by both first-principles density functional theory and experimental studies. The *O → *OOH process is confirmed as the rate-determining step of water oxidation. The negatively charged N-doping leads to electronic redistribution and intermolecular charge transfer and thus reduces the uphill free energies of intermediates on the (C59N)2/MWCNTs interface. Therefore, the (C59N)2/MWCNTs heterostructure has great potential to emit light and heat in metal-free-based electrocatalytic water oxidation.
Collapse
Affiliation(s)
- Shuai Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Rui Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Tian Zheng
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang621010, China
| | - Zheng Lu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Yuan Fang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou310003, China
| | - Wenjian Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Weidong Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| |
Collapse
|
13
|
Hou S, Jiang J, Wang Y, He X, Ge J, Xing W. High-Performance RuO x Catalyst with Advanced Mesoporous Structure for Oxygen Evolution Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12118-12123. [PMID: 36149816 DOI: 10.1021/acs.langmuir.2c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Polymer electrolyte membrane water electrolysis (PEMWE) is regarded as one of the most important cornerstone technologies in the upcoming hydrogen society. However, one of the major problems it encounters is its slow oxygen evolution kinetics, which necessitates the use of large amounts of precious metal catalysts to ensure a satisfactory reaction rate. Herein, we have prepared a series of RuOx with porous structures and ultrahigh Ru utilization toward the oxygen evolution reaction. All porous samples exhibit an enhanced catalytic performance compared with commercial RuOx. Particularly, for the RuOx-350 sample, the overpotential to reach 10 mA cm-2 is as low as 225 mV. It has obvious advantages among all reported pure RuO2-based catalysts. Here, a new strategy was raised to construct efficient RuO2 electrocatalysts with outstanding activity and stability for water electrolysis technology.
Collapse
Affiliation(s)
- Shuai Hou
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiadong Jiang
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Changchun 130012, PR China
| | - Yibo Wang
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiwen He
- Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Changchun 130012, PR China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Junjie Ge
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Wei Xing
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
14
|
Bhuvaneswari C, Palpandi K, Raman N, Babu SG. Sustainable architecting of Co 2SnO 4/CE-BN-based electrochemical platform for highly selective and ultrasensitive detection of 2-nitroaniline in life samples. Mikrochim Acta 2022; 189:390. [PMID: 36138245 DOI: 10.1007/s00604-022-05484-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/28/2022] [Indexed: 01/27/2023]
Abstract
A novel binary heterogeneous electrocatalyst, Co2SnO4, decorated on chemically exfoliated boron nitride sheets (CE-BN) with an exceptional capacity to detect electrochemical properties has been prepared by the simple hydrothermal method. The structural, surface morphology and electrochemical characteristics of Co2SnO4/CE-BN were characterized using a range of physicochemical and electrochemical techniques. Various voltammetric approaches were used to observe the analytical behaviour and applications of Co2SnO4/CE-BN/GCE for the determination of 2-nitroaniline (2-NA). The whole experiment is operated in the potential range from 0 to - 1.0 V vs Ag/AgCl (sat. KCl). The impact of operational factors on the peak current of 2-NA was investigated, including the pH, sample concentration, modifier amount and scan speed. With an estimated differential pulse voltammetry detection limit of 0.0371 µM and excellent sensitivity of 1,35 µA µM-1 cm-2, the produced sensor, Co2SnO4/CE-BN/GCE, revealed high electrocatalytic activity (DPV). The system is more practical and sustainable due to its repeatability, stability and reproducibility with respect to the results achieved for detection of 2-NA. The synthesized Co2SnO4/CE-BN-modified sensor may thus be a likely choice for the detection of 2-NA in actual water sample analysis.
Collapse
Affiliation(s)
- Chellapandi Bhuvaneswari
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Karuppaiya Palpandi
- Research Department of Chemistry, VHNSN College, Virudhunagar, Tamil Nadu, 626001, India
| | - Natarajan Raman
- Research Department of Chemistry, VHNSN College, Virudhunagar, Tamil Nadu, 626001, India
| | - Sundaram Ganesh Babu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
15
|
Xu B, Zhang H, Xia X, Ji K, Ji X, Yang P. Nanoarchitectonics of g-C 3N 4 Nanosheets with a AuCu Enhancement Effect for Superior Photo- and Electrochemical Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10225-10233. [PMID: 35939646 DOI: 10.1021/acs.langmuir.2c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AuCu alloy nanoparticles (NPs) were embedded in superior thin g-C3N4 nanosheets by a mechanochemical pre-reaction and subsequent thermal polymerization at high temperature. The introduction of AuCu NPs increased conductivity, decreased the band gap, expended light absorption, and improved the separation and transfer efficiencies of photogenerated electrons and holes. Moreover, the uniform distribution of AuCu NPs in g-C3N4 nanosheets is ascribed to the pre-reaction of bulk g-C3N4 and metal salts to create activity cites. The adsorption ability in the visible light region was improved due to the plasma effect of Au. AuCu/g-C3N4 composites (AuCu/CN-1%) with optimized component ratios revealed the highest transient photocurrent responses, the lowest electrochemical impedance arc radius, and the best photocatalytic H2 evolution rate of 930.2 μmol g-1 h-1. These findings exhibited that loading AuCu bimetallic NPs could efficiently offset some disadvantages of g-C3N4 and improve its photocatalytic performances.
Collapse
Affiliation(s)
- Baogang Xu
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Hongyu Zhang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiang Xia
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Kang Ji
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Xingshuai Ji
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Ping Yang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|