1
|
Roy PS. Complex Coacervate-Based Materials for Biomedicine: Recent Advancements and Future Prospects. Ind Eng Chem Res 2024; 63:5414-5487. [DOI: 10.1021/acs.iecr.3c03830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Partha Sarathi Roy
- Division of Pharmaceutical Sciences, Health Sciences Building, University of Missouri─Kansas City, 2464 Charlotte St., Kansas City, Missouri 64108-2718, United States
- Department of Pharmaceutics/Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Rd., Stockton, California 95211, United States
| |
Collapse
|
2
|
Single-molecule localization microscopy as an emerging tool to probe multiscale food structures. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
3
|
Wu T, Li A, Chen K, Peng X, Zhang J, Jiang M, Chen S, Zheng X, Zhou X, Jiang ZX. Perfluoro- tert-butanol: a cornerstone for high performance fluorine-19 magnetic resonance imaging. Chem Commun (Camb) 2021; 57:7743-7757. [PMID: 34286714 DOI: 10.1039/d1cc02133h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a versatile quantification and tracking technology, 19F magnetic resonance imaging (19F MRI) provides quantitative "hot-spot" images without ionizing radiation, tissue depth limit, and background interference. However, the lack of suitable imaging agents severely hampers its clinical application. First, because the 19F signals are solely originated from imaging agents, the relatively low sensitivity of MRI technology requires high local 19F concentrations to generate images, which are often beyond the reach of many 19F MRI agents. Second, the peculiar physicochemical properties of many fluorinated compounds usually lead to low 19F signal intensity, tedious formulation, severe organ retention, etc. Therefore, the development of 19F MRI agents with high sensitivity and with suitable physicochemical and biological properties is of great importance. To this end, perfluoro-tert-butanol (PFTB), containing nine equivalent 19F and a modifiable hydroxyl group, has outperformed most perfluorocarbons as a valuable building block for high performance 19F MRI agents. Herein, we summarize the development and application of PFTB-based 19F MRI agents and analyze the strategies to improve their sensitivity and physicochemical and biological properties. In the context of PFC-based 19F MRI agents, we also discuss the challenges and prospects of PFTB-based 19F MRI agents.
Collapse
Affiliation(s)
- Tingjuan Wu
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Anfeng Li
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Kexin Chen
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Xingxing Peng
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Jing Zhang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Mou Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Wuhan 430071, China.
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Wuhan 430071, China.
| | - Xing Zheng
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Wuhan 430071, China.
| | - Zhong-Xing Jiang
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China. and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
4
|
Magana JR, Sproncken CCM, Voets IK. On Complex Coacervate Core Micelles: Structure-Function Perspectives. Polymers (Basel) 2020; 12:E1953. [PMID: 32872312 PMCID: PMC7565781 DOI: 10.3390/polym12091953] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
The co-assembly of ionic-neutral block copolymers with oppositely charged species produces nanometric colloidal complexes, known, among other names, as complex coacervates core micelles (C3Ms). C3Ms are of widespread interest in nanomedicine for controlled delivery and release, whilst research activity into other application areas, such as gelation, catalysis, nanoparticle synthesis, and sensing, is increasing. In this review, we discuss recent studies on the functional roles that C3Ms can fulfil in these and other fields, focusing on emerging structure-function relations and remaining knowledge gaps.
Collapse
Affiliation(s)
| | | | - Ilja K. Voets
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (J.R.M.); (C.C.M.S.)
| |
Collapse
|
5
|
Neri G, Mion G, Pizzi A, Celentano W, Chaabane L, Chierotti MR, Gobetto R, Li M, Messa P, De Campo F, Cellesi F, Metrangolo P, Baldelli Bombelli F. Fluorinated PLGA Nanoparticles for Enhanced Drug Encapsulation and 19 F NMR Detection. Chemistry 2020; 26:10057-10063. [PMID: 32515857 DOI: 10.1002/chem.202002078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Indexed: 12/13/2022]
Abstract
In the continuous search for multimodal systems with combined diagnostic and therapeutic functions, several efforts have been made to develop multifunctional drug delivery systems. In this work, through a covalent approach, a new class of fluorinated poly(lactic-co-glycolic acid) co-polymers (F-PLGA) were designed that contain an increasing number of magnetically equivalent fluorine atoms. In particular, two novel compounds, F3 -PLGA and F9 -PLGA, were synthesized and their chemical structure and thermal stability were analyzed by solution NMR, DSC, and TGA. The obtained F-PLGA compounds were proven to form in aqueous solution colloidal stable nanoparticles (NPs) displaying a strong 19 F NMR signal. The fluorinated NPs also showed an enhanced ability to load hydrophobic drugs containing fluorine atoms compared to analogous pristine PLGA NPs. Preliminary in vitro studies showed high cell viability and the NP ability to intracellularly deliver and release a functioning drug.
Collapse
Affiliation(s)
- Giulia Neri
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres, 31, 98166, Messina, Italy
| | - Giuliana Mion
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy
| | - Andrea Pizzi
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy
| | - Wanda Celentano
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy
| | - Linda Chaabane
- Institute of Experimental Neurology (INSPE) and Experimental Imaging, Center (CIS), IRCCS San Raffaele Hospital, V. Olgettina, 60, 20132, Milan, Italy
| | - Michele R Chierotti
- Department of Chemistry and NIS Centre, Università di Torino, V. Pietro Giuria, 7, 10125, Turin, Italy
| | - Roberto Gobetto
- Department of Chemistry and NIS Centre, Università di Torino, V. Pietro Giuria, 7, 10125, Turin, Italy
| | - Min Li
- Renal Research Laboratory, Fondazione IRCCS Ca" Granda Ospedale Maggiore Policlinico, V. Francesco Sforza, 35, 20122, Milan, Italy
| | - Piergiorgio Messa
- Renal Research Laboratory, Fondazione IRCCS Ca" Granda Ospedale Maggiore Policlinico, V. Francesco Sforza, 35, 20122, Milan, Italy
| | - Floryan De Campo
- Solvay Specialty Polymers, V. Lombardia, 20, Bollate, 20021, Milan, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy
| |
Collapse
|
6
|
Blocher McTigue WC, Perry SL. Protein Encapsulation Using Complex Coacervates: What Nature Has to Teach Us. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907671. [PMID: 32363758 DOI: 10.1002/smll.201907671] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Protein encapsulation is a growing area of interest, particularly in the fields of food science and medicine. The sequestration of protein cargoes is achieved using a variety of methods, each with benefits and drawbacks. One of the most significant challenges associated with protein encapsulation is achieving high loading while maintaining protein viability. This difficulty is exacerbated because many encapsulant systems require the use of organic solvents. By contrast, nature has optimized strategies to compartmentalize and protect proteins inside the cell-a purely aqueous environment. Although the mechanisms whereby aspects of the cytosol is able to stabilize proteins are unknown, the crowded nature of many newly discovered, liquid phase separated "membraneless organelles" that achieve protein compartmentalization suggests that the material environment surrounding the protein may be critical in determining stability. Here, encapsulation strategies based on liquid-liquid phase separation, and complex coacervation in particular, which has many of the key features of the cytoplasm as a material, are reviewed. The literature on protein encapsulation via coacervation is also reviewed and the parameters relevant to creating protein-containing coacervate formulations are discussed. Additionally, potential opportunities associated with the creation of tailored materials to better facilitate protein encapsulation and stabilization are highlighted.
Collapse
Affiliation(s)
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
7
|
Martens KJA, van Duynhoven J, Hohlbein J. Spatiotemporal Heterogeneity of κ-Carrageenan Gels Investigated via Single-Particle-Tracking Fluorescence Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5502-5509. [PMID: 32343144 PMCID: PMC7254830 DOI: 10.1021/acs.langmuir.0c00393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Hydrogels made of the polysaccharide κ-carrageenan are widely used in the food and personal care industry as thickeners or gelling agents. These hydrogels feature dense regions embedded in a coarser bulk network, but the characteristic size and behavior of these regions have remained elusive. Here, we use single-particle-tracking fluorescence microscopy (sptFM) to quantitatively describe κ-carrageenan gels. Infusing fluorescent probes into fully gelated κ-carrageenan hydrogels resulted in two distinct diffusional behaviors. Obstructed self-diffusion of the probes revealed that the coarse network consists of κ-carrageenan strands with a typical diameter of 3.2 ± 0.3 nm leading to a nanoprobe diffusion coefficient of ∼1-5 × 10-12 m2/s. In the dense network regions, we found a fraction with a largely decreased diffusion coefficient of ∼1 × 10-13 m2/s. We also observed dynamic exchange between these states. The computation of spatial mobility maps from the diffusional data indicated that the dense network regions have a characteristic diameter of ∼1 μm and show mobility on the second-to-minute timescale. sptFM provides an unprecedented view of spatiotemporal heterogeneity of hydrogel networks, which we believe bears general relevance for understanding transport and release of both low- and high-molecular weight solutes.
Collapse
Affiliation(s)
- Koen J. A. Martens
- Laboratory
of Biophysics, Wageningen University and
Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Laboratory
of Bionanotechnology, Wageningen University
and Research, Bornse
Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - John van Duynhoven
- Laboratory
of Biophysics, Wageningen University and
Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Unilever
Global Foods Innovation Centre, Bronland 14, 6708 WH Wageningen, The Netherlands
| | - Johannes Hohlbein
- Laboratory
of Biophysics, Wageningen University and
Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Microspectroscopy
Research Facility, Wageningen University
and Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
- . Phone: +31 317 482 635
| |
Collapse
|
8
|
Hirao T, Tsukamoto H, Ikeda T, Haino T. AIE-active micelles formed by self-assembly of an amphiphilic platinum complex possessing isoxazole moieties. Chem Commun (Camb) 2020; 56:1137-1140. [DOI: 10.1039/c9cc07819c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report a luminescent micelle that is prepared through the self-assembly of an amphiphilic, neutral Pt(ii) complex with isoxazole moieties in THF/water on account of its aggregation-induced emission (AIE) property.
Collapse
Affiliation(s)
- Takehiro Hirao
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Hidemi Tsukamoto
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Toshiaki Ikeda
- Department of Chemistry
- Faculty of Science
- Tokai University
- Hiratsuka
- Japan
| | - Takeharu Haino
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| |
Collapse
|
9
|
de Kort DW, Schuster E, Hoeben FJ, Barnes R, Emondts M, Janssen HM, Lorén N, Han S, Van As H, van Duynhoven JP. Heterogeneity of Network Structures and Water Dynamics in κ-Carrageenan Gels Probed by Nanoparticle Diffusometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11110-11120. [PMID: 30132676 PMCID: PMC6146320 DOI: 10.1021/acs.langmuir.8b01052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A set of functionalized nanoparticles (PEGylated dendrimers, d = 2.8-11 nm) was used to probe the structural heterogeneity in Na+/K+ induced κ-carrageenan gels. The self-diffusion behavior of these nanoparticles as observed by 1H pulsed-field gradient NMR, fluorescence recovery after photobleaching, and raster image correlation spectroscopy revealed a fast and a slow component, pointing toward microstructural heterogeneity in the gel network. The self-diffusion behavior of the faster nanoparticles could be modeled with obstruction by a coarse network (average mesh size <100 nm), while the slower-diffusing nanoparticles are trapped in a dense network (lower mesh size limit of 4.6 nm). Overhauser dynamic nuclear polarization-enhanced NMR relaxometry revealed a reduced local solvent water diffusivity near 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO)-labeled nanoparticles trapped in the dense network, showing that heterogeneity in the physical network is also reflected in heterogeneous self-diffusivity of water. The observed heterogeneity in mesh sizes and in water self-diffusivity is of interest for understanding and modeling of transport through and release of solutes from heterogeneous biopolymer gels.
Collapse
Affiliation(s)
- Daan W. de Kort
- Laboratory
of Biophysics, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- TI-COAST, Science Park
904, 1098 XH Amsterdam, The Netherlands
| | - Erich Schuster
- Product
Design and Perception, RISE Agrifood and
Bioscience, Box 5401, S-402
29 Göteborg, Sweden
- SuMo Biomaterials, VINN Excellence Centre, and Department of
Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Freek J.M. Hoeben
- TI-COAST, Science Park
904, 1098 XH Amsterdam, The Netherlands
- SyMO-Chem
B.V., Het Kraneveld 4, 5612 AZ Eindhoven, The Netherlands
| | - Ryan Barnes
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Meike Emondts
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Henk M. Janssen
- TI-COAST, Science Park
904, 1098 XH Amsterdam, The Netherlands
- SyMO-Chem
B.V., Het Kraneveld 4, 5612 AZ Eindhoven, The Netherlands
| | - Niklas Lorén
- Product
Design and Perception, RISE Agrifood and
Bioscience, Box 5401, S-402
29 Göteborg, Sweden
- SuMo Biomaterials, VINN Excellence Centre, and Department of
Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Songi Han
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Henk Van As
- Laboratory
of Biophysics, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- TI-COAST, Science Park
904, 1098 XH Amsterdam, The Netherlands
| | - John P.M. van Duynhoven
- Laboratory
of Biophysics, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- TI-COAST, Science Park
904, 1098 XH Amsterdam, The Netherlands
- Unilever
R&D, Olivier van
Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
- E-mail:
| |
Collapse
|
10
|
Gineste S, Di Cola E, Amouroux B, Till U, Marty JD, Mingotaud AF, Mingotaud C, Violleau F, Berti D, Parigi G, Luchinat C, Balor S, Sztucki M, Lonetti B. Mechanistic Insights into Polyion Complex Associations. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Stéphane Gineste
- Laboratoire
des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, Cedex 9 F-31062, Toulouse, France
| | - Emanuela Di Cola
- BioSoftMatter
Laboratorio Dip CBBM LITA, Universita di Milano, Via F lli Cervi
93 MI IT, 20090 Segrate, Italy
| | - Baptiste Amouroux
- Laboratoire
des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, Cedex 9 F-31062, Toulouse, France
| | - Ugo Till
- Laboratoire
des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, Cedex 9 F-31062, Toulouse, France
- Département
Sciences Agronomiques et Agroalimentaires, Université de Toulouse, Institut National Polytechnique de Toulouse - Ecole d’Ingénieurs de Purpan, 75 voie du TOEC, BP 57611, Cedex 03 F-31076 Toulouse, France
| | - Jean-Daniel Marty
- Laboratoire
des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, Cedex 9 F-31062, Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire
des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, Cedex 9 F-31062, Toulouse, France
| | - Christophe Mingotaud
- Laboratoire
des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, Cedex 9 F-31062, Toulouse, France
| | - Frédéric Violleau
- Laboratoire
de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, INP-EI PURPAN, Toulouse, France
| | - Debora Berti
- Department
of Chemistry “Ugo Schiff”, University of Florence and CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino Firenze, Italy
| | - Giacomo Parigi
- Department
of Chemistry Ugo Schiff and Magnetic Resonance Center (CERM), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino Firenze, Italy
| | - Claudio Luchinat
- Department
of Chemistry Ugo Schiff and Magnetic Resonance Center (CERM), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino Firenze, Italy
| | - Stéphanie Balor
- Plateforme
METi, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Michael Sztucki
- European Synchrotron
Radiation Facility-71, avenue des Martyrs,
CS 40220, Cedex 9 38043 Grenoble, France
| | - Barbara Lonetti
- Laboratoire
des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, Cedex 9 F-31062, Toulouse, France
| |
Collapse
|
11
|
Cummings CS, Obermeyer AC. Phase Separation Behavior of Supercharged Proteins and Polyelectrolytes. Biochemistry 2017; 57:314-323. [PMID: 29210575 DOI: 10.1021/acs.biochem.7b00990] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membraneless organelles, like membrane-bound organelles, are essential to cell homeostasis and provide discrete cellular subcompartments. Unlike classical organelles, membraneless organelles possess no physical barrier but rather arise by phase separation of the organelle components from the surrounding cytoplasm or nucleoplasm. Complex coacervation, the liquid-liquid phase separation of oppositely charged polyelectrolytes, is one of several phenomena that are hypothesized to drive the formation and regulation of some membraneless organelles. Studies of the molecular properties of globular proteins that drive complex coacervation are limited as many proteins do not form complexes with oppositely charged macromolecules at neutral pH and moderate ionic strengths. Protein supercharging overcomes this problem and drives complexation with oppositely charged macromolecules. In this work, several distinct cationic supercharged green fluorescent protein (GFP) variants were designed to examine the phase behavior with oppositely charged polyanionic macromolecules. Cationic GFP variants phase separated with oppositely charged macromolecules at various mixing ratios, salt concentrations, and pH values. Efficient protein incorporation in the macromolecule rich phase occurred over a range of protein and polymer mass fractions, but the protein encapsulation efficiency was highest at the midpoint of the phase separation regime. More positively charged proteins phase separated over broader pH and salt ranges than those of proteins with a lower charge density. Interestingly, each GFP variant phase separated at higher salt concentrations with anionic synthetic macromolecules compared to anionic biological macromolecules. Optical microscopy revealed that most variants, depending on solution conditions, formed liquid-liquid phase separations, except for GFP/DNA pairs that formed solid aggregates under all tested conditions.
Collapse
Affiliation(s)
- Chad S Cummings
- Department of Chemical Engineering, Columbia University , New York, New York 10027, United States
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University , New York, New York 10027, United States
| |
Collapse
|
12
|
Blocher WC, Perry SL. Complex coacervate-based materials for biomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [DOI: 10.1002/wnan.1442] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/10/2016] [Accepted: 10/02/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Whitney C. Blocher
- Department of Chemical Engineering; University of Massachusetts Amherst; Amherst MA USA
| | - Sarah L. Perry
- Department of Chemical Engineering; University of Massachusetts Amherst; Amherst MA USA
| |
Collapse
|
13
|
Rudolph T, Schacher FH. Selective crosslinking or addressing of individual domains within block copolymer nanostructures. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
de Kort DW, Veen SJ, Van As H, Bonn D, Velikov KP, van Duynhoven JPM. Yielding and flow of cellulose microfibril dispersions in the presence of a charged polymer. SOFT MATTER 2016; 12:4739-4744. [PMID: 27120969 DOI: 10.1039/c5sm02869h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The shear flow of microfibrillated cellulose dispersions is still not wholly understood as a consequence of their multi-length-scale heterogeneity. We added carboxymethyl cellulose, a charged polymer, that makes cellulose microfibril dispersions more homogeneous at the submicron and macro scales. We then compared the yielding and flow behavior of these dispersions to that of typical thixotropic yield-stress fluids. Despite the apparent homogeneity of the dispersions, their flow velocity profiles in cone-plate geometry, as measured by rheo-MRI velocimetry, differ strongly from those observed for typical thixotropic model systems: the viscosity across the gap is not uniform, despite a flat stress field across the gap. We describe these velocity profiles with a nonlocal model, and attribute the non-locality to persistent micron-scale structural heterogeneity.
Collapse
Affiliation(s)
- Daan W de Kort
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands. and TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sandra J Veen
- Unilever R&D, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
| | - Henk Van As
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands. and TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Daniel Bonn
- Van der Waals-Zeeman Institute, IoP, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Krassimir P Velikov
- Unilever R&D, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands and Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - John P M van Duynhoven
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands. and TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands and Unilever R&D, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
| |
Collapse
|