1
|
Shi A, Schwartz DK. Bridging Macroscopic Diffusion and Microscopic Cavity Escape of Brownian and Active Particles in Irregular Porous Networks. ACS NANO 2024; 18:22864-22873. [PMID: 39146529 DOI: 10.1021/acsnano.4c02873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
While irregular and geometrically complex pore networks are ubiquitous in nature and industrial processes, there is no universal model describing nanoparticle transport in these environments. 3D super-resolution nanoparticle tracking was employed to study the motion of passive (Brownian) and active (self-propelled) species within complex networks, and universally identified a mechanism involving successive cavity exploration and escape. In all cases, the long-time ensemble-averaged diffusion coefficient was proportional to a quantity involving the characteristic length scale and time scale associated with microscopic cavity exploration and escape (D ∼ r2/ttrap), where the proportionality coefficient reflected the apparent porous network connectivity. For passive nanoparticles, this coefficient was always lower than expected theoretically for a random walk, indicating reduced network accessibility. In contrast, the coefficient for active nanomotors, in the same pore spaces, aligned with the theoretical value, suggesting that active particles navigate "intelligently" in porous environments, consistent with kinetic Monte Carlo simulations in networks with variable pore sizes. These findings elucidate a model of successive cavity exploration and escape for nanoparticle transport in porous networks, where pore accessibility is a function of motive force, providing insights relevant to applications in filtration, controlled release, and beyond.
Collapse
Affiliation(s)
- Anni Shi
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80305, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80305, United States
| |
Collapse
|
2
|
Shi A, Wu H, Schwartz DK. Nanomotor-enhanced transport of passive Brownian particles in porous media. SCIENCE ADVANCES 2023; 9:eadj2208. [PMID: 38039361 PMCID: PMC10691774 DOI: 10.1126/sciadv.adj2208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/02/2023] [Indexed: 12/03/2023]
Abstract
Artificial micro/nanomotors are expected to perform tasks in interface-rich and species-rich environments for biomedical and environmental applications. In these highly confined and interconnected pore spaces, active species may influence the motion of coexisting passive participants in unexpected ways. Using three-dimensional super-resolution single-nanoparticle tracking, we observed enhanced motion of passive nanoparticles due to the presence of dilute well-separated nanomotors in an interconnected pore space. This enhancement acted at distances that are large compared to the sizes of the particles and cavities, in contrast with the insignificant effect on the passive particles with the same dilute concentration of nanomotors in an unconfined liquid. Experiments and simulations suggested an amplification of hydrodynamic coupling between self-propelled and passive nanoparticles in the interconnected confined environment, which enhanced the effective energy for passive particles to escape cavities through small holes. This finding represents an emergent behavior of confined nanomotors and suggests new strategies for the development of antifouling membranes and drug delivery systems.
Collapse
Affiliation(s)
- Anni Shi
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Haichao Wu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Daniel K. Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
3
|
Shrivastava A, Du Y, Adepu HK, Li R, Madhvacharyula AS, Swett AA, Choi JH. Motility of Synthetic Cells from Engineered Lipids. ACS Synth Biol 2023; 12:2789-2801. [PMID: 37729546 DOI: 10.1021/acssynbio.3c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Synthetic cells are artificial systems that resemble natural cells. Significant efforts have been made over the years to construct synthetic protocells that can mimic biological mechanisms and perform various complex processes. These include compartmentalization, metabolism, energy supply, communication, and gene reproduction. Cell motility is also of great importance, as nature uses elegant mechanisms for intracellular trafficking, immune response, and embryogenesis. In this review, we discuss the motility of synthetic cells made from lipid vesicles and relevant molecular mechanisms. Synthetic cell motion may be classified into surface-based or solution-based depending on whether it involves interactions with surfaces or movement in fluids. Collective migration behaviors have also been demonstrated. The swarm motion requires additional mechanisms for intercellular signaling and directional motility that enable communication and coordination among the synthetic vesicles. In addition, intracellular trafficking for molecular transport has been reconstituted in minimal cells with the help of DNA nanotechnology. These efforts demonstrate synthetic cells that can move, detect, respond, and interact. We envision that new developments in protocell motility will enhance our understanding of biological processes and be instrumental in bioengineering and therapeutic applications.
Collapse
Affiliation(s)
- Aishwary Shrivastava
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Yancheng Du
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Harshith K Adepu
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Ruixin Li
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Anirudh S Madhvacharyula
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Alexander A Swett
- School of Mechanical Engineering, Purdue University, Neil Armstrong Hall of Engineering, 701 W. Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Ishimoto K, Gaffney EA, Smith DJ. Squirmer hydrodynamics near a periodic surface topography. Front Cell Dev Biol 2023; 11:1123446. [PMID: 37123410 PMCID: PMC10133482 DOI: 10.3389/fcell.2023.1123446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Abstract
The behaviour of microscopic swimmers has previously been explored near large-scale confining geometries and in the presence of very small-scale surface roughness. Here, we consider an intermediate case of how a simple microswimmer, the tangential spherical squirmer, behaves adjacent to singly and doubly periodic sinusoidal surface topographies that spatially oscillate with an amplitude that is an order of magnitude less than the swimmer size and wavelengths that are also within an order of magnitude of this scale. The nearest neighbour regularised Stokeslet method is used for numerical explorations after validating its accuracy for a spherical tangential squirmer that swims stably near a flat surface. The same squirmer is then introduced to different surface topographies. The key governing factor in the resulting swimming behaviour is the size of the squirmer relative to the surface topography wavelength. For instance, directional guidance is not observed when the squirmer is much larger, or much smaller, than the surface topography wavelength. In contrast, once the squirmer size is on the scale of the topography wavelength, limited guidance is possible, often with local capture in the topography troughs. However, complex dynamics can also emerge, especially when the initial configuration is not close to alignment along topography troughs or above topography crests. In contrast to sensitivity in alignment and topography wavelength, reductions in the amplitude of the surface topography or variations in the shape of the periodic surface topography do not have extensive impacts on the squirmer behaviour. Our findings more generally highlight that the numerical framework provides an essential basis to elucidate how swimmers may be guided by surface topography.
Collapse
Affiliation(s)
- Kenta Ishimoto
- Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
- *Correspondence: Kenta Ishimoto,
| | - Eamonn A. Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - David J. Smith
- School of Mathematics, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
5
|
Abstract
Micro-/nanorobots (MNRs) can be autonomously propelled on demand in complex biological environments and thus may bring revolutionary changes to biomedicines. Fluorescence has been widely used in real-time imaging, chemo-/biosensing, and photo-(chemo-) therapy. The integration of MNRs with fluorescence generates fluorescent MNRs with unique advantages of optical trackability, on-the-fly environmental sensitivity, and targeting chemo-/photon-induced cytotoxicity. This review provides an up-to-date overview of fluorescent MNRs. After the highlighted elucidation about MNRs of various propulsion mechanisms and the introductory information on fluorescence with emphasis on the fluorescent mechanisms and materials, we systematically illustrate the design and preparation strategies to integrate MNRs with fluorescent substances and their biomedical applications in imaging-guided drug delivery, intelligent on-the-fly sensing and photo-(chemo-) therapy. In the end, we summarize the main challenges and provide an outlook on the future directions of fluorescent MNRs. This work is expected to attract and inspire researchers from different communities to advance the creation and practical application of fluorescent MNRs on a broad horizon.
Collapse
Affiliation(s)
- Manyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xia Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
6
|
Teora SP, van der Knaap KH, Keller S, Rijpkema SJ, Wilson DA. Reversible speed control of one-stimulus-double-response, temperature-sensitive asymmetric hydrogel micromotors. Chem Commun (Camb) 2022; 58:10333-10336. [PMID: 35950508 DOI: 10.1039/d2cc02854a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soft, one-stimulus-double-response, thermo-sensitive, PNIPAm-based microgels are designed for controlled autonomous motion under stimuli. At higher temperature, the motors with physically encapsulated catalase move faster, while motors in which catalase is chemically linked to PNIPAm ceased moving. The phenomenon is reversible over multiple cycles of temperature.
Collapse
Affiliation(s)
- Serena P Teora
- Department of Systems Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Kirsten H van der Knaap
- Department of Systems Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Shauni Keller
- Department of Systems Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Sjoerd J Rijpkema
- Department of Systems Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Daniela A Wilson
- Department of Systems Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Song S, Llopis-Lorente A, Mason AF, Abdelmohsen LKEA, van Hest JCM. Confined Motion: Motility of Active Microparticles in Cell-Sized Lipid Vesicles. J Am Chem Soc 2022; 144:13831-13838. [PMID: 35867803 PMCID: PMC9354240 DOI: 10.1021/jacs.2c05232] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Active materials can transduce external energy into kinetic
energy
at the nano and micron length scales. This unique feature has sparked
much research, which ranges from achieving fundamental understanding
of their motility to the assessment of potential applications. Traditionally,
motility is studied as a function of internal features such as particle
topology, while external parameters such as energy source are assessed
mainly in bulk. However, in real-life applications, confinement plays
a crucial role in determining the type of motion active particles
can adapt. This feature has been however surprisingly underexplored
experimentally. Here, we showcase a tunable experimental platform
to gain an insight into the dynamics of active particles in environments
with restricted 3D topology. Particularly, we examined the autonomous
motion of coacervate micromotors confined in giant unilamellar vesicles
(GUVs) spanning 10–50 μm in diameter and varied parameters
including fuel and micromotor concentration. We observed anomalous
diffusion upon confinement, leading to decreased motility, which was
more pronounced in smaller compartments. The results indicate that
the theoretically predicted hydrodynamic effect dominates the motion
mechanism within this platform. Our study provides a versatile approach
to understand the behavior of active matter under controlled, compartmentalized
conditions.
Collapse
Affiliation(s)
- Shidong Song
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Antoni Llopis-Lorente
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland.,Institute of Molecular Recognition and Technological Development (IDM); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Alexander F Mason
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Loai K E A Abdelmohsen
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherland
| |
Collapse
|
8
|
Li H, Li Y, Liu J, He Q, Wu Y. Asymmetric colloidal motors: from dissymmetric nanoarchitectural fabrication to efficient propulsion strategy. NANOSCALE 2022; 14:7444-7459. [PMID: 35546337 DOI: 10.1039/d2nr00610c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Janus colloidal motors (JCMs) are versatile anisotropic particles that can effectively move autonomously based on their asymmetric structures, providing unlimited possibilities for various tasks. Developing novel JCMs with controllable size, engineered nanostructure and functionalized surface properties has always been a challenge for chemists. This review summarizes the recent progress in synthesized JCMs in terms of their fabrication method, propulsion strategy, and biomedical applications. The design options, construction methods, and typical examples of JCMs are presented. Common propulsion mechanisms of JCMs are reviewed, as well as the approaches to control their motion under complex microscopic conditions based on symmetry-breaking strategies. The precisely controlled motion enables JCMs to be used in biomedicine, environmental remediation, analytical sensing and nanoengineering. Finally, perspectives on future research and development are presented. Through ingenious design and multi-functionality, new JCM-based technologies could address more and more special needs in complex environments.
Collapse
Affiliation(s)
- Haichao Li
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, No. 92 XiDaZhi Street, Harbin, 150001, China.
| | - Yue Li
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, No. 92 XiDaZhi Street, Harbin, 150001, China.
| | - Jun Liu
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, No. 92 XiDaZhi Street, Harbin, 150001, China.
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, No. 92 XiDaZhi Street, Harbin, 150001, China.
| | - Yingjie Wu
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, No. 92 XiDaZhi Street, Harbin, 150001, China.
| |
Collapse
|
9
|
Wang J, Si J, Hao Y, Li J, Zhang P, Zuo C, Jin B, Wang Y, Zhang W, Li W, Guo R, Miao S. Halloysite-Based Nanorockets with Light-Enhanced Self-Propulsion for Efficient Water Remediation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1231-1242. [PMID: 35025514 DOI: 10.1021/acs.langmuir.1c03024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Halloysite-based tubular nanorockets with chemical-/light-controlled self-propulsion and on-demand acceleration in velocity are reported. The nanorockets are fabricated by modifying halloysite nanotubes with nanoparticles of silver (Ag) and light-responsive α-Fe2O3 to prepare a composite of Ag-Fe2O3/HNTs. Compared to the traditional fabrication of tubular micro-/nanomotors, this strategy has merits in employing natural clay as substrates of an asymmetric tubular structure, of abundance, and of no complex instruments required. The velocity of self-propelled Ag-Fe2O3/HNTs nanorockets in fuel (3.0% H2O2) was ca. 1.7 times higher under the irradiation of visible light than that in darkness. Such light-enhanced propulsion can be wirelessly modulated by adjusting light intensity and H2O2 concentration. The highly repeatable and controlled "weak/strong" propulsion can be implemented by turning a light on and off. With the synergistic coupling of the photocatalysis of the Ag-Fe2O3 heterostructure and advanced oxidation in H2O2/visible light conditions, the Ag-Fe2O3/HNTs nanorockets achieve an enhanced performance of wastewater remediation. A test was done by the catalytic degradation of tetracycline hydrochloride. The light-enhanced propulsion is demonstrated to accelerate the degradation kinetics dramatically. All of these results illustrated that such motors can achieve efficient water remediation and open a new path for the photodegradation of organic pollutions.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Solid Waste Recycling Engineering Research Center of Jilin Province, Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals-Ministry of Natural Resources, Jilin University, Changchun 130022, China
| | - Jiwen Si
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Solid Waste Recycling Engineering Research Center of Jilin Province, Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals-Ministry of Natural Resources, Jilin University, Changchun 130022, China
| | - Yizhan Hao
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Solid Waste Recycling Engineering Research Center of Jilin Province, Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals-Ministry of Natural Resources, Jilin University, Changchun 130022, China
| | - Jingyao Li
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Solid Waste Recycling Engineering Research Center of Jilin Province, Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals-Ministry of Natural Resources, Jilin University, Changchun 130022, China
| | - Peiping Zhang
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Solid Waste Recycling Engineering Research Center of Jilin Province, Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals-Ministry of Natural Resources, Jilin University, Changchun 130022, China
| | - Chuanxiao Zuo
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Solid Waste Recycling Engineering Research Center of Jilin Province, Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals-Ministry of Natural Resources, Jilin University, Changchun 130022, China
| | - Bo Jin
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Solid Waste Recycling Engineering Research Center of Jilin Province, Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals-Ministry of Natural Resources, Jilin University, Changchun 130022, China
| | - Yan Wang
- School of Materials Science & Engineering, and Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Wei Zhang
- School of Materials Science & Engineering, and Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Wenqing Li
- Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources, Changchun 130061, China
| | - Ruifeng Guo
- Jilin Baofeng Ball Clay Co., Ltd, Hongyang Street, Dakouqin Town, Longtan District, Jilin City 132207, China
| | - Shiding Miao
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Solid Waste Recycling Engineering Research Center of Jilin Province, Open Research Laboratory for Physicochemical Testing Methods of Functional Minerals-Ministry of Natural Resources, Jilin University, Changchun 130022, China
| |
Collapse
|
10
|
Liebchen B, Mukhopadhyay AK. Interactions in active colloids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:083002. [PMID: 34788232 DOI: 10.1088/1361-648x/ac3a86] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
The past two decades have seen a remarkable progress in the development of synthetic colloidal agents which are capable of creating directed motion in an unbiased environment at the microscale. These self-propelling particles are often praised for their enormous potential to self-organize into dynamic nonequilibrium structures such as living clusters, synchronized super-rotor structures or self-propelling molecules featuring a complexity which is rarely found outside of the living world. However, the precise mechanisms underlying the formation and dynamics of many of these structures are still barely understood, which is likely to hinge on the gaps in our understanding of how active colloids interact. In particular, besides showing comparatively short-ranged interactions which are well known from passive colloids (Van der Waals, electrostatic etc), active colloids show novel hydrodynamic interactions as well as phoretic and substrate-mediated 'osmotic' cross-interactions which hinge on the action of the phoretic field gradients which are induced by the colloids on other colloids in the system. The present article discusses the complexity and the intriguing properties of these interactions which in general are long-ranged, non-instantaneous, non-pairwise and non-reciprocal and which may serve as key ingredients for the design of future nonequilibrium colloidal materials. Besides providing a brief overview on the state of the art of our understanding of these interactions a key aim of this review is to emphasize open key questions and corresponding open challenges.
Collapse
Affiliation(s)
- Benno Liebchen
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Aritra K Mukhopadhyay
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
11
|
Mechanisms of transport enhancement for self-propelled nanoswimmers in a porous matrix. Proc Natl Acad Sci U S A 2021; 118:2101807118. [PMID: 34183394 DOI: 10.1073/pnas.2101807118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Micro/nanoswimmers convert diverse energy sources into directional movement, demonstrating significant promise for biomedical and environmental applications, many of which involve complex, tortuous, or crowded environments. Here, we investigated the transport behavior of self-propelled catalytic Janus particles in a complex interconnected porous void space, where the rate-determining step involves the escape from a cavity and translocation through holes to adjacent cavities. Surprisingly, self-propelled nanoswimmers escaped from cavities more than 20× faster than passive (Brownian) particles, despite the fact that the mobility of nanoswimmers was less than 2× greater than that of passive particles in unconfined bulk liquid. Combining experimental measurements, Monte Carlo simulations, and theoretical calculations, we found that the escape of nanoswimmers was enhanced by nuanced secondary effects of self-propulsion which were amplified in confined environments. In particular, active escape was facilitated by anomalously rapid confined short-time mobility, highly efficient surface-mediated searching for holes, and the effective abolition of entropic and/or electrostatic barriers at the exit hole regions by propulsion forces. The latter mechanism converted the escape process from barrier-limited to search-limited. These findings provide general and important insights into micro/nanoswimmer mobility in complex environments.
Collapse
|
12
|
Ham S, Fang WZ, Qiao R. Particle actuation by rotating magnetic fields in microchannels: a numerical study. SOFT MATTER 2021; 17:5590-5601. [PMID: 33998637 DOI: 10.1039/d1sm00127b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetic particles confined in microchannels can be actuated to perform translation motion using a rotating magnetic field, but their actuation in such a situation is not yet well understood. Here, the actuation of a ferromagnetic particle confined in square microchannels is studied using immersed-boundary lattice Boltzmann simulations. In wide channels, when a sphere is positioned close to a side wall but away from channel corners, it experiences a modest hydrodynamic actuation force parallel to the channel walls. This force decreases as the sphere is shifted toward the bottom wall but the opposite trend is found when the channel is narrow. When the sphere is positioned midway between the top and bottom channel walls, the actuation force decreases as the channel width decreases and can reverse its direction. These phenomena are elucidated by studying the flow and pressure fields in the channel-particle system and by analyzing the viscous and pressure components of the hydrodynamic force acting on different parts of the sphere.
Collapse
Affiliation(s)
- Seokgyun Ham
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. and Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| | - Wen-Zhen Fang
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. and Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| | - Rui Qiao
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. and Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| |
Collapse
|
13
|
Xue C, Shi X, Tian Y, Zheng X, Hu G. Diffusion of Nanoparticles with Activated Hopping in Crowded Polymer Solutions. NANO LETTERS 2020; 20:3895-3904. [PMID: 32208707 DOI: 10.1021/acs.nanolett.0c01058] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A long-distance hop of diffusive nanoparticles (NPs) in crowded environments was commonly considered unlikely, and its characteristics remain unclear. In this work, we experimentally identify the occurrence of the intermittent hops of large NPs in crowded entangled poly(ethylene oxide) (PEO) solutions, which are attributed to thermally induced activated hopping. We show that the diffusion of NPs in crowded solutions is considered as a superposition of the activated hopping and the reptation of the polymer solution. Such activated hopping becomes significant when either the PEO molecular weight is large enough or the NP size is relatively small. We reveal that the time-dependent non-Gaussianity of the NP diffusion is determined by the competition of the short-time relaxation of a polymer entanglement strand, the activated hopping, and the long-time reptation. We propose an exponential scaling law τhop/τe ∼ exp(d/dt) to characterize the hopping time scale, suggesting a linear dependence of the activated hopping energy barrier on the dimensionless NP size. The activated hopping motion can only be observed between the onset time scale of the short-time relaxation of local entanglement strands and the termination time scale of the long-time relaxation. Our findings on activated hopping provide new insights into long-distance transportation of NPs in crowded biological environments, which is essential to the delivery and targeting of nanomedicines.
Collapse
Affiliation(s)
- Chundong Xue
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China
- University of Chinese Academy of Science, Beijing 100149, China
| | - Xinghua Shi
- National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100149, China
| | - Yu Tian
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoqing Hu
- Department of Engineering Mechanics & State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
14
|
Mitra S, Roy N, Maity S, Bandyopadhyay D. Multimodal chemo-/magneto-/phototaxis of 3G CNT-bots to power fuel cells. MICROSYSTEMS & NANOENGINEERING 2020; 6:19. [PMID: 34567634 PMCID: PMC8433207 DOI: 10.1038/s41378-019-0122-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/09/2019] [Accepted: 11/15/2019] [Indexed: 06/13/2023]
Abstract
We report the development of a 3G microswimmer, namely, CNT-bot, capable of undergoing acid-, alkali-, magneto- and phototaxis inside acidic or alkaline baths of peroxide fuel and/or water. The use of carboxyl-functionalised multi-walled carbon nanotubes (MWCNTs) facilitated the propulsion of CNT-bots in an alkaline-water solution by ejecting carbon-dioxide bubbles. Furthermore, doping of magnetite nanoparticles (FeONPs), ferrous ions (Fe2+) and titanium dioxide nanoparticles (TiONPs) induces magnetic, chemical and photonic modes of propulsion. While FeONPs stimulated magnetotaxis at a rate of up to ~10 body lengths per second under the influence of a bar magnet, chemotaxis of a similar speed in a peroxide fuel was achieved by bubble-propulsion of oxygen gas originating from the Fenton reaction. In addition, the light-stimulated photo-Fenton reaction led to phototaxis of CNT-bots. A thin coating of magnesium imparted a half-faced Janus appearance to the CNT-bots, which facilitated motion in normal or acidic water media through the ejection of hydrogen gas bubbles. This chemotaxis could be transformed into pH-stimulated directional motion by establishing an acid or alkali concentration gradient across the peroxide and/or water baths. The capacity of CNT-bots to produce oxygen (hydrogen) bubbles in peroxide (acidic water) fuel was exploited to power a PEM fuel cell to generate electricity. The pure oxygen and hydrogen gases generated by CNT-bots in separate chambers were fed directly into the fuel cell in which the incessant motions of the particle facilitated the creation and release of the pure gases to achieve on-demand electricity generation. The motor could also induce dye degradation through advanced oxidation owing to the production of intermediate hydroxyl radicals during the Fenton reaction.
Collapse
Affiliation(s)
- Shirsendu Mitra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Nirmal Roy
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Surjendu Maity
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Dipankar Bandyopadhyay
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| |
Collapse
|
15
|
Wang Y, Duan W, Zhou C, Liu Q, Gu J, Ye H, Li M, Wang W, Ma X. Phoretic Liquid Metal Micro/Nanomotors as Intelligent Filler for Targeted Microwelding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1905067. [PMID: 31664739 DOI: 10.1002/adma.201905067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/03/2019] [Indexed: 05/23/2023]
Abstract
Micro/nanomotors (MNMs) have emerged as active micro/nanoplatforms that can move and perform functions at small scales. Much of their success, however, hinges on the use of functional properties of new materials. Liquid metals (LMs), due to their good electrical conductivity, biocompatibility, and flexibility, have attracted considerable attentions in the fields of flexible electronics, biomedicine, and soft robotics. The design and construction of LM-based motors is therefore a research topic with tremendous prospects, however current approaches are mostly limited to macroscales. Here, the fabrication of an LM-MNM (made of Galinstan, a gallium-indium-tin alloy) is reported and its potential application as an on-demand, self-targeting welding filler is demonstrated. These LM-MNMs (as small as a few hundred nanometers) are half-coated with a thin layer of platinum (Pt) and move in H2 O2 via self-electrophoresis. In addition, the LM-MNMs roaming in a silver nanowire network can move along the nanowires and accumulate at the contact junctions where they become fluidic and achieve junction microwelding at room temperature by reacting with acid vapor. This work presents an intelligent and soft nanorobot capable of repairing circuits by welding at small scales, thus extending the pool of available self-propelled MNMs and introducing new applications.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Advanced Welding and Joining (Shenzhen) and Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wendi Duan
- State Key Laboratory of Advanced Welding and Joining (Shenzhen) and Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Qing Liu
- State Key Laboratory of Advanced Welding and Joining (Shenzhen) and Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jiahui Gu
- State Key Laboratory of Advanced Welding and Joining (Shenzhen) and Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Heng Ye
- State Key Laboratory of Advanced Welding and Joining (Shenzhen) and Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Mingyu Li
- State Key Laboratory of Advanced Welding and Joining (Shenzhen) and Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xing Ma
- State Key Laboratory of Advanced Welding and Joining (Shenzhen) and Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
16
|
Uspal WE, Popescu MN, Dietrich S, Tasinkevych M. Active Janus colloids at chemically structured surfaces. J Chem Phys 2019; 150:204904. [DOI: 10.1063/1.5091760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- W. E. Uspal
- Department of Mechanical Engineering, University of Hawai’i at Mnoa, 2540 Dole Street, Holmes Hall 302, Honolulu, Hawaii 96822, USA
| | - M. N. Popescu
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - S. Dietrich
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - M. Tasinkevych
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande P-1749-016 Lisboa, Portugal and Centro de Física Teórica e Computacional, Universidade de Lisboa, Campo Grande P-1749-016 Lisboa, Portugal
| |
Collapse
|
17
|
Xiao Z, Wei M, Wang W. A Review of Micromotors in Confinements: Pores, Channels, Grooves, Steps, Interfaces, Chains, and Swimming in the Bulk. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6667-6684. [PMID: 30562451 DOI: 10.1021/acsami.8b13103] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One of the recent frontiers of nanotechnology research involves machines that operate at nano- and microscales, also known as nano/micromotors. Their potential applications in biomedicine, environmental sciences and engineering, military and defense industries, self-assembly, and many other areas have fueled an intense interest in this topic over the last 15 years. Despite deepened understanding of their propulsion mechanisms, we are still in the early days of exploring the dynamics of micromotors in complex and more realistic environments. Confinements, as a typical example of complex environments, are extremely relevant to the applications of micromotors, which are expected to travel in mucus gels, blood vessels, reproductive and digestive tracts, microfluidic chips, and capillary tubes. In this review, we summarize and critically examine recent studies (mostly experimental ones) of micromotor dynamics in confinements in 3D (spheres and porous network, channels, grooves, steps, and obstacles), 2D (liquid-liquid, liquid-solid, and liquid-air interfaces), and 1D (chains). In addition, studies of micromotors moving in the bulk solution and the usefulness of acoustic levitation is discussed. At the end of this article, we summarize how confinements can affect micromotors and offer our insights on future research directions. This review article is relevant to readers who are interested in the interactions of materials with interfaces and structures at the microscale and helpful for the design of smart and multifunctional materials for various applications.
Collapse
Affiliation(s)
- Zuyao Xiao
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Mengshi Wei
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| | - Wei Wang
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen , Guangdong 518055 , China
| |
Collapse
|
18
|
Yu H, Tang W, Mu G, Wang H, Chang X, Dong H, Qi L, Zhang G, Li T. Micro-/Nanorobots Propelled by Oscillating Magnetic Fields. MICROMACHINES 2018; 9:E540. [PMID: 30715039 PMCID: PMC6266240 DOI: 10.3390/mi9110540] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022]
Abstract
Recent strides in micro- and nanomanufacturing technologies have sparked the development of micro-/nanorobots with enhanced power and functionality. Due to the advantages of on-demand motion control, long lifetime, and great biocompatibility, magnetic propelled micro-/nanorobots have exhibited considerable promise in the fields of drug delivery, biosensing, bioimaging, and environmental remediation. The magnetic fields which provide energy for propulsion can be categorized into rotating and oscillating magnetic fields. In this review, recent developments in oscillating magnetic propelled micro-/nanorobot fabrication techniques (such as electrodeposition, self-assembly, electron beam evaporation, and three-dimensional (3D) direct laser writing) are summarized. The motion mechanism of oscillating magnetic propelled micro-/nanorobots are also discussed, including wagging propulsion, surface walker propulsion, and scallop propulsion. With continuous innovation, micro-/nanorobots can become a promising candidate for future applications in the biomedical field. As a step toward designing and building such micro-/nanorobots, several types of common fabrication techniques are briefly introduced. Then, we focus on three propulsion mechanisms of micro-/nanorobots in oscillation magnetic fields: (1) wagging propulsion; (2) surface walker; and (3) scallop propulsion. Finally, a summary table is provided to compare the abilities of different micro-/nanorobots driven by oscillating magnetic fields.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
| | - Wentian Tang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
| | - Guanyu Mu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
| | - Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
| | - Xiaocong Chang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
| | - Huijuan Dong
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
| | - Liqun Qi
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
| | - Guangyu Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
- Department of Analytical, Physical and Colloidal Chemistry, Institute of Pharmacy, Sechenov University, 119991 Moscow, Russia.
| |
Collapse
|
19
|
Daddi-Moussa-Ider A, Lisicki M, Mathijssen AJTM, Hoell C, Goh S, Bławzdziewicz J, Menzel AM, Löwen H. State diagram of a three-sphere microswimmer in a channel. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:254004. [PMID: 29757157 DOI: 10.1088/1361-648x/aac470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Geometric confinements are frequently encountered in soft matter systems and in particular significantly alter the dynamics of swimming microorganisms in viscous media. Surface-related effects on the motility of microswimmers can lead to important consequences in a large number of biological systems, such as biofilm formation, bacterial adhesion and microbial activity. On the basis of low-Reynolds-number hydrodynamics, we explore the state diagram of a three-sphere microswimmer under channel confinement in a slit geometry and fully characterize the swimming behavior and trajectories for neutral swimmers, puller- and pusher-type swimmers. While pushers always end up trapped at the channel walls, neutral swimmers and pullers may further perform a gliding motion and maintain a stable navigation along the channel. We find that the resulting dynamical system exhibits a supercritical pitchfork bifurcation in which swimming in the mid-plane becomes unstable beyond a transition channel height while two new stable limit cycles or fixed points that are symmetrically disposed with respect to the channel mid-height emerge. Additionally, we show that an accurate description of the averaged swimming velocity and rotation rate in a channel can be captured analytically using the method of hydrodynamic images, provided that the swimmer size is much smaller than the channel height.
Collapse
Affiliation(s)
- Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Daddi-Moussa-Ider A, Lisicki M, Hoell C, Löwen H. Swimming trajectories of a three-sphere microswimmer near a wall. J Chem Phys 2018; 148:134904. [DOI: 10.1063/1.5021027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Maciej Lisicki
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Rd., Cambridge CB3 0WA, United Kingdom
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Christian Hoell
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
21
|
Ning H, Zhang Y, Zhu H, Ingham A, Huang G, Mei Y, Solovev AA. Geometry Design, Principles and Assembly of Micromotors. MICROMACHINES 2018; 9:E75. [PMID: 30393351 PMCID: PMC6187850 DOI: 10.3390/mi9020075] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/19/2023]
Abstract
Discovery of bio-inspired, self-propelled and externally-powered nano-/micro-motors, rotors and engines (micromachines) is considered a potentially revolutionary paradigm in nanoscience. Nature knows how to combine different elements together in a fluidic state for intelligent design of nano-/micro-machines, which operate by pumping, stirring, and diffusion of their internal components. Taking inspirations from nature, scientists endeavor to develop the best materials, geometries, and conditions for self-propelled motion, and to better understand their mechanisms of motion and interactions. Today, microfluidic technology offers considerable advantages for the next generation of biomimetic particles, droplets and capsules. This review summarizes recent achievements in the field of nano-/micromotors, and methods of their external control and collective behaviors, which may stimulate new ideas for a broad range of applications.
Collapse
Affiliation(s)
- Huanpo Ning
- Department of Materials Science, Fudan University, 220 Handan Road, 200433 Shanghai, China.
| | - Yan Zhang
- Department of Materials Science, Fudan University, 220 Handan Road, 200433 Shanghai, China.
| | - Hong Zhu
- Department of Materials Science, Fudan University, 220 Handan Road, 200433 Shanghai, China.
| | - Andreas Ingham
- Department of Biology, University of Copenhagen, 5 Ole Maaløes Vej, DK-2200, 1165 København, Denmark.
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, 220 Handan Road, 200433 Shanghai, China.
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, 220 Handan Road, 200433 Shanghai, China.
| | - Alexander A Solovev
- Department of Materials Science, Fudan University, 220 Handan Road, 200433 Shanghai, China.
| |
Collapse
|
22
|
Zhou C, Yin J, Wu C, Du L, Wang Y. Efficient target capture and transport by fuel-free micromotors in a multichannel microchip. SOFT MATTER 2017; 13:8064-8069. [PMID: 29099529 DOI: 10.1039/c7sm01905j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Efficient capture and transport of biological targets by functionalized micromotors in microfluidic chips have emerged as to be promising for bioanalysis and detection of targets. However, the crucial step-target capture-is still inefficient due to the low utilization of active spots on the functionalized motor surfaces. Herein, we designed a multichannel microchip for integrating confined space with the oscillatory movement of micromotors to increase the capture efficiency. Acoustically driven, magnetically guided Au/Ni/Au micromotors were employed as the target carriers, while E. coli bacteria were chosen as the targets. Under optimized conditions, a capture efficiency of 96% and an average loading number of 3-4 (targets per single motor) could be achieved. The possibility of simple separation of targets from micromotors has also been demonstrated. This microfluidic system could facilitate the integration of multiple steps for bioanalysis and detection of targets.
Collapse
Affiliation(s)
- Caijin Zhou
- The State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Membrane Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | | | | | | | | |
Collapse
|
23
|
Itel F, Schattling PS, Zhang Y, Städler B. Enzymes as key features in therapeutic cell mimicry. Adv Drug Deliv Rev 2017; 118:94-108. [PMID: 28916495 DOI: 10.1016/j.addr.2017.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/21/2017] [Accepted: 09/07/2017] [Indexed: 11/19/2022]
Abstract
Cell mimicry is a nature inspired concept that aims to substitute for missing or lost (sub)cellular function. This review focuses on the latest advancements in the use of enzymes in cell mimicry for encapsulated catalysis and artificial motility in synthetic bottom-up assemblies with emphasis on the biological response in cell culture or more rarely in animal models. Entities across the length scale from nano-sized enzyme mimics, sub-micron sized artificial organelles and self-propelled particles (swimmers) to micron-sized artificial cells are discussed. Although the field remains in its infancy, the primary aim of this review is to illustrate the advent of nature-mimicking artificial molecules and assemblies on their way to become a complementary alternative to their role models for diverse biomedical purposes.
Collapse
Affiliation(s)
- Fabian Itel
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Philipp S Schattling
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark.
| |
Collapse
|
24
|
Liu L, Bai T, Chi Q, Wang Z, Xu S, Liu Q, Wang Q. How to Make a Fast, Efficient Bubble-Driven Micromotor: A Mechanical View. MICROMACHINES 2017; 8:E267. [PMID: 30400455 PMCID: PMC6189961 DOI: 10.3390/mi8090267] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 01/05/2023]
Abstract
Micromotors, which can be moved at a micron scale, have special functions and can perform microscopic tasks. They have a wide range of applications in various fields with the advantages of small size and high efficiency. Both high speed and efficiency for micromotors are required in various conditions. However, the dynamical mechanism of bubble-driven micromotors movement is not clear, owing to various factors affecting the movement of micromotors. This paper reviews various factors acting on micromotor movement, and summarizes appropriate methods to improve the velocity and efficiency of bubble-driven micromotors, from a mechanical view. The dynamical factors that have significant influence on the hydrodynamic performance of micromotors could be divided into two categories: environment and geometry. Improving environment temperature and decreasing viscosity of fluid accelerate the velocity of motors. Under certain conditions, raising the concentration of hydrogen peroxide is applied. However, a high concentration of hydrogen peroxide is not applicable. In the environment of low concentration, changing the geometry of micromotors is an effective mean to improve the velocity of micromotors. Increasing semi-cone angle and reducing the ratio of length to radius for tubular and rod micromotors are propitious to increase the speed of micromotors. For Janus micromotors, reducing the mass by changing the shape into capsule and shell, and increasing the surface roughness, is applied. This review could provide references for improving the velocity and efficiency of micromotors.
Collapse
Affiliation(s)
- Lisheng Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Tao Bai
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China.
| | - Qingjia Chi
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhen Wang
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China.
| | - Shuang Xu
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China.
| | - Qiwen Liu
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China.
| | - Qiang Wang
- Infrastructure Management Department, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
25
|
Ceylan H, Giltinan J, Kozielski K, Sitti M. Mobile microrobots for bioengineering applications. LAB ON A CHIP 2017; 17:1705-1724. [PMID: 28480466 DOI: 10.1039/c7lc00064b] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Untethered micron-scale mobile robots can navigate and non-invasively perform specific tasks inside unprecedented and hard-to-reach inner human body sites and inside enclosed organ-on-a-chip microfluidic devices with live cells. They are aimed to operate robustly and safely in complex physiological environments where they will have a transforming impact in bioengineering and healthcare. Research along this line has already demonstrated significant progress, increasing attention, and high promise over the past several years. The first-generation microrobots, which could deliver therapeutics and other cargo to targeted specific body sites, have just been started to be tested inside small animals toward clinical use. Here, we review frontline advances in design, fabrication, and testing of untethered mobile microrobots for bioengineering applications. We convey the most impactful and recent strategies in actuation, mobility, sensing, and other functional capabilities of mobile microrobots, and discuss their potential advantages and drawbacks to operate inside complex, enclosed and physiologically relevant environments. We lastly draw an outlook to provide directions in the veins of more sophisticated designs and applications, considering biodegradability, immunogenicity, mobility, sensing, and possible medical interventions in complex microenvironments.
Collapse
Affiliation(s)
- Hakan Ceylan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
| | | | | | | |
Collapse
|
26
|
Zhang J, Zheng X, Cui H, Silber-Li Z. The Self-Propulsion of the Spherical Pt–SiO2 Janus Micro-Motor. MICROMACHINES 2017. [PMCID: PMC6189969 DOI: 10.3390/mi8040123] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The double-faced Janus micro-motor, which utilizes the heterogeneity between its two hemispheres to generate self-propulsion, has shown great potential in water cleaning, drug delivery in micro/nanofluidics, and provision of power for a novel micro-robot. In this paper, we focus on the self-propulsion of a platinum–silica (Pt–SiO2) spherical Janus micro-motor (JM), which is one of the simplest micro-motors, suspended in a hydrogen peroxide solution (H2O2). Due to the catalytic decomposition of H2O2 on the Pt side, the JM is propelled by the established concentration gradient known as diffusoiphoretic motion. Furthermore, as the JM size increases to O (10 μm), oxygen molecules nucleate on the Pt surface, forming microbubbles. In this case, a fast bubble propulsion is realized by the microbubble cavitation-induced jet flow. We systematically review the results of the above two distinct mechanisms: self-diffusiophoresis and microbubble propulsion. Their typical behaviors are demonstrated, based mainly on experimental observations. The theoretical description and the numerical approach are also introduced. We show that this tiny motor, though it has a very simple structure, relies on sophisticated physical principles and can be used to fulfill many novel functions.
Collapse
Affiliation(s)
- Jing Zhang
- School of Environment and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.Z.); (H.C.)
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
- Correspondence: ; Tel.: +86-10-8254-3925
| | - Haihang Cui
- School of Environment and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; (J.Z.); (H.C.)
| | - Zhanhua Silber-Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
| |
Collapse
|
27
|
Geiseler A, Hänggi P, Marchesoni F. Self-Polarizing Microswimmers in Active Density Waves. Sci Rep 2017; 7:41884. [PMID: 28181504 PMCID: PMC5299513 DOI: 10.1038/srep41884] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/30/2016] [Indexed: 11/09/2022] Open
Abstract
An artificial microswimmer drifts in response to spatio-temporal modulations of an activating suspension medium. We consider two competing mechanisms capable of influencing its tactic response: angular fluctuations, which help it explore its surroundings and thus diffuse faster toward more active regions, and self-polarization, a mechanism inherent to self-propulsion, which tends to orient the swimmer's velocity parallel or antiparallel to the local activation gradients. We investigate, both numerically and analytically, the combined action of such two mechanisms. By determining their relative magnitude, we characterize the selective transport of artificial microswimmers in inhomogeneous activating media.
Collapse
Affiliation(s)
| | - Peter Hänggi
- Institut für Physik, University of Augsburg, D-86159, Germany
- Nanosystems Initiative Munich, Schellingstraße 4, D-80799 München, Germany
- Department of Physics, National University of Singapore, 117551 Singapore, Republic of Singapore
| | - Fabio Marchesoni
- Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People’s Republic of China
- Dipartimento di Fisica, Università di Camerino, I-62032 Camerino, Italy
| |
Collapse
|
28
|
Influence of Asymmetry and Driving Forces on the Propulsion of Bubble-Propelled Catalytic Micromotors. MICROMACHINES 2016; 7:mi7120229. [PMID: 30404402 PMCID: PMC6190221 DOI: 10.3390/mi7120229] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 01/21/2023]
Abstract
Bubble-propelled catalytic micromotors have recently been attracting much attention. A bubble-propulsion mechanism has the advantage of producing a stronger force and higher speed than other mechanisms for catalytic micromotors, but the nature of the fluctuated bubble generation process affects the motions of the micromotors, making it difficult to control their motions. Thus, understanding of the influence of fluctuating bubble propulsion on the motions of catalytic micromotors is important in exploiting the advantages of bubble-propelled micromotors. Here, we report experimental demonstrations of the bubble-propelled motions of propeller-shaped micromotors and numerical analyses of the influence of fluctuating bubble propulsion on the motions of propeller-shaped micromotors. We found that motions such as trochoid-like motion and circular motion emerged depending on the magnitude or symmetricity of fluctuations in the bubble-propulsion process. We hope that those results will help in the construction and application of sophisticated bubble-propelled micromotors in the future.
Collapse
|
29
|
Kuron M, Rempfer G, Schornbaum F, Bauer M, Godenschwager C, Holm C, de Graaf J. Moving charged particles in lattice Boltzmann-based electrokinetics. J Chem Phys 2016; 145:214102. [DOI: 10.1063/1.4968596] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael Kuron
- Institut für Computerphysik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Georg Rempfer
- Institut für Computerphysik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Florian Schornbaum
- Lehrstuhl für Systemsimulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Martin Bauer
- Lehrstuhl für Systemsimulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Christian Godenschwager
- Lehrstuhl für Systemsimulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Christian Holm
- Institut für Computerphysik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Joost de Graaf
- Institut für Computerphysik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
30
|
Debnath D, Ghosh PK, Li Y, Marchesoni F, Li B. Communication: Cargo towing by artificial swimmers. J Chem Phys 2016; 145:191103. [PMID: 27875870 DOI: 10.1063/1.4967773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An active swimmer can tow a passive cargo by binding it to form a self-propelling dimer. The orientation of the cargo relative to the axis of the active dimer's head is determined by the hydrodynamic interactions associated with the propulsion mechanism of the latter. We show how the tower-cargo angular configuration greatly influences the dimer's diffusivity and, therefore, the efficiency of the active swimmer as a micro-towing motor.
Collapse
Affiliation(s)
- Debajyoti Debnath
- Department of Chemistry, Presidency University, Kolkata 700073, India
| | - Pulak K Ghosh
- Department of Chemistry, Presidency University, Kolkata 700073, India
| | - Yunyun Li
- Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Fabio Marchesoni
- Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Baowen Li
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|