1
|
Vigil T, Spangler LC. Understanding Biomineralization Mechanisms to Produce Size-Controlled, Tailored Nanocrystals for Optoelectronic and Catalytic Applications: A Review. ACS APPLIED NANO MATERIALS 2024; 7:18626-18654. [PMID: 39206356 PMCID: PMC11348323 DOI: 10.1021/acsanm.3c04277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 09/04/2024]
Abstract
Biomineralization, the use of biological systems to produce inorganic materials, has recently become an attractive approach for the sustainable manufacturing of functional nanomaterials. Relying on proteins or other biomolecules, biomineralization occurs under ambient temperatures and pressures, which presents an easily scalable, economical, and environmentally friendly method for nanoparticle synthesis. Biomineralized nanocrystals are quickly approaching a quality applicable for catalytic and optoelectronic applications, replacing materials synthesized using expensive traditional routes. Here, we review the current state of development for producing functional nanocrystals using biomineralization and distill the wide variety of biosynthetic pathways into two main approaches: templating and catalysis. Throughout, we compare and contrast biomineralization and traditional syntheses, highlighting optimizations from traditional syntheses that can be implemented to improve biomineralized nanocrystal properties such as size and morphology, making them competitive with chemically synthesized state-of-the-art functional nanomaterials.
Collapse
Affiliation(s)
- Toriana
N. Vigil
- University
of Virginia, Charlottesville, Virginia 22903, United States
| | - Leah C. Spangler
- Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
2
|
Langmuir monolayers as models of the lipid matrix of cyanobacterial thylakoid membranes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
|
4
|
Yoneda T, Tanimoto Y, Takagi D, Morigaki K. Photosynthetic Model Membranes of Natural Plant Thylakoid Embedded in a Patterned Polymeric Lipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5863-5871. [PMID: 32390435 DOI: 10.1021/acs.langmuir.0c00613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thylakoid membranes in the chloroplast of plants, algae, and cyanobacteria are the powerhouse of photosynthesis, capturing solar energy and converting it into chemical energy. Although their structures and functions have been extensively studied, the intrinsically heterogeneous and dynamic nature of the membrane structures is still not fully understood. Investigating native thylakoid membranes in vivo is difficult due to their small size and limited external access to the chloroplast interior, while the bottom-up approaches based on model systems have been hampered by the sheer complexity of the native membrane. Here, we try to fill the gap by reconstituting the whole thylakoid membrane into a patterned substrate-supported planer bilayer. A mixture of thylakoid membrane purified from spinach leaves and synthetic phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles spontaneously formed a laterally continuous and fluid two-dimensional (2D) membrane in the scaffold of the patterned polymeric bilayer. Chlorophyll fluorescence arising from photosystem II (PSII) recovered after photobleaching, suggesting that the membrane components are laterally mobile. The reversible changes of chlorophyll fluorescence in the presence of the electron acceptors and/or inhibitors indicated that the electron transfer activity of PSII was retained. Furthermore, we confirmed the electron transfer activity of photosystem I (PSI) by observing the generation of nicotinamide adenine dinucleotide phosphate (NADPH) in the presence of water-soluble ferredoxin and ferredoxin-NADP+ reductase. The lateral mobility of membrane-bound molecules and the functional reconstitution of major photosystems provide evidence that our hybrid thylakoid membranes could be an excellent experimental platform to study the 2D molecular organization and machinery of photosynthesis.
Collapse
Affiliation(s)
- Takuro Yoneda
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Yasushi Tanimoto
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Daisuke Takagi
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
- Graduate School of Agricultural Science, Tohoku University, Aoba 468-1, Aranaki, Aoba, Sendai 980-0845, Japan
| | - Kenichi Morigaki
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
- Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
5
|
Hancock AM, Meredith SA, Connell SD, Jeuken LJC, Adams PG. Proteoliposomes as energy transferring nanomaterials: enhancing the spectral range of light-harvesting proteins using lipid-linked chromophores. NANOSCALE 2019; 11:16284-16292. [PMID: 31465048 DOI: 10.1039/c9nr04653d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bio-hybrid nanomaterials have great potential for combining the most desirable aspects of biomolecules and the contemporary concepts of nanotechnology to create highly efficient light-harvesting materials. Light-harvesting proteins are optimized to absorb and transfer solar energy with remarkable efficiency but have a spectral range that is limited by their natural pigment complement. Herein, we present the development of model membranes ("proteoliposomes") in which the absorption range of the membrane protein Light-Harvesting Complex II (LHCII) is effectively enhanced by the addition of lipid-tethered Texas Red (TR) chromophores. Energy transfer from TR to LHCII is observed with up to 94% efficiency and increased LHCII fluorescence of up to three-fold when excited in the region of lowest natural absorption. The new self-assembly procedure offers the modularity to control the concentrations incorporated of TR and LHCII, allowing energy transfer and fluorescence to be tuned. Fluorescence Lifetime Imaging Microscopy provides single-proteoliposome-level quantification of energy transfer efficiency and confirms that functionality is retained on surfaces. Designer proteoliposomes could act as a controllable light-harvesting nanomaterial and are a promising step in the development of bio-hybrid light-harvesting systems.
Collapse
Affiliation(s)
- Ashley M Hancock
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sophie A Meredith
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Simon D Connell
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Lars J C Jeuken
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK and School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Peter G Adams
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
6
|
Polyamines in Microalgae: Something Borrowed, Something New. Mar Drugs 2018; 17:md17010001. [PMID: 30577419 PMCID: PMC6356823 DOI: 10.3390/md17010001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/13/2023] Open
Abstract
Microalgae of different evolutionary origins are typically found in rivers, lakes, and oceans, providing more than 45% of global primary production. They provide not only a food source for animals, but also affect microbial ecosystems through symbioses with microorganisms or secretion of some metabolites. Derived from amino acids, polyamines are present in almost all types of organisms, where they play important roles in maintaining physiological functions or against stress. Microalgae can produce a variety of distinct polyamines, and the polyamine content is important to meet the physiological needs of microalgae and may also affect other species in the environment. In addition, some polyamines produced by microalgae have medical or nanotechnological applications. Previous studies on several types of microalgae have indicated that the putative polyamine metabolic pathways may be as complicated as the genomes of these organisms, which contain genes originating from plants, animals, and even bacteria. There are also several novel polyamine synthetic routes in microalgae. Understanding the nature of polyamines in microalgae will not only improve our knowledge of microalgal physiology and ecological function, but also provide valuable information for biotechnological applications.
Collapse
|
7
|
Adams PG, Vasilev C, Hunter CN, Johnson MP. Correlated fluorescence quenching and topographic mapping of Light-Harvesting Complex II within surface-assembled aggregates and lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2018; 1859:1075-1085. [PMID: 29928860 PMCID: PMC6135645 DOI: 10.1016/j.bbabio.2018.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 01/30/2023]
Abstract
Light-Harvesting Complex II (LHCII) is a chlorophyll-protein antenna complex that efficiently absorbs solar energy and transfers electronic excited states to photosystems I and II. Under excess light intensity LHCII can adopt a photoprotective state in which excitation energy is safely dissipated as heat, a process known as Non-Photochemical Quenching (NPQ). In vivo NPQ is triggered by combinatorial factors including transmembrane ΔpH, PsbS protein and LHCII-bound zeaxanthin, leading to dramatically shortened LHCII fluorescence lifetimes. In vitro, LHCII in detergent solution or in proteoliposomes can reversibly adopt an NPQ-like state, via manipulation of detergent/protein ratio, lipid/protein ratio, pH or pressure. Previous spectroscopic investigations revealed changes in exciton dynamics and protein conformation that accompany quenching, however, LHCII-LHCII interactions have not been extensively studied. Here, we correlated fluorescence lifetime imaging microscopy (FLIM) and atomic force microscopy (AFM) of trimeric LHCII adsorbed to mica substrates and manipulated the environment to cause varying degrees of quenching. AFM showed that LHCII self-assembled onto mica forming 2D-aggregates (25-150 nm width). FLIM determined that LHCII in these aggregates were in a quenched state, with much lower fluorescence lifetimes (~0.25 ns) compared to free LHCII in solution (2.2-3.9 ns). LHCII-LHCII interactions were disrupted by thylakoid lipids or phospholipids, leading to intermediate fluorescent lifetimes (0.6-0.9 ns). To our knowledge, this is the first in vitro correlation of nanoscale membrane imaging with LHCII quenching. Our findings suggest that lipids could play a key role in modulating the extent of LHCII-LHCII interactions within the thylakoid membrane and so the propensity for NPQ activation.
Collapse
Affiliation(s)
- Peter G Adams
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Cvetelin Vasilev
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
8
|
Shiozaki H, Miyahara M, Otsuka K, Miyako K, Honda A, Takasaki Y, Takamizawa S, Tukada H, Ishikawa Y, Sakai R, Oikawa M. Studies on Aculeines: Synthetic Strategy to the Fully Protected Protoaculeine B, the N-Terminal Amino Acid of Aculeine B. Org Lett 2018; 20:3403-3407. [DOI: 10.1021/acs.orglett.8b01331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroki Shiozaki
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Masayoshi Miyahara
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Kazunori Otsuka
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Kei Miyako
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Akito Honda
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Yuichi Takasaki
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Satoshi Takamizawa
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Hideyuki Tukada
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yuichi Ishikawa
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Ryuichi Sakai
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Masato Oikawa
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
9
|
Seiwert D, Witt H, Ritz S, Janshoff A, Paulsen H. The Nonbilayer Lipid MGDG and the Major Light-Harvesting Complex (LHCII) Promote Membrane Stacking in Supported Lipid Bilayers. Biochemistry 2018; 57:2278-2288. [PMID: 29577715 DOI: 10.1021/acs.biochem.8b00118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The thylakoid membrane of algae and land plants is characterized by its intricate architecture, comprising tightly appressed membrane stacks termed grana. The contributions of individual components to grana stack formation are not yet fully elucidated. As an in vitro model, we use supported lipid bilayers made of thylakoid lipid mixtures to study the effect of major light-harvesting complex (LHCII), different lipids, and ions on membrane stacking, seen as elevated structures forming on top of the planar membrane surface in the presence of LHCII protein. These structures were examined by confocal laser scanning microscopy, atomic force microscopy, and fluorescence recovery after photobleaching, revealing multilamellar LHCII-membrane stacks composed of connected lipid bilayers. Both native-like and non-native interactions between the LHCII complexes may contribute to membrane appression in the supported bilayers. However, applying in vivo-like salt conditions to uncharged glycolipid membranes drastically increased the level of stack formation due to enforced LHCII-LHCII interactions, which is in line with recent crystallographic and cryo-electron microscopic data [Wan, T., et al. (2014) Mol. Plant 7, 916-919; Albanese, P., et al. (2017) Sci. Rep. 7, 10067-10083]. Furthermore, we observed the nonbilayer lipid MGDG to strongly promote membrane stacking, pointing to the long-term proposed function of MGDG in stabilizing the inner membrane leaflet of highly curved margins in the periphery of each grana disc because of its negative intrinsic curvature [Murphy, D. J. (1982) FEBS Lett. 150, 19-26].
Collapse
Affiliation(s)
- Dennis Seiwert
- Institute of Molecular Physiology , Johannes Gutenberg University Mainz , Johannes-von-Müller-Weg 6 , 55128 Mainz , Germany
| | - Hannes Witt
- Institute of Physical Chemistry , University of Goettingen , Tammannstrasse 6 , 37077 Goettingen , Germany
| | - Sandra Ritz
- Microscopy Core Facility , Institute of Molecular Biology , Ackermannweg 4 , 55128 Mainz , Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry , University of Goettingen , Tammannstrasse 6 , 37077 Goettingen , Germany
| | - Harald Paulsen
- Institute of Molecular Physiology , Johannes Gutenberg University Mainz , Johannes-von-Müller-Weg 6 , 55128 Mainz , Germany
| |
Collapse
|
10
|
De Tommasi E, Gielis J, Rogato A. Diatom Frustule Morphogenesis and Function: a Multidisciplinary Survey. Mar Genomics 2017; 35:1-18. [PMID: 28734733 DOI: 10.1016/j.margen.2017.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 01/08/2023]
Abstract
Diatoms represent the major component of phytoplankton and are responsible for about 20-25% of global primary production. Hundreds of millions of years of evolution led to tens of thousands of species differing in dimensions and morphologies. In particular, diatom porous silica cell walls, the frustules, are characterized by an extraordinary, species-specific diversity. It is of great interest, among the marine biologists and geneticists community, to shed light on the origin and evolutionary advantage of this variability of dimensions, geometries and pore distributions. In the present article the main reported data related to frustule morphogenesis and functionalities with contributions from fundamental biology, genetics, mathematics, geometry and physics are reviewed.
Collapse
Affiliation(s)
- Edoardo De Tommasi
- Institute for Microelectronics and Microsystems, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Johan Gielis
- University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Alessandra Rogato
- Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, 80131 Naples, Italy; Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale 1, 80121 Naples, Italy.
| |
Collapse
|