1
|
Mathew RA, Mowla M, Shakiba S, Berté TB, Louie SM. Prediction of Nanoparticle Photoreactivity in Mixtures of Surface Foulants Requires Kinetic (Non-equilibrium) Adsorption Considerations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8542-8553. [PMID: 38682869 DOI: 10.1021/acs.est.3c09677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The adsorption of foulants on photocatalytic nanoparticles can suppress their reactivity in water treatment applications by scavenging reactive species at the photocatalyst surface, screening light, or competing for surface sites. These inhibitory effects are commonly modeled using the Langmuir-Hinshelwood model, assuming that adsorbed layer compositions follow Langmuirian (equilibrium) competitive adsorption. However, this assumption has not been evaluated in complex mixtures of foulants. This study evaluates the photoreactivity of titanium dioxide (TiO2) nanoparticles toward a target compound, phenol, in the presence of two classes of foulants ─ natural organic matter (NOM) and a protein, bovine serum albumin (BSA) ─ and mixtures of the two. Langmuir adsorption models predict that BSA should strongly influence the nanoparticle photoreactivity because of its higher adsorption affinity relative to phenol and NOM. However, model evaluation of the experimental phenol decay rates suggested that neither the phenol nor foulant surface coverages are governed by Langmuirian competitive adsorption. Rather, a reactivity model incorporating kinetic predictions of adsorbed layer compositions (favoring NOM adsorption) outperformed Langmuirian models in providing accurate, unbiased predictions of phenol degradation rates. This research emphasizes the importance of using first-principles models that account for adsorption kinetics when assumptions of equilibrium adsorption do not apply.
Collapse
Affiliation(s)
- Riya A Mathew
- Department of Civil & Environmental Engineering, University of Houston, Houston, Texas 77004, United States
| | - Marfua Mowla
- Department of Civil & Environmental Engineering, University of Houston, Houston, Texas 77004, United States
| | - Sheyda Shakiba
- Department of Civil & Environmental Engineering, University of Houston, Houston, Texas 77004, United States
| | - Tchemongo B Berté
- Department of Civil & Environmental Engineering, University of Houston, Houston, Texas 77004, United States
| | - Stacey M Louie
- Department of Civil & Environmental Engineering, University of Houston, Houston, Texas 77004, United States
| |
Collapse
|
2
|
Liu M, Liu X, Graham NJD, Yu W. Uncovering the neglected role of anions in trivalent cation-based coagulation processes. WATER RESEARCH 2024; 254:121352. [PMID: 38401286 DOI: 10.1016/j.watres.2024.121352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Coagulation efficiency is heavily contingent upon a profound comprehension of the underlying mechanisms, facilitated by the evolution of coagulation theory. However, the role of anions, prevalent components in raw and wastewaters, has been relatively overlooked in this context. To address this gap, this study has investigated the impact of three common anions (i.e., chloride, sulfate, and phosphate) on Al-based coagulation. The results have shown that the influence of anions on coagulation depends predominantly on their ability to compete with hydroxyl groups throughout the entire coagulation process, encompassing hydrolysis, aggregation, and the growth of large flocs. Moreover, this competition is subject to the dual influence of both anion concentration and hydroxyl concentration (i.e., pH). The results have revealed the intricate interplay between anions and coagulants, their impact on floc structure, and their importance in optimizing coagulation efficiency and ensuring the production of high-quality water.
Collapse
Affiliation(s)
- Mengjie Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xun Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Wenzheng Yu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
3
|
Ali MAS, Abdel-Rahim EAM, Mahmoud AAA, Mohamed SE. Innovative textiles treated with TiO 2-AgNPs with succinic acid as a cross-linking agent for medical uses. Sci Rep 2024; 14:8045. [PMID: 38580674 PMCID: PMC10997752 DOI: 10.1038/s41598-024-56653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/08/2024] [Indexed: 04/07/2024] Open
Abstract
Silver and titanium-silver nanoparticles have unique properties that make the textile industry progress through the high quality of textiles. Preparation of AgNPs and TiO2-Ag core-shell nanoparticles in different concentrations (0.01% and 0.1% OWF) and applying it to cotton fabrics (Giza 88 and Giza 94) by using succinic acid 5%/SHP as a cross-linking agent. Ultra-violet visible spectroscopy (UV-Vis), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), scanning electron microscopy/energy-dispersive X-ray (SEM-EDX) are tools for AgNPs and TiO2-AgNPs characterization and the treated cotton. The resulting AgNPs and TiO2-AgNPs were added to cotton fabrics at different concentrations. The antimicrobial activities, UV protection, self-cleaning, and the treated fabrics' mechanical characteristics were investigated. Silver nanoparticles and titanium dioxide-silver nanoparticles core-shell were prepared to be used in the treatment of cotton fabrics to improve their UV protection properties, self-cleaning, elongation and strength, as well as the antimicrobial activities to use the produced textiles for medical and laboratory uses and to increase protection for medical workers taking into account the spread of infection. The results demonstrated that a suitable distribution of prepared AgNPs supported the spherical form. Additionally, AgNPs and TiO2-AgNPs have both achieved stability, with values of (- 20.8 mV and - 30 mV, respectively). The synthesized nanoparticles spread and penetrated textiles' surfaces with efficiency. The findings demonstrated the superior UV protection value (UPF 50+) and self-cleaning capabilities of AgNPs and TiO2-AgNPs. In the treatment with 0.01% AgNPs and TiO2-AgNPs, the tensile strength dropped, but the mechanical characteristics were enhanced by raising the concentration to 0.1%. The results of this investigation demonstrated that the cotton fabric treated with TiO2-AgNPs exhibited superior general characteristics when compared to the sample treated only with AgNPs.
Collapse
Affiliation(s)
| | | | - Azza Abdel-Aziz Mahmoud
- Cotton Technology Research Division, Cotton Research Institute, Agriculture Research Center, Giza, Egypt
| | - Sahar Emam Mohamed
- Cotton Technology Research Division, Cotton Research Institute, Agriculture Research Center, Giza, Egypt
| |
Collapse
|
4
|
Ao X, Zhang X, Sun W, Linden KG, Payne EM, Mao T, Li Z. What is the role of nitrate/nitrite in trace organic contaminants degradation and transformation during UV-based advanced oxidation processes? WATER RESEARCH 2024; 253:121259. [PMID: 38377923 DOI: 10.1016/j.watres.2024.121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
The effectiveness of UV-based advanced oxidation processes (UV-AOPs) in degrading trace organic contaminants (TrOCs) can be significantly influenced by the ubiquitous presence of nitrate (NO3-) and nitrite (NO2-) in water and wastewater. Indeed, NO3-/NO2- can play multiple roles of NO3-/NO2- in UV-AOPs, leading to complexities and conflicting results observed in existing research. They can inhibit the degradation of TrOCs by scavenging reactive species and/or competitively absorbing UV light. Conversely, they can also enhance the elimination of TrOCs by generating additional •OH and reactive nitrogen species (RNS). Furthermore, the presence of NO3-/NO2- during UV-AOP treatment can affect the transformation pathways of TrOCs, potentially resulting in the nitration/nitrosation of TrOCs. The resulting nitro(so)-products are generally more toxic than the parent TrOCs and may become precursors of nitrogenous disinfection byproducts (N-DBPs) upon chlorination. Particularly, since the impact of NO3-/NO2- in UV-AOPs is largely due to the generation of RNS from NO3-/NO2- including NO•, NO2•, and peroxynitrite (ONOO-/ONOOH), this review covers the generation, properties, and detection methods of these RNS. From kinetic, mechanistic, and toxicologic perspectives, future research needs are proposed to advance the understanding of how NO3-/NO2- can be exploited to improve the performance of UV-AOPs treating TrOCs. This critical review provides a comprehensive framework outlining the multifaceted impact of NO3-/NO2- in UV-AOPs, contributing insights for basic research and practical applications of UV-AOPs containing NO3-/NO2-.
Collapse
Affiliation(s)
- Xiuwei Ao
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xi Zhang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China.
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO 80303, United States.
| | - Emma M Payne
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO 80303, United States
| | - Ted Mao
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China; MW Technologies, Inc., Ontario L8N1E, Canada
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
5
|
Náfrádi M, Alapi T, Veres B, Farkas L, Bencsik G, Janáky C. Comparison of TiO 2 and ZnO for Heterogeneous Photocatalytic Activation of the Peroxydisulfate Ion in Trimethoprim Degradation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5920. [PMID: 37687613 PMCID: PMC10489049 DOI: 10.3390/ma16175920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
The persulfate-based advanced oxidation process is a promising method for degrading organic pollutants. Herein, TiO2 and ZnO photocatalysts were combined with the peroxydisulfate ion (PDS) to enhance the efficiency. ZnO was significantly more efficient in PDS conversion and SO4•- generation than TiO2. For ZnO, the PDS increased the transformation rate of the trimethoprim antibiotic from 1.58 × 10-7 M s-1 to 6.83 × 10-7 M s-1. However, in the case of TiO2, the moderated positive effect was manifested mainly in O2-free suspensions. The impact of dissolved O2 and trimethoprim on PDS transformation was also studied. The results reflected that the interaction of O2, PDS, and TRIM with the surface of the photocatalyst and their competition for photogenerated charges must be considered. The effect of radical scavengers confirmed that in addition to SO4•-, •OH plays an essential role even in O2-free suspensions, and the contribution of SO4•- to the transformation is much more significant for ZnO than for TiO2. The negative impact of biologically treated domestic wastewater as a matrix was manifested, most probably because of the radical scavenging capacity of Cl- and HCO3-. Nevertheless, in the case of ZnO, the positive effect of PDS successfully overcompensates that, due to the efficient SO4•- generation. Reusability tests were performed in Milli-Q water and biologically treated domestic wastewater, and only a slight decrease in the reactivity of ZnO photocatalysts was observed.
Collapse
Affiliation(s)
- Máté Náfrádi
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm Square 7-8, H-6720 Szeged, Hungary; (M.N.); (B.V.); (L.F.)
| | - Tünde Alapi
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm Square 7-8, H-6720 Szeged, Hungary; (M.N.); (B.V.); (L.F.)
| | - Bence Veres
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm Square 7-8, H-6720 Szeged, Hungary; (M.N.); (B.V.); (L.F.)
| | - Luca Farkas
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm Square 7-8, H-6720 Szeged, Hungary; (M.N.); (B.V.); (L.F.)
| | - Gábor Bencsik
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Square 1, H-6720 Szeged, Hungary; (G.B.); (C.J.)
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Square 1, H-6720 Szeged, Hungary; (G.B.); (C.J.)
| |
Collapse
|
6
|
Photocatalytic Degradation of Paracetamol under Simulated Sunlight by Four TiO2 Commercial Powders: An Insight into the Performance of Two Sub-Micrometric Anatase and Rutile Powders and a Nanometric Brookite Powder. Catalysts 2023. [DOI: 10.3390/catal13020434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
The photocatalytic degradation of the emerging contaminant paracetamol in aqueous solution has been studied under 1 SUN (~1000 W m−2) in the presence of four commercial TiO2 powders, namely sub-micrometric anatase and rutile, and nanometric brookite and P25 (the popular anatase/rutile mixture used as a benchmark in most papers). The rutile powder showed low activity, whereas, interestingly, the anatase and the brookite powders outperformed P25 in terms of total paracetamol conversion to carboxylic acids, which, according to the literature, are the final products of its degradation. To explain such results, the physicochemical properties of the powders were studied by applying a multi-technique approach. Among the physicochemical properties usually affecting the photocatalytic performance of TiO2, the presence of some surface impurities likely deriving from K3PO4 (used as crystallization agent) was found to significantly affect the percentage of paracetamol degradation obtained with the sub-micrometric anatase powder. To confirm the role of phosphate, a sample of anatase, obtained by a lab synthesis procedure and having a “clean” surface, was used as a control, though characterized by nanometric particles and higher surface area. The sample was less active than the commercial anatase, but it was more active after impregnation with K3PO4. Conversely, the presence of Cl at the surface of the rutile did not sizably affect the (overall poor) photocatalytic activity of the powder. The remarkable photocatalytic activity of the brookite nanometric powder was ascribed to a combination of several physicochemical properties, including its band structure and nanoparticles size.
Collapse
|
7
|
Sugita T, Mori M, Kozai N. Photocatalytic Unification of Iodine Species Using Platinum-loaded Titanium Dioxide. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Li D, Feng Z, Zhou B, Chen H, Yuan R. Impact of water matrices on oxidation effects and mechanisms of pharmaceuticals by ultraviolet-based advanced oxidation technologies: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157162. [PMID: 35798102 DOI: 10.1016/j.scitotenv.2022.157162] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The binding between water components (dissolved organic matters, anions and cations) and pharmaceuticals influences the migration and transformation of pollutants. Herein, the impact of water matrices on drug degradation, as well as the electrical energy demands during UV, UV/catalysts, UV/O3, UV/H2O2-based, UV/persulfate and UV/chlorine processes were systemically evaluated. The enhancement effects of water constituents are due to the powerful reactive species formation, the recombination reduction of electrons and holes of catalyst and the catalyst regeneration; the inhibition results from the light attenuation, quenching effects of the excited states of target pollutants and reactive species, the stable complexations generation and the catalyst deactivation. The transformation pathways of the same pollutant in various AOPs have high similarities. At the same time, each oxidant also can act as a special nucleophile or electrophile, depending on the functional groups of the target compound. The electrical energy per order (EEO) of drugs degradation may follow the order of EEOUV > EEOUV/catalyst > EEOUV/H2O2 > EEOUV/PS > EEOUV/chlorine or EEOUV/O3. Meanwhile, it is crucial to balance the cost-benefit assessment and toxic by-products formation, and the comparison of the contaminant degradation pathways and productions in the presence of different water matrices is still lacking.
Collapse
Affiliation(s)
- Danping Li
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuqing Feng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
9
|
Zawadzki P. Visible Light-Driven Advanced Oxidation Processes to Remove Emerging Contaminants from Water and Wastewater: a Review. WATER, AIR, AND SOIL POLLUTION 2022; 233:374. [PMID: 36090740 PMCID: PMC9440748 DOI: 10.1007/s11270-022-05831-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The scientific data review shows that advanced oxidation processes based on the hydroxyl or sulfate radicals are of great interest among the currently conventional water and wastewater treatment methods. Different advanced treatment processes such as photocatalysis, Fenton's reagent, ozonation, and persulfate-based processes were investigated to degrade contaminants of emerging concern (CECs) such as pesticides, personal care products, pharmaceuticals, disinfectants, dyes, and estrogenic substances. This article presents a general overview of visible light-driven advanced oxidation processes for the removal of chlorfenvinphos (organophosphorus insecticide), methylene blue (azo dye), and diclofenac (non-steroidal anti-inflammatory drug). The following visible light-driven treatment methods were reviewed: photocatalysis, sulfate radical oxidation, and photoelectrocatalysis. Visible light, among other sources of energy, is a renewable energy source and an excellent substitute for ultraviolet radiation used in advanced oxidation processes. It creates a high application potential for solar-assisted advanced oxidation processes in water and wastewater technology. Despite numerous publications of advanced oxidation processes (AOPs), more extensive research is needed to investigate the mechanisms of contaminant degradation in the presence of visible light. Therefore, this paper provides an important source of information on the degradation mechanism of emerging contaminants. An important aspect in the work is the analysis of process parameters affecting the degradation process. The initial concentration of CECs, pH, reaction time, and catalyst dosage are discussed and analyzed. Based on a comprehensive survey of previous studies, opportunities for applications of AOPs are presented, highlighting the need for further efforts to address dominant barriers to knowledge acquisition.
Collapse
Affiliation(s)
- Piotr Zawadzki
- Department of Water Protection, Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
| |
Collapse
|
10
|
Zhang Y, Chu W. Enhanced degradation of metronidazole by cobalt doped TiO2/sulfite process under visible light. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Performance of PVDF-TiO 2 Membranes during Photo-Filtration in the Presence of Inorganic and Organic Components. MEMBRANES 2022; 12:membranes12020245. [PMID: 35207166 PMCID: PMC8876676 DOI: 10.3390/membranes12020245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023]
Abstract
In this study, the anti-fouling performance of PVDF-TiO2 composite membranes, indicated by their permeate flux, was studied with different types of synthetic feed solutions. Photo-filtration (filtration under continuous UV irradiation) of solutions containing inorganic and organic components, which are ubiquitous in drinking/natural water, was performed to evaluate their influence on the photo-induced properties and performance of the membranes. The results indicated that inorganic fouling was unlikely to occur on PVDF-TiO2 membranes, and the presence of common inorganic ions in drinking water did not hinder their performance. However, in the particular case where a small amount of Cu2+ coexisted alongside HCO3− in the feed solution, inorganic fouling occurred, causing severe flux decline and prohibiting the photo-induced properties of the membranes. On the other hand, when used to filter organic fouling solutions, the membranes showed strong resistance to sodium alginate fouling, and less so for humic acids. In terms of separation efficiency, the membranes showed no advantages when operated in photo-filtration mode, as the rejection rate of both foulants under photo-filtration was not higher than that under normal filtration. In the case of humic acids, the photodegradation of humic substances into smaller compounds that were able to enter the permeate stream led to a lower rejection rate. Nevertheless, photo-filtration of these organic foulants still offered a higher permeate flux than normal filtration, up to a certain concentration level (5 mg/L for humic acids and 50 mg/L for sodium alginate).
Collapse
|
12
|
Kignelman G, Eyley S, Zhou C, Tunca B, Gonon M, Lahem D, Seo JW, Thielemans W. Colloidal Stability and Aggregation Mechanism in Aqueous Suspensions of TiO 2 Nanoparticles Prepared by Sol-Gel Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14846-14855. [PMID: 34914876 DOI: 10.1021/acs.langmuir.1c02533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the colloidal stability and aggregation behavior of TiO2 nanoparticles in aqueous suspension is a prerequisite to tune supracolloidal structure formation. While the aggregation mechanism for dried TiO2 nanopowders is well documented, there is still work to be done to understand TiO2 nanoparticle aggregation in suspension. Therefore, this work focuses on the colloidal stability and aggregation mechanism of TiO2 nanoparticle aqueous suspensions prepared using a straightforward one-step sol-gel-based approach over a concentration range of 0.5-5 wt %. Fully crystalline nanoparticles consisting primarily of anatase were obtained. After assessing the colloidal stability of the as-prepared suspensions, small-angle X-ray scattering coupled with fractal analysis was carried out. This analysis showed, for the first time, how the TiO2 nanoparticle aggregation mechanism─predicted by the diffusion limited cluster-cluster aggregation (DLCA) and diffusion limited particle-cluster aggregation (DLA) theories─depends directly on the starting concentration in the aqueous suspensions. We found that concentrated suspensions favored DLA, while dilute suspensions tend to follow the DLCA mechanism. The effect of the aggregation mechanism on the aggregate shape is also discussed.
Collapse
Affiliation(s)
- Gertrude Kignelman
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Box 7659, Kortrijk 8500, Belgium
| | - Samuel Eyley
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Box 7659, Kortrijk 8500, Belgium
| | - Chen Zhou
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, China
| | - Bensu Tunca
- Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium
| | - Maurice Gonon
- University of Mons Materials Institute, Mons 7000, Belgium
| | - Driss Lahem
- Materia Nova Materials Science Unit, Mons 7000, Belgium
| | - Jin W Seo
- Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Box 7659, Kortrijk 8500, Belgium
| |
Collapse
|
13
|
Náfrádi M, Alapi T, Farkas L, Bencsik G, Kozma G, Hernádi K. Wavelength Dependence of the Transformation Mechanism of Sulfonamides Using Different LED Light Sources and TiO 2 and ZnO Photocatalysts. MATERIALS (BASEL, SWITZERLAND) 2021; 15:49. [PMID: 35009197 PMCID: PMC8745830 DOI: 10.3390/ma15010049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 05/04/2023]
Abstract
The comparison of the efficiency of the commercially available photocatalysts, TiO2 and ZnO, irradiated with 365 nm and 398 nm light, is presented for the removal of two antibiotics, sulfamethazine (SMT) and sulfamethoxypyridazine (SMP). The •OH formation rate was compared using coumarin, and higher efficiency was proved for TiO2 than ZnO, while for 1,4-benzoquinone in O2-free suspensions, the higher contribution of the photogenerated electrons to the conversion was observed for ZnO than TiO2, especially at 398 nm irradiation. An extremely fast transformation and high quantum yield of SMP in the TiO2/LED398nm process were observed. The transformation was fast in both O2 containing and O2-free suspensions and takes place via desulfonation, while in other cases, mainly hydroxylated products form. The effect of reaction parameters (methanol, dissolved O2 content, HCO3- and Cl-) confirmed that a quite rarely observed energy transfer between the excited state P25 and SMP might be responsible for this unique behavior. In our opinion, these results highlight that "non-conventional" mechanisms could occur even in the case of the well-known TiO2 photocatalyst, and the effect of wavelength is also worth investigating.
Collapse
Affiliation(s)
- Máté Náfrádi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (M.N.); (L.F.)
| | - Tünde Alapi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (M.N.); (L.F.)
| | - Luca Farkas
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (M.N.); (L.F.)
| | - Gábor Bencsik
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary;
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary;
| | - Klára Hernádi
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, C/2-5 Building 209, H-3515 Miskolc-Egyetemvaros, Hungary;
| |
Collapse
|
14
|
Náfrádi M, Alapi T, Bencsik G, Janáky C. Impact of Reaction Parameters and Water Matrices on the Removal of Organic Pollutants by TiO 2/LED and ZnO/LED Heterogeneous Photocatalysis Using 365 and 398 nm Radiation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:nano12010005. [PMID: 35009961 PMCID: PMC8746656 DOI: 10.3390/nano12010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 05/05/2023]
Abstract
In this work, the application of high-power LED365nm and commercial, low-price LED398nm for heterogeneous photocatalysis with TiO2 and ZnO photocatalysts are studied and compared, focusing on the effect of light intensity, photon energy, quantum yield, electrical energy consumption, and effect of matrices and inorganic components on radical formation. Coumarin (COU) and its hydroxylated product (7-HC) were used to investigate operating parameters on the •OH formation rate. In addition to COU, two neonicotinoids, imidacloprid and thiacloprid, were also used to study the effect of various LEDs, matrices, and inorganic ions. The transformation of COU was slower for LED398nm than for LED365nm, but r07-HC/r0COU ratio was significantly higher for LED398nm. The COU mineralization rate was the same for both photocatalysts using LED365nm, but a significant difference was observed using LED398nm. The impact of matrices and their main inorganic components Cl- and HCO3- were significantly different for ZnO and TiO2. The negative effect of HCO3- was evident, however, in the case of high-power LED365nm and TiO2, and the formation of CO3•- almost doubled the r07-HC and contributes to the conversion of neonicotinoids by altering the product distribution and mineralization rate.
Collapse
Affiliation(s)
- Máté Náfrádi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary;
| | - Tünde Alapi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary;
- Correspondence:
| | - Gábor Bencsik
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (G.B.); (C.J.)
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (G.B.); (C.J.)
| |
Collapse
|
15
|
Varsou DD, Ellis LJA, Afantitis A, Melagraki G, Lynch I. Ecotoxicological read-across models for predicting acute toxicity of freshly dispersed versus medium-aged NMs to Daphnia magna. CHEMOSPHERE 2021; 285:131452. [PMID: 34265725 DOI: 10.1016/j.chemosphere.2021.131452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Nanoinformatics models to predict the toxicity/ecotoxicity of nanomaterials (NMs) are urgently needed to support commercialization of nanotechnologies and allow grouping of NMs based on their physico-chemical and/or (eco)toxicological properties, to facilitate read-across of knowledge from data-rich NMs to data-poor ones. Here we present the first ecotoxicological read-across models for predicting NMs ecotoxicity, which were developed in accordance with ECHA's recommended strategy for grouping of NMs as a means to explore in silico the effects of a panel of freshly dispersed versus environmentally aged (in various media) Ag and TiO2 NMs on the freshwater zooplankton Daphnia magna, a keystone species used in regulatory testing. The dataset used to develop the models consisted of dose-response data from 11 NMs (5 TiO2 NMs of identical cores with different coatings, and 6 Ag NMs with different capping agents/coatings) each dispersed in three different media (a high hardness medium (HH Combo) and two representative river waters containing different amounts of natural organic matter (NOM) and having different ionic strengths), generated in accordance with the OECD 202 immobilization test. The experimental hypotheses being tested were (1) that the presence of NOM in the medium would reduce the toxicity of the NMs by forming an ecological corona, and (2) that environmental ageing of NMs reduces their toxicity compared to the freshly dispersed NMs irrespective of the medium composition (salt only or NOM-containing). As per the ECHA guidance, the NMs were grouped into two categories - freshly dispersed and 2-year-aged and explored in silico to identify the most important features driving the toxicity in each group. The final predictive models have been validated according to the OECD criteria and a QSAR model report form (QMRF) report included in the supplementary information to support adoption of the models for regulatory purposes.
Collapse
Affiliation(s)
| | - Laura-Jayne A Ellis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
| | | | - Georgia Melagraki
- Division of Physical Sciences and Applications, Hellenic Military Academy, Vari, Greece.
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, UK.
| |
Collapse
|
16
|
Figueredo M, Rodríguez EM, Rivas J, Beltrán FJ. Photocatalytic ozonation in water treatment: Is there really a synergy between systems? WATER RESEARCH 2021; 206:117727. [PMID: 34624657 DOI: 10.1016/j.watres.2021.117727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Numerous studies report on the synergy between ozonation and photocatalytic oxidation (TiO2/UVA), which could open the way to the application of photocatalytic ozonation (PCOz) in water treatment. With the aim of establishing the existence of this synergy and its origin, in this work, using TiO2 P25, 365 nm UVA LEDs and ozone transferred doses up to 5 mg (mg DOC0)-1 (DOC0 7 - 10 mg L-1), a systematic study has been carried out featuring the effect of pH, alkalinity and water matrix in each of the systems involved in PCOz, with special attention to the role of organics adsorption onto TiO2. In ultrapure water, an increase in pH and carbonates content exerted a slight negative effect on the photocatalytic degradation of primidone (low adsorption onto TiO2 and mainly abated by free HO•), this effect being higher on its mineralization. The negative effect of pH and alkalinity was much stronger for oxalic acid (high tendency to adsorb and mainly oxidized by positive holes). Accordingly, the results obtained at pH < pHpzc (point of zero charge of the catalyst) in ultrapure water cannot at all be extrapolated to secondary effluents, since their composition negatively affects the photocatalytic performance. At the experimental conditions applied, only for the secondary effluent a synergy between O3/UVA and TiO2/UVA systems was observed. This synergy would be related, on the one hand, to the generation, from the matrix itself, of reactive entities or intermediates that promote the decomposition of ozone into HO•; and, on the other hand, to an increase in catalyst activity as the matrix UVA absorption decreases, rather than from direct interactions between both systems. Despite de above, ozone requirement to achieve a significant reduction of DOC is high and would only be an interesting strategy for the elimination of ozone-refractory micropollutants.
Collapse
Affiliation(s)
- Manuel Figueredo
- Departamento de Ingeniería Química y Química Física, Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Avda. Elvas S/N 06006, Badajoz, Spain
| | - Eva M Rodríguez
- Departamento de Ingeniería Química y Química Física, Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Avda. Elvas S/N 06006, Badajoz, Spain.
| | - Javier Rivas
- Departamento de Ingeniería Química y Química Física, Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Avda. Elvas S/N 06006, Badajoz, Spain
| | - Fernando J Beltrán
- Departamento de Ingeniería Química y Química Física, Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Avda. Elvas S/N 06006, Badajoz, Spain
| |
Collapse
|
17
|
Katana B, Takács D, Szerlauth A, Sáringer S, Varga G, Jamnik A, Bobbink FD, Dyson PJ, Szilagyi I. Aggregation of Halloysite Nanotubes in the Presence of Multivalent Ions and Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11869-11879. [PMID: 34601883 PMCID: PMC8515846 DOI: 10.1021/acs.langmuir.1c01949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Colloidal stability was investigated in two types of particle systems, namely, with bare (h-HNT) and polyimidazolium-functionalized (h-HNT-IP-2) alkali-treated halloysite nanotubes in solutions of metal salts and ionic liquids (ILs). The valence of the metal ions and the number of carbon atoms in the hydrocarbon chain of the IL cations (1-methylimidazolium (MIM+), 1-ethyl-3-methylimidazolium (EMIM+), 1-butyl-3-methylimidazolium (BMIM+), and 1-hexyl-3-methylimidazolium (HMIM+)) were altered in the measurements. For the bare h-HNT with a negative surface charge, multivalent counterions destabilized the dispersions at low values of critical coagulation concentration (CCC) in line with the Schulze-Hardy rule. In the presence of ILs, significant adsorption of HMIM+ took place on the h-HNT surface, leading to charge neutralization and overcharging at appropriate concentrations. A weaker affinity was observed for MIM+, EMIM+, and BMIM+, while they adsorbed on the particles to different extents. The order HMIM+ < BMIM+ < EMIM+ < MIM+ was obtained for the CCCs of h-HNT, indicating that HMIM+ was the most effective in the destabilization of the colloids. For h-HNT-IP-2 with a positive surface charge, no specific interaction was observed between the salt and the IL constituent cations and the particles, i.e., the determined charge and aggregation parameters were the same within experimental error, irrespective of the type of co-ions. These results clearly indicate the relevance of ion adsorption in the colloidal stability of the nanotubes and thus provide useful information for further design of processable h-HNT dispersions.
Collapse
Affiliation(s)
- Bojana Katana
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Dóra Takács
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Adél Szerlauth
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Szilárd Sáringer
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Gábor Varga
- Material
and Solution Structure Research Group, Department of Organic Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Andrej Jamnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Felix D. Bobbink
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul J. Dyson
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Istvan Szilagyi
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
18
|
Ding H, Hu J. Degradation of carbamazepine by UVA/WO 3/hypochlorite process: Kinetic modelling, water matrix effects, and density functional theory calculations. ENVIRONMENTAL RESEARCH 2021; 201:111569. [PMID: 34186085 DOI: 10.1016/j.envres.2021.111569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The rapid recombination of electron/hole pairs is a major setback in the application of WO3-based photocatalysis in water treatment. In this study, hypochlorite (ClO-) was used as an electron acceptor to enhance the photocatalytic degradation of carbamazepine (CBZ) using UVA-excited WO3. The results showed that CBZ degradation in the UVA/WO3/ClO- system followed a pseudo-first order reaction kinetic model. The addition of 0.1 mM ClO- to the UVA/WO3 system at pH values of 8.2 and 6.2 increased the rate constant (kobs) of the degradation process 5.3- and 11.5-fold, respectively. Further, increasing the WO3 dosage or decreasing the initial CBZ concentration resulted in an increase in kobs. However, at high concentrations, ClO- inhibited CBZ degradation. Based on the kinetic model, it could be suggested that ClO played a dominant role in the degradation process. Furthermore, the water matrix effects were as follows: the optimal pH was 6.2; humic acid, chloride, bicarbonate, and ammonium exhibited inhibitory effects on CBZ degradation; and sulfate ion significantly enhanced the degradation. Density functional theory (DFT) calculations indicated a strong affinity between ClO- and the WO3 surface. Specifically, the electrical energy per order that was associated with the use of ClO- varied in the range of 0.100-1.617 kWh/m3. In summary, this study shows that ClO- is an excellent electron acceptor for excited WO3, while clarifying the CBZ degradation-enhancing effect of ClO- as well as the kinetic model and DFT calculations. These findings can be employed in the degradation of recalcitrant contaminants in a cost-effective manner, while being significant for the development of more effective catalysts of UV-assisted advanced oxidation processes.
Collapse
Affiliation(s)
- Han Ding
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Jiangyong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
19
|
Wang D, Mueses MA, Márquez JAC, Machuca-Martínez F, Grčić I, Peralta Muniz Moreira R, Li Puma G. Engineering and modeling perspectives on photocatalytic reactors for water treatment. WATER RESEARCH 2021; 202:117421. [PMID: 34390948 DOI: 10.1016/j.watres.2021.117421] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The debate on whether photocatalysis can reach full maturity at commercial level as an effective and economical process for treatment and purification of water and wastewater has recently intensified. Despite a bloom of scientific investigations in the last 30 years, particularly with regards to innovative photocatalytic materials, photocatalysis has so far seen a few industrial applications. Regardless of the points of view, it has been realized that research on reactor design and modeling are now equally urgent to match the extensive research carried out on innovative photocatalytic materials. In reality, the development of photocatalytic reactors has advanced steadily in terms of modeling and reactor design over the last two decades, though this topic has captured a smaller specialized audience. In this critical review, we introduce the latest developments on photocatalytic reactors for water treatment from an engineering perspective. The focus is on the modeling and design of photocatalytic reactors for water treatment at pilot- or at greater scale. Photocatalytic reactors utilizing both natural sunlight and UV irradiation sources are comprehensively discussed. The most promising photoreactor designs and models are examined giving key design guidelines. Other engineering considerations, such as operation, cost analysis, patents, and several industrial applications of photocatalytic reactors for water treatment are also presented. The dissemination of key photocatalytic reactor design principles among the scientific community and the water industry is currently one of the greatest obstacles in translating PWT research into widespread real-world application.
Collapse
Affiliation(s)
- Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Miguel Angel Mueses
- Photocatalysis & Solar Photoreactors Engineering, Modeling & Application of AOPs, Chemical Engineering Program, Universidad de Cartagena, Zip code 1382-Postal 195, Cartagena, Colombia
| | - José Angel Colina Márquez
- Photocatalysis & Solar Photoreactors Engineering, Modeling & Application of AOPs, Chemical Engineering Program, Universidad de Cartagena, Zip code 1382-Postal 195, Cartagena, Colombia
| | | | - Ivana Grčić
- Faculty of Geotechnical Engineering, Department for Environmental Engineering, University of Zagreb, Hallerova aleja 7, Varaždin HR-42000, Croatia
| | - Rodrigo Peralta Muniz Moreira
- Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Gianluca Li Puma
- Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| |
Collapse
|
20
|
Phototransformation of Graphene Oxide on the Removal of Sulfamethazine in a Water Environment. NANOMATERIALS 2021; 11:nano11082134. [PMID: 34443964 PMCID: PMC8398241 DOI: 10.3390/nano11082134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/08/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
Graphene oxide (GO) is widely used in various fields and has raised concerns regarding its potential environmental fate and effect. However, there are few studies on its influence on coexisting pollutants. In this study, the phototransformation of GO and coexisting sulfamethazine (SMZ) under UV irradiation was investigated, with a focus on the role of reactive oxygen species. The results demonstrated that GO promoted the degradation of SMZ under UV irradiation. The higher the concentration of GO, the higher the degradation rate of SMZ, and the faster the first-order reaction rate. Two main radicals, ∙OH and 1O2, both contributed greatly in terms of regulating the removal of SMZ. Cl−, SO42−, and pH mainly promoted SMZ degradation by increasing the generation of ∙OH, while humic acid inhibited SMZ degradation due to the reduction of ∙OH. Moreover, after UV illumination, the GO suspension changed from light yellow to dark brown with increasing absorbance at a wavelength of 225 nm. Raman spectra revealed that the ID/IG ratio slightly decreased, indicating that some of the functional groups on the surface of GO were removed under low-intensity UV illumination. This study revealed that GO plays important roles in the photochemical transformation of environmental pollutants, which is helpful for understanding the environmental behaviors and risks of nanoparticles in aquatic environments.
Collapse
|
21
|
Kryczyk-Poprawa A, Zupkó I, Bérdi P, Żmudzki P, Piotrowska J, Pękala E, Berdys A, Muszyńska B, Opoka W. Photodegradation of Bexarotene and Its Implication for Cytotoxicity. Pharmaceutics 2021; 13:pharmaceutics13081220. [PMID: 34452181 PMCID: PMC8401567 DOI: 10.3390/pharmaceutics13081220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
A detailed understanding of the stability of an active pharmaceutical ingredient and a pharmaceutical dosage form is essential for the drug-development process and for safe and effective use of medicines. Photostability testing as an inherent part of stability studies provides valuable knowledge on degradation pathways and structures of products generated under UV irradiation. Photostability is particularly important for topically administered drugs, as they are more exposed to UV radiation. Bexarotene is a more recent third-generation retinoid approved by the U.S. Food and Drug Administration and the European Medicines Agency as a topically applied anticancer agent. The present study aimed to assess bexarotene photostability, including the presence of UV filters, which have been permitted to be used in cosmetic products in Europe and the USA. The bexarotene photostability testing was performed in ethanol solutions and in formulations applied on PMMA plates. The UPLC-MS/MS technique was used to determine the tested substance. The presence of photocatalysts such as TiO2 or ZnO, as well as the organic UV filters avobenzone, benzophenone-3, meradimate, and homosalate, could contribute to degradation of bexarotene under UV irradiation. Four photocatalytic degradation products of bexarotene were identified for the first time. The antiproliferative properties of the degradation products of bexarotene were assessed by MTT assay on a panel of human adherent cancer cells, and concentration-dependent growth inhibition was evidenced on all tested cell lines. The cytotoxicity of the formed products after 4 h of UV irradiation was significantly higher than that of the parent compound (p < 0.05). Furthermore non-cancerous murine fibroblasts exhibited marked concentration-dependent inhibition by bexarotene, while the degradation products elicited more pronounced antiproliferative action only at the highest applied concentration.
Collapse
Affiliation(s)
- Agata Kryczyk-Poprawa
- Department of Inorganic and Analytical Chemistry, Jagiellonian University Medical College, 30-688 Kraków, Poland; (J.P.); (W.O.)
- Correspondence:
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Hungary; (I.Z.); (P.B.)
- Interdisciplinary Centre for Natural Products, University of Szeged, H-6720 Szeged, Hungary
| | - Péter Bérdi
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Hungary; (I.Z.); (P.B.)
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 30-688 Kraków, Poland;
| | - Joanna Piotrowska
- Department of Inorganic and Analytical Chemistry, Jagiellonian University Medical College, 30-688 Kraków, Poland; (J.P.); (W.O.)
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, 30-688 Kraków, Poland;
| | | | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Jagiellonian University Collegium Medicum, 30-688 Kraków, Poland;
| | - Włodzimierz Opoka
- Department of Inorganic and Analytical Chemistry, Jagiellonian University Medical College, 30-688 Kraków, Poland; (J.P.); (W.O.)
| |
Collapse
|
22
|
Xie S, Tang C, Shi H, Zhao G. Highly efficient photoelectrochemical removal of atrazine and the mechanism investigation: Bias potential effect and reactive species. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125681. [PMID: 34088182 DOI: 10.1016/j.jhazmat.2021.125681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
In this work, efficient photoelectrochemical (PEC) removal of atrazine, one of the most widely used chemical herbicides in the world, was obtained by adjusting the bias potential applied on the photo-anode, and the optimal atrazine removal efficiency reached 96.8% at the potential of 0.2 V vs. SCE in 2 h with the reaction rate constant of 1.72 h-1. The results indicated at the optimal potential, the separation efficiency of photo-generated holes and electrons was the highest with the lowest electron transfer resistance. Mechanism investigation revealed that superoxide radicals, hydroxyl radicals and holes all contributed to atrazine degradation, and the bias potential on the photo-anode could influence atrazine removal efficiency by changing the generation amount and distribution of the reactive oxygen species (ROS). It was presumed the nucleophilicity of superoxide radical played an important role in atrazine dechlorination, leading to the enhanced removal efficiency. However, the bias potential did not show obvious influence on the degradation intermediates of atrazine in the PEC system compared with that in photocatalytic oxidation, since it was actually an electro-assisted photocatalytic process in the potential range investigated. The work will provide fundamental basis for establishing efficient PEC system for pollutant remediation experimentally and theoretically.
Collapse
Affiliation(s)
- Siqi Xie
- School of Chemical Science and Engineering, and Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chunjing Tang
- School of Chemical Science and Engineering, and Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Huijie Shi
- School of Chemical Science and Engineering, and Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Guohua Zhao
- School of Chemical Science and Engineering, and Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
23
|
Cai J, Wei H, Zhang Y, Cai R, Zhang X, Wang Y, Liu J, Tan HH, Xie T, Wu Y. Designed Construction of SrTiO 3 /SrSO 4 /Pt Heterojunctions with Boosted Photocatalytic H 2 Evolution Activity. Chemistry 2021; 27:7300-7306. [PMID: 33554407 DOI: 10.1002/chem.202100101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 02/02/2023]
Abstract
Efficient separation of photogenerated electron-hole pairs is a crucial factor for high-performance photocatalysts. Effective electron-hole separation and migration could be achieved by heterojunctions with suitable band structures. Herein, a porous SrTiO3 /SrSO4 heterojunction is prepared by a sol-gel method at room temperature followed by an annealing process. XRD characterization suggests high crystallinity of the heterostructure. A well-defined interface between the two phases is confirmed by high-resolution (HR)TEM. The photocatalytic H2 evolution productivity of the SrTiO3 /SrSO4 heterojunction with Pt as co-catalyst reaches 396.82 μmol g-1 h-1 , which is 16 times higher than that of SrTiO3 /Pt. The boosted photocatalytic activity of SrTiO3 /SrSO4 /Pt can be ascribed to the presence of SrSO4 , which promotes the transfer and migration of photogenerated carriers by forming the heterojunction and porous structure, which provides a large amount of active sites. This novel porous heterostructure brings new ideas for the development of high-efficiency photocatalysts for H2 release.
Collapse
Affiliation(s)
- Jingyi Cai
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei, 230009, China
| | - Haoshan Wei
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei, 230009, China
| | - Yong Zhang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei, 230009, China
| | - Rui Cai
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei, 230009, China
| | - Xueru Zhang
- Instrumental Analysis Center, Hefei University of Technology, Hefei, 230009, China
| | - Yan Wang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei, 230009, China
| | - Jiaqin Liu
- Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Hark Hoe Tan
- China International S&T Cooperation Base for Advanced Energy and Environmental Materials, Hefei, 230009, Anhui, China.,Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ting Xie
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei, 230009, China
| | - Yucheng Wu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei, 230009, China
| |
Collapse
|
24
|
Wang H, Han X, Chen Y, Guo W, Zheng W, Cai N, Guo Q, Zhao X, Wu F. Effects of F -, Cl -, Br -, NO 3-, and SO 42- on the colloidal stability of Fe 3O 4 nanoparticles in the aqueous phase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143962. [PMID: 33316533 DOI: 10.1016/j.scitotenv.2020.143962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
The effect of ions on the colloidal behavior of magnetic nanoparticles (MNPs) is an important factor for determining the dispersibility of MNPs. Compared with the effects of cations and organic matter, the effect of anions on MNPs has rarely been studied. Hence, in this study, the effect of anions on the aggregation of Fe3O4 MNPs in the aqueous phase was investigated using F-, Cl-, Br-, NO3-, and SO42-. The results indicated that the effect of anions on the colloidal behavior of the MNPs varied widely depending on their valence state, concentration, hydration ability, solution pH, and the magnetic force between the MNPs. Specifically, at pH 5.0, the anions were mainly adsorbed on the particle surface by electrostatic attraction, decreasing the electrostatic repulsion between the MNPs and causing an aggregation of the particles in the order of SO42- > F- > Br- > Cl- ≈ NO3-. At pH 9.0, anions strengthened the suspension of the MNPs at low ionic strength (IS) (≤5); however, with increasing IS, an aggregation of the MNPs in the following order was formed: NO3- > Cl- > Br- ≥ F- > SO42-. This was a result of the combined effects of the IS of solution, hydrability, and polarizability of the anions. Furthermore, the Derjaguin-Landau-Vervey-Overbeek (DLVO) theory can explain the colloidal behavior of MNPs in the presence of magnetic forces, but it fails to differentiate the MNP behaviors between monovalent anions because the effects of ionic hydrability and polarizability are not considered. Distinctively, the secondary minimum between the MNPs particles were induced via magnetic attraction and played a critical role in adjusting the colloidal stability of the MNPs. Overall, these results indicate that specific ionic effects and magnetic attraction are important for interpreting the colloidal stability of MNPs in aqueous conditions.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Xuejiao Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yao Chen
- South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Wenjing Guo
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wenli Zheng
- South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Nan Cai
- South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Qingwei Guo
- South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510530, China.
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
25
|
Ali RF, Gates BD. Elucidating the role of precursors in synthesizing single crystalline lithium niobate nanomaterials: a study of effects of lithium precursors on nanoparticle quality. NANOSCALE 2021; 13:3214-3226. [PMID: 33528486 DOI: 10.1039/d0nr08652e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A number of solution-based procedures have been realized for the synthesis of lithium niobate (LiNbO3) nanoparticles (NPs). Relatively little is, however, known about the influences of the selection of lithium (Li) precursors on the resulting dimensions, shapes, crystallinity, and purity of the products. A comparative study is provided herein on the role of different Li precursors during the synthesis of LiNbO3 NPs. To the best of our knowledge, this study provides the first systematic comparison of the effects of various Li reagents on the preparation of LiNbO3 NPs through solvothermal processes. This solution-phase approach was tuned by the inclusion of Li precursors that either lacked carbon based anions (e.g., F-, Cl-, Br-, I-, OH-, NO3-, or SO42-) or contained carbon-based anions (e.g., C2H5O-, C2H3OO-, C5H7OO-, or CO32-). All other variables were held constant during the synthesis, such as reaction temperature, solvent, niobium precursor, and surfactants. The results of these studies suggest that the type of Li precursor selected plays an important role in nanoparticle formation, such as through controlling the uniformity, crystallinity, and aggregation of LiNbO3 NPs. The average diameter of the resulting NPs can also vary from ∼30 to ∼830 nm as a function of the Li reagent used in the synthesis. The selection of Li precursors also influences the phase purity of the products. This comparative study on the preparation of crystalline LiNbO3 NPs represents a critical step forward to understand the influences and roles of precursors in the design of synthetic processes for the preparation of a variety of alkali metal niobates (e.g., including NaNbO3 and KNbO3) and crystalline metal oxide-based NPs containing other transition metals (e.g., titanium, tantalum).
Collapse
Affiliation(s)
- Rana Faryad Ali
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| | - Byron D Gates
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
26
|
Bertagna Silva D, Buttiglieri G, Babić S. State-of-the-art and current challenges for TiO 2/UV-LED photocatalytic degradation of emerging organic micropollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:103-120. [PMID: 33052564 DOI: 10.1007/s11356-020-11125-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/04/2020] [Indexed: 05/08/2023]
Abstract
The development of ultraviolet light-emitting diodes (UV-LED) opens new possibilities for water treatment and photoreactor design. TiO2 photocatalysis, a technology that has been continuously drawing attention, can potentially benefit from LEDs to become a sustainable alternative for the abatement of organic micropollutants (OMPs). Recently reported data on photocatalytic degradation of OMPs and their parameters of influence are here critically evaluated. The literature on OMP degradation in real water matrices, and at environmentally relevant concentrations, is largely missing, as well as the investigations of the impact of photoreactor design in pollutant degradation kinetics. The key factors for reducing UV-LED treatment technology costs are pointed out, like the increase in external quantum and wall-plug efficiencies of UV-LEDs compared to other technologies, as well as the need for an appropriate design optimizing light homogeneity in the reactor. Controlled periodic illumination, wavelength coupling and H2O2 addition are presented as efficiency enhancement options. Although electrical energy per order (EEO) values for UV-LED photocatalysis have decreased to the range of traditional mercury lamps, values are still not low enough for practical employment. Moreover, due to the adoption of high initial OMP concentration in most experiments, it is likely that most literature EEO values are overestimated. Given the process characteristics, which are favoured by translucent matrices and small diameters for more homogenous light distribution and better transportation of radicals, innovative reactor designs should explore the potential of point-of-use applications to increase photocatalysis applicability at large scale.
Collapse
Affiliation(s)
- Danilo Bertagna Silva
- Faculty of Chemical Engineering, University of Zagreb, Trg Marka Marulića 19, 10000, Zagreb, Croatia
| | - Gianluigi Buttiglieri
- Catalan Institute of Water Research (ICRA), C. Emili Grahit 101, 17003, Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Sandra Babić
- Faculty of Chemical Engineering, University of Zagreb, Trg Marka Marulića 19, 10000, Zagreb, Croatia.
| |
Collapse
|
27
|
Ong GMC, Gallegos A, Wu J. Modeling Surface Charge Regulation of Colloidal Particles in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11918-11928. [PMID: 32921060 DOI: 10.1021/acs.langmuir.0c02000] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colloidal particles are mostly charged in an aqueous solution because of the protonation or deprotonation of ionizable groups on the surface. The surface charge density reflects a complex interplay of ion distributions within the electric double layer and the surface reaction equilibrium. In this work, we present a coarse-grained model to describe the charge regulation of various colloidal systems by an explicit consideration of the inhomogeneous ion distributions and surface reactions. With the primitive model for aqueous solutions and equilibrium constants for surface reactions as the inputs, the theoretical model is able to make quantitative predictions of the surface-charge densities and zeta potentials for diverse colloidal particles over a wide range of pH and ionic conditions. By accounting for the ionic size effects and electrostatic correlations, our model is applicable to systems with multivalent ions that exhibit charge inversion and provides a faithful description of the interfacial properties without evoking the empirical Stern capacitance or specific ion adsorptions.
Collapse
Affiliation(s)
- Gary M C Ong
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Alejandro Gallegos
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
28
|
Sallem F, Villatte L, Geffroy PM, Goglio G, Pagnoux C. Surface modification of titania nanoparticles by catechol derivative molecules: Preparation of concentrated suspensions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Dutta Purkayastha M, Datta J, Ray PP, Singh N, Darbha GK, Denrah S, Sarkar M, Pal Majumder T, Ghosh D. Modelling the photocatalytic behaviour of p-n nickel-titanium oxide nanocomposite. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.06.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Synthesis and characterizations of ZnMn2O4-ZnO nanocomposite photocatalyst for enlarged photocatalytic oxidation of ciprofloxacin using visible light irradiation. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01359-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
31
|
Mrotek E, Dudziak S, Malinowska I, Pelczarski D, Ryżyńska Z, Zielińska-Jurek A. Improved degradation of etodolac in the presence of core-shell ZnFe 2O 4/SiO 2/TiO 2 magnetic photocatalyst. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138167. [PMID: 32251886 DOI: 10.1016/j.scitotenv.2020.138167] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/06/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
In the present study, susceptibility to photocatalytic degradation of etodolac, 1,8-diethyl-1,3,4,9 - tetrahydro pyran - [3,4-b] indole-1-acetic acid, which is a non-steroidal anti-inflammatory drug frequently detected in an aqueous environment, was for the first time investigated. The obtained p-type TiO2-based photocatalyst coupled with zinc ferrite nanoparticles in a core-shell structure improves the separation and recovery of nanosized TiO2 photocatalyst. The characterization of ZnFe2O4/SiO2/TiO2, including XRD, XPS, TEM, BET, DR/UV-Vis, impedance spectroscopy and photocatalytic analysis, showed that magnetic photocatalyst containing anatase phase revealed markedly improved etodolac decomposition and mineralization measured as TOC removal compared to photolysis reaction. The effect of irradiation and pH range on photocatalytic decomposition of etodolac was studied. The most efficient degradation of etodolac was observed under simulated solar light for a core-shell ZnFe2O4/SiO2/TiO2 magnetic photocatalyst at pH above 4 (pKa = 4.7) and below 7. The irradiation of etodolac solution in a broader light range revealed a synergetic effect on its photodegradation performance. After only 20 min of degradation, about 100% of etodolac was degraded. Based on the photocatalytic analysis in the presence of scavengers and HPLC analysis, the transformation intermediates and possible photodegradation pathways of etodolac were studied. It was found that ∙O2- attack on C2-C3 bond inside pyrrole ring results mostly in the hydroxylation of the molecule, which next undergoes -CH2COOH detachment to give 1,9-diethyl-3,4-dihydro-pyrano[3,4-b]indol-4a-ol. The obtained compound should further undergo subsequent hydropyran and pyrrole ring breaking to give a family of benzene derivatives.
Collapse
Affiliation(s)
- Eryka Mrotek
- Department of Process Engineering and Chemical Technology, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Szymon Dudziak
- Department of Process Engineering and Chemical Technology, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Izabela Malinowska
- Department of Process Engineering and Chemical Technology, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Daniel Pelczarski
- Department of Physics of Electronic Phenomena, Gdansk University of Technology, Poland
| | - Zuzanna Ryżyńska
- Department of Solid State Physics, Gdansk University of Technology, Poland
| | - Anna Zielińska-Jurek
- Department of Process Engineering and Chemical Technology, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
32
|
Shenoy S, Tarafder K. Enhanced photocatalytic efficiency of layered CdS/CdSe heterostructures: Insights from first principles electronic structure calculations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:275501. [PMID: 32109888 DOI: 10.1088/1361-648x/ab7b1c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal sulfides are emerging as an important class of materials for photocatalytic applications, because of their high photo responsive nature in the wide visible light range. In this class of materials, CdS with a direct band gap of 2.4 eV, has gained special attention due to the relative position of its conduction band minimum, which is very close to the energies of the reduced protons. However, the photogenerated holes in the valence band of CdS are prone to oxidation and destroy its structure during photocatalysis. Thus constructing a CdS based heterostructure would be an effective strategy for improving the photocatalytic performance. In this work we have done a detail theoretical investigation based on hybrid density functional theory calculation to get insight into the energy band structure, mobility and charge transfer across the CdS/CdSe heterojunction. The results indicate that CdS/CdSe forms type-II heterostructure that has several advantages in improving the photocatalytic efficiency under visible light irradiation.
Collapse
Affiliation(s)
- Sulakshana Shenoy
- Department of Physics, National Institute of Technology, Srinivasnagar, Surathkal, Mangalore Karnataka-575025, India
| | | |
Collapse
|
33
|
Sun W, Wu H, Jin C, Han P, Liu M, Wei H, Sun C. The effect of different inorganic anions on mineralization of acrylic acid in wet air oxidation. CHEMOSPHERE 2020; 244:125463. [PMID: 31816543 DOI: 10.1016/j.chemosphere.2019.125463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/28/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Wet Air Oxidation (WAO) process is being developed as a very promising technique for efficient removal of high-concentration organic pollutants. However, because of the technical constraints, many chemical wastewater contain inorganic anions (e.g., Cl-, SO42-, PO43- and NO3-). These inorganic salts can cause equipment corrosion and also affect WAO reactivity. But very limited studies of the effect of inorganic anions on WAO in chemical wastewater have been performed. Here we for the first time intensively investigate the effect of different inorganic anions on kinetics and pathways of WAO reaction, acrylic acid was selected as substrate. We used a nonlinear least-squares curve fitting method using Matlab 2014® to obtain the kinetic model. Importantly, it was demonstrated that this proposed kinetic model represented the experimental data well, and acetic acid was the only residual short-chain carboxylic acid. Moreover, the higher concentration anions the higher selectivity of WAO of CO2 by acrylic acid. And the selectivity order of WAO to acetic acid is PO43- > NO3- > Cl- > SO42- at low concentration (100 mmol L-1). Finally, the theory calculation disclosed the feasibility of the reactions between these anions and acrylic acid, calculation results revealed that atoms 1#, 7# and 8# have the strongest chargeability and are more vulnerable to oxidant attack because of their high charge density. And the Total Organic Carbon (TOC) removal was positively correlated with the electronegativity of the central atom of oxidizing acid.
Collapse
Affiliation(s)
- Wenjing Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Huiling Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chengyu Jin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Peiwei Han
- Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China
| | - Mengyang Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Chenglin Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
34
|
Martín-Gómez A, Navío J, Jaramillo-Páez C, Sánchez-Cid P, Hidalgo M. Hybrid ZnO/Ag3PO4 photocatalysts, with low and high phosphate molar percentages. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Wang Z, Feng P, Chen H, Yu Q. Photocatalytic performance and dispersion stability of nanodispersed TiO 2 hydrosol in electrolyte solutions with different cations. J Environ Sci (China) 2020; 88:59-71. [PMID: 31862080 DOI: 10.1016/j.jes.2019.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The existence of electrolytes in aquatic environment on the photocatalytic performance and coagulation of nanodispersed TiO2 hydrosol and the corresponding photocatalytic alteration were investigated by studying cations (Na+, K+, Ca 2+, Mg2+, and Al3+). The photocatalysis reactions of nano TiO2 with different dosages of electrolytes were measured by monitoring the degradation of Rhodamine B (RhB) under ultraviolet A (UV-A) irradiation over time. The results showed that the photocatalytic performance of TiO2 was improved by the presence of Al3+, while the performance was impaired by the other tested cations. The negative influences of divalent ions on the photocatalytic performance of TiO2 were more significant than monovalent ions. The TiO2 sol dispersed stable at nano scale at low concentration of electrolyte (<0.01 mol/L) with slight change of pH, and coagulated into micro sizes at high concentration of electrolytes (>0.1 mol/L) with larger increase or decrease of pH. The positive effects of Al3+ on the photodegradation rate of RhB might relate to the strong hydrolytic action of Al3+ in aquatic solutions. The photocatalytic processes of TiO2 in the presence of all ions followed the Langmuir-Hinshelwood model, and the reaction kinetic constant was increased with the decrease of pH caused by different cations. These work suggested a new perspective about the relationship between coagulation and photocatalytic performance of TiO2 hydrosols in electrolyte with hydrolysable cations, which demonstrated that TiO2 hydrosols may be suitable as photocatalysts in aquatic environments.
Collapse
Affiliation(s)
- Zixiao Wang
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; Department of the Built Environment, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Pan Feng
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; State Key Laboratory of High Performance Civil Engineering Materials, Nanjing 210008, China.
| | - Heng Chen
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Qingliang Yu
- Department of the Built Environment, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands; School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
36
|
Tang C, Huang X, Wang H, Shi H, Zhao G. Mechanism investigation on the enhanced photocatalytic oxidation of nonylphenol on hydrophobic TiO 2 nanotubes. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121017. [PMID: 31446350 DOI: 10.1016/j.jhazmat.2019.121017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Enhanced and selective photocatalytic oxidation of nonylphenol (NP), a typical hydrophobic endocrine disrupting chemicals (EDCs), was realized on hydrophobic titanium dioxide nanotubes (H-TiO2NTs), which was fabricated by an electrochemical anodization method, followed by grafting of perfluorooctyl groups. The water contact angle of catalyst surface changed from 21.1° to 128.4° after hydrophobic modification. H-TiO2NTs showed excellent photocatalytic oxidation performance for NP, that it was completely converted in 40 min under irradiation, which was improved for about 17% compared with the hydrophilic TiO2NTs. The enhanced photocatalytic performance of H-TiO2NTs was attributed to the stronger adsorption ability toward NP identified by ATR-FTIR, with an initial adsorption rate of 4 times as higher as that of bare TiO2NTs. Meanwhile, the hydrophobic surface of H-TiO2NTs was beneficial for generation of more hydroxyl radicals. The apparent rate constant of hydroxyl radicals' generation on H-TiO2NTs, which was the main oxidizing species, could reach 1.83 times that of the hydrophilic TiO2NTs. Both the two factors contributed to the successful competition of NP against the coexistent hydrophilic contaminates in the adsorption and oxidation on the catalyst surface, leading to the selective removal of NP in mixed systems finally.
Collapse
Affiliation(s)
- Chunjing Tang
- School of Chemical Science and Engineering, and Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xuerong Huang
- School of Chemical Science and Engineering, and Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Haoying Wang
- School of Chemical Science and Engineering, and Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Huijie Shi
- School of Chemical Science and Engineering, and Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Guohua Zhao
- School of Chemical Science and Engineering, and Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
37
|
Zhao J, Liu S, Zhang X, Xu Y. Different effects of fluoride and phosphate anions on TiO 2 photocatalysis (rutile). Catal Sci Technol 2020. [DOI: 10.1039/d0cy01111h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
At the same amounts adsorbed on Pt/rutile, fluoride was approximately 3 times more active than phosphate. A radical mechanism is proposed.
Collapse
Affiliation(s)
- Jianjun Zhao
- State Key Laboratory of Silicon Materials and Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Shengwei Liu
- State Key Laboratory of Silicon Materials and Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiao Zhang
- State Key Laboratory of Silicon Materials and Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Yiming Xu
- State Key Laboratory of Silicon Materials and Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
38
|
Evaluation of the Photocatalytic Activity of a Cordierite-Honeycomb-Supported TiO 2 Film with a Liquid-Solid Photoreactor. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24244499. [PMID: 31818013 PMCID: PMC6943636 DOI: 10.3390/molecules24244499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 11/16/2022]
Abstract
Anatase nanoparticles in suspension have demonstrated high photoactivity that can be exploited for pollutant removal in water phases. The main drawback of this system is the difficulty of recovering (and eventually reusing) the nanoparticles after their use, and the possible interference of inorganic salts (e.g., sulfates) that can reduce the performance of the photocatalyst. The present work describes the development of a cordierite-honeycomb-supported TiO2 film to eliminate the problems of catalyst recovery. The catalyst was then tested against phenol in the presence of increasing concentrations of sulfates in a specially developed recirculating modular photoreactor, able to accommodate the supported catalyst and scalable for application at industrial level. The effect of SO42- was evaluated at different concentrations, showing a slight deactivation only at very high sulfate concentration (≥3 g L-1). Lastly, in the framework of the EU project Project Ô, the catalyst was tested in the treatment of real wastewater from a textile company containing a relevant concentration of sulfates, highlighting the stability of the photocatalyst.
Collapse
|
39
|
Soltani RDC, Mashayekhi M, Naderi M, Boczkaj G, Jorfi S, Safari M. Sonocatalytic degradation of tetracycline antibiotic using zinc oxide nanostructures loaded on nano-cellulose from waste straw as nanosonocatalyst. ULTRASONICS SONOCHEMISTRY 2019; 55:117-124. [PMID: 31084785 DOI: 10.1016/j.ultsonch.2019.03.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/24/2019] [Accepted: 03/09/2019] [Indexed: 05/12/2023]
Abstract
The aim of the present investigation was the combination of ZnO nanostructures with nano-cellulose (NC) for the efficient degradation of tetracycline (TC) antibiotic under ultrasonic irradiation. The removal efficiency of 12.8% was obtained by the sole use of ultrasound (US), while the removal efficiency increased up to 70% by the US/ZnO treatment process. Due to the integration of ZnO nanostructures with NC, the removal efficiency of 87.6% was obtained within 45 min. The removal efficiency substantially decreased in the presence of tert-butyl alcohol (more than 25% reduction), indicating that radOH-mediation oxidation is responsible for the degradation of TC molecules. Peroxymonosulfate (PMS) led to the most enhancing effect on the removal of TC among percarbonate, persulfate and periodate ions. The addition of PMS caused the degradation efficiency of 96.4% within the short contact time of 15 min. The bio-toxicity examination on the basis of inhibition test conducted on activated sludge revealed diminishing the oxygen consumption inhibition percent [IOUR (%)] from 33.6 to 22.1% during the US/ZnO/NC process. Consequently, the utilization of the US/ZnO/NC process can convert TC molecules to less toxic compounds. However, longer reaction time is required for complete conversion into non-toxic substances.
Collapse
Affiliation(s)
| | - Masumeh Mashayekhi
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Masumeh Naderi
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland
| | - Sahand Jorfi
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Safari
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
40
|
Effects of water matrix components on degradation efficiency and pathways of antibiotic metronidazole by UV/TiO2 photocatalysis. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.155] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Liang B, Zhang W, Zhang Y. Facile Fabrication of SnO/Nano-graphite Composite Microspheres with Excellent Visible Photocatalytic Performance. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-018-0959-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Xu F. Review of analytical studies on TiO 2 nanoparticles and particle aggregation, coagulation, flocculation, sedimentation, stabilization. CHEMOSPHERE 2018; 212:662-677. [PMID: 30173113 DOI: 10.1016/j.chemosphere.2018.08.108] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in industrial and consumer products. Comprehensive and accurate detection, characterization, and quantification of TiO2 NPs are important for understanding the specific property, behavior, fate, and potential risk of TiO2 NPs in natural and engineered environments. This review provides a summary of recent analytical studies of TiO2 NPs and their aggregation, coagulation, flocculation, sedimentation, stabilization under a wide range of conditions and processes. Much attention is paid on sample preparation prior to an analytical procedure, analysis of particle size, morphology, structure, state, chemical composition, surface properties, etc., via measurements of light scattering and zeta potential, microscopy, spectroscopy, and related techniques. Recently, some advanced techniques have also been explored to characterize TiO2 NPs and their behaviors in the environment. Many issues must be considered including distinction between engineered TiO2 NPs and their naturally occurring counterparts, lack of reference materials, interlaboratory comparison, when analyzing low concentrations of TiO2 NPs and their behaviors in complex matrices. No "ideal" technique has emerged as each technique has its own merits, biases, and limitations. Multi-method approach is highlighted to provide in-depth information. Improvements of analytical method for determination of TiO2 NPs have been recommended to be together with exposure modelers and ecotoxicologists for maximum individual and mutual benefit. Future work should focus on developing analytical technology with the advantages of being reliable, sensitive, selective, reproducible, and capable of in situ detection in complicated sample system.
Collapse
Affiliation(s)
- Fang Xu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, North Carolina, 27599-7431, USA.
| |
Collapse
|
43
|
Sieland F, Duong NAT, Schneider J, Bahnemann DW. Influence of inorganic additives on the photocatalytic removal of nitric oxide and on the charge carrier dynamics of TiO2 powders. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.01.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Nasr M, Eid C, Habchi R, Miele P, Bechelany M. Recent Progress on Titanium Dioxide Nanomaterials for Photocatalytic Applications. CHEMSUSCHEM 2018; 11:3023-3047. [PMID: 29984904 DOI: 10.1002/cssc.201800874] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Environmental and energy problems have drawn much attention owing to rapid population growth and accelerated economic development. For instance, photocatalysis, "a green technology", plays an important role in solar-energy conversion owing to its potential to solve energy and environmental problems. Recently, many efforts have been devoted to improving visible-light photocatalytic activity by using titanium dioxide as a photocatalyst as a result of its wide range of applications in the energy and environment fields. However, fast charge recombination and an absorption edge in the UV range limit the photocatalytic efficiency of TiO2 under visible-light irradiation. Many investigations have been undertaken to overcome the limitations of TiO2 and, therefore, to enhance its photocatalytic activity under visible light. The present literature review focuses on different strategies used to promote the separation efficiency of electron-hole pairs and to shift the absorption edge of TiO2 to the visible region. Current synthesis techniques used to elaborate several nanostructures of TiO2 -based materials, recent progress in enhancing visible photocatalytic activity, and different photocatalysis applications will be discussed. On the basis of the studies reported in the literature, we believe that this review will help in the development of new strategies to improve the visible-light photocatalytic performance of TiO2 -based materials further.
Collapse
Affiliation(s)
- Maryline Nasr
- Institut Européen des Membranes IEM, UMR-5635, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, F-, 34095, Montpellier Cedex 5, France
- EC2M, Faculty of Sciences 2, campus Pierre Gemayel, Fanar, Lebanese University, 90656, Lebanon
| | - Cynthia Eid
- EC2M, Faculty of Sciences 2, campus Pierre Gemayel, Fanar, Lebanese University, 90656, Lebanon
| | - Roland Habchi
- EC2M, Faculty of Sciences 2, campus Pierre Gemayel, Fanar, Lebanese University, 90656, Lebanon
| | - Philippe Miele
- Institut Européen des Membranes IEM, UMR-5635, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, F-, 34095, Montpellier Cedex 5, France
- Institut Universitaire de France (IUF), MESRI, 1 rue Descartes, 75231, Paris cedex 05, France
| | - Mikhael Bechelany
- Institut Européen des Membranes IEM, UMR-5635, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, F-, 34095, Montpellier Cedex 5, France
| |
Collapse
|
45
|
Effect of Ionic Compounds of Different Valences on the Stability of Titanium Oxide Colloids. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2030032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Titanium oxide particles of various morphologies have been prepared for applications of scientific or industrial interest in recent decades. Besides development of novel synthetic routes and solid-state characterization of the obtained particles, colloidal stability of titanium oxide dispersions was the focus of numerous research groups due to the high importance of this topic in applications in heterogeneous systems. The influence of dissolved ionic compounds, including monovalent salts, multivalent ions and polyelectrolytes, on the charging and aggregation behaviour of titanium oxide materials of spherical and elongated structures will be discussed in the present review.
Collapse
|
46
|
Degabriel T, Colaço E, Domingos RF, El Kirat K, Brouri D, Casale S, Landoulsi J, Spadavecchia J. Factors impacting the aggregation/agglomeration and photocatalytic activity of highly crystalline spheroid- and rod-shaped TiO 2 nanoparticles in aqueous solutions. Phys Chem Chem Phys 2018; 20:12898-12907. [PMID: 29700516 DOI: 10.1039/c7cp08054a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We investigate the characteristics, fate and photocatalytic activity of spheroid- and rod-shaped TiO2 nano-crystals in aqueous solutions to better understand their behaviour in media of biological and environmental interest. For this purpose, the potential of a solvothermal method in synthesizing highly crystalline nanoparticles and tuning their sizes/shapes is explored. Spheroid- and rod-shaped nanoparticles are successfully obtained with different aspect ratios, while keeping their structures as well as their cross-sectional areas identical. The aggregation/agglomeration of these nanostructures in aqueous solutions shows an obvious shape effect, revealing critical coagulation concentrations (CCCs) significantly lower for the rods compared to the spheroids (aspect ratio ∼ 2-3). This trend is observed in both NaCl and CaCl2 electrolytes at pH values above and below the pHPZC of TiO2 nanoparticles. The photocatalytic activity of the spheroids is unexpectedly superior to that of the rods at NaCl and CaCl2 concentrations over a range of 2 to 100 and 1 to 50 mM, respectively. Our results show that an increase in the chloride concentration leads to an inhibition of the photocatalytic activity rate, with a more pronounced impact for the rods. In contrast, the size of aggregates/agglomerates has only a little effect on the photocatalytic properties of both nano-crystals.
Collapse
Affiliation(s)
- Thomas Degabriel
- Sorbonne Université, CNRS - UMR 7197, Laboratoire de Réactivité de Surface (LRS) F-75005, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Atitar MF, Bouziani A, Dillert R, El Azzouzi M, Bahnemann DW. Photocatalytic degradation of the herbicide imazapyr: do the initial degradation rates correlate with the adsorption kinetics and isotherms? Catal Sci Technol 2018. [DOI: 10.1039/c7cy01903c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Langmuir–Hinshelwood mechanism applies to the photocatalytic degradation of imazapyr only when assuming the occurence of light-induced changes of the photocatalyst surface affecting the adsorption of the probe molecule.
Collapse
Affiliation(s)
- M. Faycal Atitar
- Institut für Technische Chemie
- Leibniz Universität Hannover
- D-30167 Hannover
- Germany
| | - Asmae Bouziani
- University Mohammed V-Agdal
- Faculty of Science
- BP 1014 Rabat
- Morocco
| | - Ralf Dillert
- Institut für Technische Chemie
- Leibniz Universität Hannover
- D-30167 Hannover
- Germany
- Laboratorium für Nano- und Quantenengineering
| | | | - Detlef W. Bahnemann
- Institut für Technische Chemie
- Leibniz Universität Hannover
- D-30167 Hannover
- Germany
- Laboratory of Photoactive Nanocomposite Materials
| |
Collapse
|
48
|
The pH dependent surface charging and points of zero charge. VII. Update. Adv Colloid Interface Sci 2018; 251:115-138. [PMID: 29153243 DOI: 10.1016/j.cis.2017.10.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023]
Abstract
The pristine points of zero charge (PZC) and isoelectric points (IEP) of metal oxides and IEP of other materials from the recent literature, and a few older results (overlooked in previous searches) are summarized. This study is an update of the previous compilations by the same author [Surface Charging and Points of Zero Charge, CRC, Boca Raton, 2009; J. Colloid Interface Sci. 337 (2009) 439; 353 (2011) 1; 426 (2014) 209]. The field has been very active, but most PZC and IEP are reported for materials, which are very well-documented already (silica, alumina, titania, iron oxides). IEP of (nominally) Gd2O3, NaTaO3, and SrTiO3 have been reported in the recent literature. Their IEP were not reported in older studies.
Collapse
|
49
|
Rouster P, Pavlovic M, Szilagyi I. Destabilization of Titania Nanosheet Suspensions by Inorganic Salts: Hofmeister Series and Schulze-Hardy Rule. J Phys Chem B 2017; 121:6749-6758. [DOI: 10.1021/acs.jpcb.7b04286] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Paul Rouster
- Department of Inorganic and
Analytical Chemistry, University of Geneva, CH-1205 Geneva, Switzerland
| | - Marko Pavlovic
- Department of Inorganic and
Analytical Chemistry, University of Geneva, CH-1205 Geneva, Switzerland
| | - Istvan Szilagyi
- Department of Inorganic and
Analytical Chemistry, University of Geneva, CH-1205 Geneva, Switzerland
| |
Collapse
|