1
|
Singh R, Singh R, Srihari V, Makde RD. In Vitro Investigation Unveiling New Insights into the Antimalarial Mechanism of Chloroquine: Role in Perturbing Nucleation Events during Heme to β-Hematin Transformation. ACS Infect Dis 2023; 9:1647-1657. [PMID: 37471056 DOI: 10.1021/acsinfecdis.3c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Malaria parasites generate toxic heme during hemoglobin digestion, which is neutralized by crystallizing into inert hemozoin (β-hematin). Chloroquine blocks this detoxification process, resulting in heme-mediated toxicity in malaria parasites. However, the exact mechanism of chloroquine's action remains unknown. This study investigates the impact of chloroquine on the transformation of heme into β-hematin. The results show that chloroquine does not completely halt the transformation process but rather slows it down. Additionally, chloroquine complexation with free heme does not affect substrate availability or inhibit β-hematin formation. Scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) studies indicate that the size of β-hematin crystal particles and crystallites increases in the presence of chloroquine, suggesting that chloroquine does not impede crystal growth. These findings suggest that chloroquine delays hemozoin production by perturbing the nucleation events of crystals and/or the stability of crystal nuclei. Thus, contrary to prevailing beliefs, this study provides a new perspective on the working mechanism of chloroquine.
Collapse
Affiliation(s)
- Rahul Singh
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400085, India
| | - Rashmi Singh
- Laser & Functional Materials Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
| | - Velaga Srihari
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 40008, Maharashtra, India
| | - Ravindra D Makde
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400085, India
| |
Collapse
|
2
|
Singh R, Makde RD. An assay procedure to investigate the transformation of toxic heme into inert hemozoin via plasmodial heme detoxification protein. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140832. [PMID: 35934300 DOI: 10.1016/j.bbapap.2022.140832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Most antimalarial therapeutics, including chloroquine and artemisinin, induce free heme-mediated toxicity in Plasmodium. This cytotoxic heme is produced as a by-product during the large-scale digestion of host hemoglobin. Conversion of this host-derived heme into inert crystalline hemozoin is the only defense mechanism in Plasmodium against heme-induced cytotoxicity. Heme detoxification protein (HDP), a highly conserved plasmodial protein, is reported to be the most efficient biological mediator for heme to hemozoin transformation. Despite its significance, HDP has never been extensively studied for heme transformation into hemozoin. Therefore, we wish to develop a method to study the HDP-mediated transformation of heme into hemozoin. We have adopted, modified, and optimized the pyridine hemochrome assay to study HDP catalysis and use substrate and time kinetics to study the HDP-mediated transformation of heme into hemozoin. In contrast to the previously reported assay for HDP, we found that the new assay is more precise, accurate, and handy, making it more suitable for kinetic studies. HDP-mediated transformation of heme into hemozoin is not a single-step process, and involves a transient intermediate, most likely a cyclic heme dimer. The kinetics and the manner of HDP-mediated hemozoin production are dependent on the substrate concentration, and a small fraction of substrate remains untransformed to hemozoin irrespective of reaction time. Combining HDP as a catalyst and the pyridine hemochrome assay will facilitate the efficient screening of future antimalarials.
Collapse
Affiliation(s)
- Rahul Singh
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Ravindra D Makde
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
3
|
Olivier T, Loots L, Kok M, de Villiers M, Reader J, Birkholtz LM, Arnott GE, de Villiers KA. Adsorption to the Surface of Hemozoin Crystals: Structure-Based Design and Synthesis of Amino-Phenoxazine β-Hematin Inhibitors. ChemMedChem 2022; 17:e202200139. [PMID: 35385211 PMCID: PMC9119941 DOI: 10.1002/cmdc.202200139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/05/2022] [Indexed: 11/07/2022]
Abstract
In silico adsorption of eight antimalarials that inhibit β-hematin (synthetic hemozoin) formation identified a primary binding site on the (001) face, which accommodates inhibitors via formation of predominantly π-π interactions. A good correlation (r2 =0.64, P=0.017) between adsorption energies and the logarithm of β-hematin inhibitory activity was found for this face. Of 53 monocyclic, bicyclic and tricyclic scaffolds, the latter yielded the most favorable adsorption energies. Five new amino-phenoxazine compounds were pursued as β-hematin inhibitors based on adsorption behaviour. The 2-substituted phenoxazines show good to moderate β-hematin inhibitory activity (<100 μM) and Plasmodium falciparum blood stage activity against the 3D7 strain. N1 ,N1 -diethyl-N4 -(10H-phenoxazin-2-yl)pentane-1,4-diamine (P2a) is the most promising hit with IC50 values of 4.7±0.6 and 0.64±0.05 μM, respectively. Adsorption energies are predictive of β-hematin inhibitory activity, and thus the in silico approach is a beneficial tool for structure-based development of new non-quinoline inhibitors.
Collapse
Affiliation(s)
- Tania Olivier
- Department of Chemistry and Polymer Science, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Leigh Loots
- Department of Chemistry and Polymer Science, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Michélle Kok
- Department of Biochemistry, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Marianne de Villiers
- Department of Biochemistry, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, 0028, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, 0028, South Africa
| | - Gareth E Arnott
- Department of Chemistry and Polymer Science, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| | - Katherine A de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private BagX1, Matieland, 7602, South Africa
| |
Collapse
|
4
|
de Villiers KA, Egan TJ. Heme Detoxification in the Malaria Parasite: A Target for Antimalarial Drug Development. Acc Chem Res 2021; 54:2649-2659. [PMID: 33982570 DOI: 10.1021/acs.accounts.1c00154] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Over the last century, malaria deaths have decreased by more than 85%. Nonetheless, there were 405 000 deaths in 2018, mostly resulting from Plasmodium falciparum infection. In the 21st century, much of the advance has arisen from the deployment of insecticide-treated bed nets and artemisinin combination therapy. However, over the past few decades parasites with a delayed artemisinin clearance phenotype have appeared in Southeast Asia, threatening further gains. The effort to find new drugs is thus urgent. A prominent process in blood stage malaria parasites, which we contend remains a viable drug target, is hemozoin formation. This crystalline material consisting of heme can be readily seen when parasites are viewed microscopically. The process of its formation in the parasite, however, is still not fully understood.In early work, we recognized hemozoin formation as a biomineralization process. We have subsequently investigated the kinetics of synthetic hemozoin (β-hematin) crystallization catalyzed at lipid-aqueous interfaces under biomimetic conditions. This led us to the use of neutral detergent-based high-throughput screening (HTS) for inhibitors of β-hematin formation. A good hit rate against malaria parasites was obtained. Simultaneously, we developed a pyridine-based assay which proved successful in measuring the concentrations of hematin not converted to β-hematin.The pyridine assay was adapted to determine the effects of chloroquine and other clinical antimalarials on hemozoin formation in the cell. This permitted the determination of the dose-dependent amounts of exchangeable heme and hemozoin in P. falciparum for the first time. These studies have shown that hemozoin inhibitors cause a dose-dependent increase in exchangeable heme, correlated with decreased parasite survival. Electron spectroscopic imaging (ESI) showed a relocation of heme iron into the parasite cytoplasm, while electron microscopy provided evidence of the disruption of hemozoin crystals. This cellular assay was subsequently extended to top-ranked hits from a wide range of scaffolds found by HTS. Intriguingly, the amounts of exchangeable heme at the parasite growth IC50 values of these scaffolds showed substantial variation. The amount of exchangeable heme was found to be correlated with the amount of inhibitor accumulated in the parasitized red blood cell. This suggests that heme-inhibitor complexes, rather than free heme, lead to parasite death. This was supported by ESI using a Br-containing compound which showed the colocalization of Fe and Br as well as by confocal Raman microscopy which confirmed the presence of a complex in the parasite. Current evidence indicates that inhibitors block hemozoin formation by surface adsorption. Indeed, we have successfully introduced molecular docking with hemozoin to find new inhibitors. It follows that the resulting increase in free heme leads to the formation of the parasiticidal heme-inhibitor complex. We have reported crystal structures of heme-drug complexes for several aryl methanol antimalarials in nonaqueous media. These form coordination complexes but most other inhibitors interact noncovalently, and the determination of their structures remains a major challenge.It is our view that key future developments will include improved assays to measure cellular heme levels, better in silico approaches for predicting β-hematin inhibition, and a concerted effort to determine the structure and properties of heme-inhibitor complexes.
Collapse
Affiliation(s)
- Katherine A. de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag, Matieland 7600, South Africa
| | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7945, South Africa
| |
Collapse
|
5
|
Veale CGL, Jayram J, Naidoo S, Laming D, Swart T, Olivier T, Akerman MP, de Villiers KA, Hoppe HC, Jeena V. Insights into structural and physicochemical properties required for β-hematin inhibition of privileged triarylimidazoles. RSC Med Chem 2019; 11:85-91. [PMID: 33479606 DOI: 10.1039/c9md00468h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, we investigated a series of triarylimidazoles, in an effort to elucidate critical SAR information pertaining to their anti-plasmodial and β-hematin inhibitory activity. Our results showed that in addition to the positional effects of ring substitution, subtle changes to lipophilicity and imidazole ionisability were important factors in SAR interpretation. Finally, in silico adsorption analysis indicated that these compounds exert their effect by inhibiting β-hematin crystal growth at the fast growing 001 face.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics , Pietermaritzburg Campus , University of KwaZulu-Natal , Private Bag X01 , Scottsville , 3209 , South Africa
| | - Janeeka Jayram
- School of Chemistry and Physics , Pietermaritzburg Campus , University of KwaZulu-Natal , Private Bag X01 , Scottsville , 3209 , South Africa
| | - Shivani Naidoo
- School of Chemistry and Physics , Pietermaritzburg Campus , University of KwaZulu-Natal , Private Bag X01 , Scottsville , 3209 , South Africa
| | - Dustin Laming
- Department of Biochemistry and Microbiology , Rhodes University , Grahamstown , 6140 , South Africa
| | - Tarryn Swart
- Department of Biochemistry and Microbiology , Rhodes University , Grahamstown , 6140 , South Africa
| | - Tania Olivier
- Department of Chemistry and Polymer Science , Stellenbosch University , Private Bag X1 , Matieland , 7602 , South Africa . ;
| | - Matthew P Akerman
- School of Chemistry and Physics , Pietermaritzburg Campus , University of KwaZulu-Natal , Private Bag X01 , Scottsville , 3209 , South Africa
| | - Katherine A de Villiers
- Department of Chemistry and Polymer Science , Stellenbosch University , Private Bag X1 , Matieland , 7602 , South Africa . ;
| | - Heinrich C Hoppe
- Department of Biochemistry and Microbiology , Rhodes University , Grahamstown , 6140 , South Africa
| | - Vineet Jeena
- School of Chemistry and Physics , Pietermaritzburg Campus , University of KwaZulu-Natal , Private Bag X01 , Scottsville , 3209 , South Africa
| |
Collapse
|
6
|
Herraiz T, Guillén H, González-Peña D, Arán VJ. Antimalarial Quinoline Drugs Inhibit β-Hematin and Increase Free Hemin Catalyzing Peroxidative Reactions and Inhibition of Cysteine Proteases. Sci Rep 2019; 9:15398. [PMID: 31659177 PMCID: PMC6817881 DOI: 10.1038/s41598-019-51604-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/03/2019] [Indexed: 01/06/2023] Open
Abstract
Malaria caused by Plasmodium affects millions people worldwide. Plasmodium consumes hemoglobin during its intraerythrocytic stage leaving toxic heme. Parasite detoxifies free heme through formation of hemozoin (β-hematin) pigment. Proteolysis of hemoglobin and formation of hemozoin are two main targets for antimalarial drugs. Quinoline antimarial drugs and analogs (β-carbolines or nitroindazoles) were studied as inhibitors of β-hematin formation. The most potent inhibitors were quinacrine, chloroquine, and amodiaquine followed by quinidine, mefloquine and quinine whereas 8-hydroxyquinoline and β-carbolines had no effect. Compounds that inhibited β-hematin increased free hemin that promoted peroxidative reactions as determined with TMB and ABTS substrates. Hemin-catalyzed peroxidative reactions were potentiated in presence of proteins (i.e. globin or BSA) while antioxidants and peroxidase inhibitors decreased peroxidation. Free hemin increased by chloroquine action promoted oxidative reactions resulting in inhibition of proteolysis by three cysteine proteases: papain, ficin and cathepsin B. Glutathione reversed inhibition of proteolysis. These results show that active quinolines inhibit hemozoin and increase free hemin which in presence of H2O2 that abounds in parasite digestive vacuole catalyzes peroxidative reactions and inhibition of cysteine proteases. This work suggests a link between the action of quinoline drugs with biochemical processes of peroxidation and inhibition of proteolysis.
Collapse
Affiliation(s)
- Tomás Herraiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN). Spanish National Research Council (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| | - Hugo Guillén
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN). Spanish National Research Council (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Diana González-Peña
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN). Spanish National Research Council (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Vicente J Arán
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| |
Collapse
|
7
|
Mode of action of quinoline antimalarial drugs in red blood cells infected by Plasmodium falciparum revealed in vivo. Proc Natl Acad Sci U S A 2019; 116:22946-22952. [PMID: 31659055 PMCID: PMC6859308 DOI: 10.1073/pnas.1910123116] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The most widely used antimalarial drugs belong to the quinoline family. The question of their mode of action has been open for centuries. It has been recently narrowed down to whether these drugs interfere with the process of crystallization of heme in the malaria parasite. To date, all studies of the drug action on heme crystals have been done either on model systems or on dried parasites, which yielded limited data and ambiguity. This study was done in actual parasites in their near-native environment, revealing the mode of action of these drugs in vivo. The approach adopted in this study can be extended to other families of antimalarial drugs, such as artemisinins, provided appropriate derivatives can be synthesized. The most widely used antimalarial drugs belong to the quinoline family. Their mode of action has not been characterized at the molecular level in vivo. We report the in vivo mode of action of a bromo analog of the drug chloroquine in rapidly frozen Plasmodium falciparum-infected red blood cells. The Plasmodium parasite digests hemoglobin, liberating the heme as a byproduct, toxic to the parasite. It is detoxified by crystallization into inert hemozoin within the parasitic digestive vacuole. By mapping such infected red blood cells with nondestructive X-ray microscopy, we observe that bromoquine caps hemozoin crystals. The measured crystal surface coverage is sufficient to inhibit further hemozoin crystal growth, thereby sabotaging heme detoxification. Moreover, we find that bromoquine accumulates in the digestive vacuole, reaching submillimolar concentration, 1,000-fold more than that of the drug in the culture medium. Such a dramatic increase in bromoquine concentration enhances the drug’s efficiency in depriving heme from docking onto the hemozoin crystal surface. Based on direct observation of bromoquine distribution in the digestive vacuole and at its membrane surface, we deduce that the excess bromoquine forms a complex with the remaining heme deprived from crystallization. This complex is driven toward the digestive vacuole membrane, increasing the chances of membrane puncture and spillage of heme into the interior of the parasite.
Collapse
|
8
|
Zhu X, Hu CT, Yang J, Joyce LA, Qiu M, Ward MD, Kahr B. Manipulating Solid Forms of Contact Insecticides for Infectious Disease Prevention. J Am Chem Soc 2019; 141:16858-16864. [PMID: 31601104 DOI: 10.1021/jacs.9b08125] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Malaria control is under threat by the development of vector resistance to pyrethroids in long-lasting insecticidal nets, which has prompted calls for a return to the notorious crystalline contact insecticide DDT. A faster acting difluoro congener, DFDT, was developed in Germany during World War II, but in 1945 Allied inspectors dismissed its superior performance and reduced toxicity to mammals. It vanished from public health considerations. Herein, we report the discovery of amorphous and crystalline forms of DFDT and a mono-fluorinated chiral congener, MFDT. These solid forms were evaluated against Drosophila as well as Anopheles and Aedes mosquitoes, the former identified as disease vectors for malaria and the latter for Zika, yellow fever, dengue, and chikungunya. Contact insecticides are transmitted to the insect when its feet contact the solid surface of the insecticide, resulting in absorption of the active agent. Crystalline DFDT and MFDT were much faster killers than DDT, and their amorphous forms were even faster. The speed of action (a.k.a. knockdown time), which is critical to mitigating vector resistance, depends inversely on the thermodynamic stability of the solid form. Furthermore, one enantiomer of the chiral MFDT exhibits faster knockdown speeds than the other, demonstrating chiral discrimination during the uptake of the insecticide or when binding at the sodium channel, the presumed destination of the neurotoxin. These observations demonstrate an unambiguous link between thermodynamic stability and knockdown time for important disease vectors, suggesting that manipulation of the solid-state chemistry of contact insecticides, demonstrated here for DFDT and MFDT, is a viable strategy for mitigating insect-borne diseases, with an accompanying benefit of reducing environmental impact.
Collapse
Affiliation(s)
- Xiaolong Zhu
- Department of Chemistry and Molecular Design Institute , New York University , 100 Washington Square East , New York , New York 10003 United States
| | - Chunhua T Hu
- Department of Chemistry and Molecular Design Institute , New York University , 100 Washington Square East , New York , New York 10003 United States
| | - Jingxiang Yang
- Department of Chemistry and Molecular Design Institute , New York University , 100 Washington Square East , New York , New York 10003 United States
| | - Leo A Joyce
- Department of Process Research & Development , Merck & Co, Inc. , Rahway , New Jersey 07065 , United States
| | - Mengdi Qiu
- Department of Chemistry and Molecular Design Institute , New York University , 100 Washington Square East , New York , New York 10003 United States
| | - Michael D Ward
- Department of Chemistry and Molecular Design Institute , New York University , 100 Washington Square East , New York , New York 10003 United States
| | - Bart Kahr
- Department of Chemistry and Molecular Design Institute , New York University , 100 Washington Square East , New York , New York 10003 United States
| |
Collapse
|
9
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
10
|
Delpe Acharige AMDS, Brennan MPC, Lauder K, McMahon F, Odebunmi AO, Durrant MC. Computational insights into the inhibition of β-haematin crystallization by antimalarial drugs. Dalton Trans 2018; 47:15364-15381. [PMID: 30298161 DOI: 10.1039/c8dt03369b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During the red blood cell phase of their life cycle, malaria parasites digest their host's haemoglobin, with concomitant release of potentially toxic iron(iii) protoporphyrin IX (FePPIX). The parasites' strategy for detoxification of FePPIX involves its crystallization to haemozoin, such that the build-up of free haem in solution is avoided. Antimalarial drugs of both historical importance and current clinical use are known to be capable of disrupting the growth of crystals of β-haematin, which is the synthetic equivalent of haemozoin. Hence, the disruption of haemozoin crystal growth is implicated as a possible mode of action of such drugs. However, the details of β-haematin crystal poisoning at the molecular level have yet to be fully elucidated. In this study, we have used a combination of density functional theory (DFT) and molecular modelling to examine the possible modes of action of ten different antimalarial drugs, including quinine-type aliphatic alcohols, amodiaquine-type phenols, and chloroquine-type aliphatic diamines. The DFT calculations indicate that each of the drugs can form at least one molecular complex with FePPIX. These complexes have 1 : 1 or 2 : 1 FePPIX : drug stoichiometries and all of them incorporate Fe-O bonds, formed either by direct coordination of a zwitterionic form of the drug, or by deprotonation of water. Most of the drugs can form more than one such complex. We have used the DFT model structures to explore the possible formation of a monolayer of each drug-haem complex on four of the β-haematin crystal faces. In all cases, the drug complexes can form a monolayer on the fast-growing {001} and {011} faces, but not on the slower growing {010} and {100} faces. Additional modelling of the chloroquine and quinidine complexes shows that individual molecules of these species can also obstruct the growth of new layers on other crystal faces. The implications of these observations for antimalarial drug development are discussed.
Collapse
Affiliation(s)
- Anjana M D S Delpe Acharige
- Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle-upon-Tyne NE2 8ST, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Rifaie-Graham O, Hua X, Bruns N, Balog S. The Kinetics of β-Hematin Crystallization Measured by Depolarized Light Scattering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802295. [PMID: 30176111 DOI: 10.1002/smll.201802295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/05/2018] [Indexed: 06/08/2023]
Abstract
Malaria is caused by Plasmodium sp. parasites transmitted by infected female Anopheles sp. mosquitoes. The survival of the parasites in the host relies on detoxifying free heme by biocrystallization into insoluble crystals called hemozoin. This mechanism of self-preservation is targeted by a certain class of antimalarial drugs, which are screened and selected based on their capacity to inhibit the formation of hemozoin crystals. Therefore, experimental techniques capable of accurately characterizing the kinetics of crystal formation are valuable. Relying on the optical anisotropy of hemozoin, the kinetics of β-hematin crystal formation through the statistical analysis of photon counts of dynamic depolarized light scattering (DDLS), in the absence and presence of an antimalarial drug (chloroquine, CQ), is described. It is found that CQ has an impact on both the nucleation and growth of the crystals.
Collapse
Affiliation(s)
- Omar Rifaie-Graham
- Adolphe Merkle Institute, University of Fribourg, Chemin des, Verdiers 4,1700, Fribourg, Switzerland
| | - Xiao Hua
- Adolphe Merkle Institute, University of Fribourg, Chemin des, Verdiers 4,1700, Fribourg, Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des, Verdiers 4,1700, Fribourg, Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, Chemin des, Verdiers 4,1700, Fribourg, Switzerland
| |
Collapse
|
12
|
Mechanisms of resistance to the partner drugs of artemisinin in the malaria parasite. Curr Opin Pharmacol 2018; 42:71-80. [PMID: 30142480 DOI: 10.1016/j.coph.2018.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/19/2018] [Accepted: 07/26/2018] [Indexed: 01/24/2023]
Abstract
The deployment of artemisinin-based combination therapies (ACTs) has been, and continues to be, integral to reducing the number of malaria cases and deaths. However, their efficacy is being increasingly jeopardized by the emergence and spread of parasites that are resistant (or partially resistant) to the artemisinin derivatives and to their partner drugs, with the efficacy of the latter being especially crucial for treatment success. A detailed understanding of the genetic determinants of resistance to the ACT partner drugs, and the mechanisms by which they mediate resistance, is required for the surveillance of molecular markers and to optimize the efficacy and lifespan of the partner drugs through resistance management strategies. We summarize new insights into the molecular basis of parasite resistance to the ACTs, such as recently-uncovered determinants of parasite susceptibility to the artemisinin derivatives, piperaquine, lumefantrine, and mefloquine, and outline the mechanisms through which polymorphisms in these determinants may be conferring resistance.
Collapse
|