1
|
Adebowale K, Liao R, Suja VC, Kapate N, Lu A, Gao Y, Mitragotri S. Materials for Cell Surface Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210059. [PMID: 36809574 DOI: 10.1002/adma.202210059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Cell therapies are emerging as a promising new therapeutic modality in medicine, generating effective treatments for previously incurable diseases. Clinical success of cell therapies has energized the field of cellular engineering, spurring further exploration of novel approaches to improve their therapeutic performance. Engineering of cell surfaces using natural and synthetic materials has emerged as a valuable tool in this endeavor. This review summarizes recent advances in the development of technologies for decorating cell surfaces with various materials including nanoparticles, microparticles, and polymeric coatings, focusing on the ways in which surface decorations enhance carrier cells and therapeutic effects. Key benefits of surface-modified cells include protecting the carrier cell, reducing particle clearance, enhancing cell trafficking, masking cell-surface antigens, modulating inflammatory phenotype of carrier cells, and delivering therapeutic agents to target tissues. While most of these technologies are still in the proof-of-concept stage, the promising therapeutic efficacy of these constructs from in vitro and in vivo preclinical studies has laid a strong foundation for eventual clinical translation. Cell surface engineering with materials can imbue a diverse range of advantages for cell therapy, creating opportunities for innovative functionalities, for improved therapeutic efficacy, and transforming the fundamental and translational landscape of cell therapies.
Collapse
Affiliation(s)
- Kolade Adebowale
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Rick Liao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Vineeth Chandran Suja
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrew Lu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| |
Collapse
|
2
|
|
3
|
Jiao C, Zhao C, Ma Y, Yang W. A Versatile Strategy to Coat Individual Cell with Fully/Partially Covered Shell for Preparation of Self-Propelling Living Cells. ACS NANO 2021; 15:15920-15929. [PMID: 34591443 DOI: 10.1021/acsnano.1c03896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Coating living cells with a functional shell has been regarded as an effective way to protect them against environmental stress, regulate their biological behaviors, or extend their functionalities. Here, we reported a facile method to prepare fully or partially coated shells on an individual yeast cell surface by visible light-induced graft polymerization. In this strategy, yeast cells that were surface-absorbed with polyethylenimine (PEI) were deposited on the negatively charged glass slide to form a single layer by electrostatic interaction. Then, surface-initiated graft polymerization of poly(ethylene glycol) diacrylate (PEGDA) on yeast cells under visible light irradiation was carried out to generate cross-linked shells on the cells. The process of surface modification had negligible influence on the viability of yeast cells due to the mild reaction condition. Additionally, compared to the native yeast cells, a 17.5 h of delay in division was observed when the graft polymerization was performed under 15 mW/cm2 irradiation for 30 min. Introducing artificial shell endowed yeast cells with significant resistance against lyticase, and the protection can be enhanced by increasing the thickness of shell. Moreover, the partially coated yeast cells would be prepared by simply adjusting the reaction condition such as irradiation density and time. By immobilizing urease on the functional patch, the asymmetrically modified yeast cells exhibited self-propelling capability, and the speed of directional movement reached 4 μm/s in the presence of 200 mM urea. This tunable coating individual cell strategy with varying functionality has great potential applications in fields of cell-based drug delivery, cell therapy, biocatalysis, and tissue engineering.
Collapse
Affiliation(s)
- Chong Jiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education Beijing, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuhong Ma
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education Beijing, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
4
|
Davis KA, Goh JZ, Sebastian AH, Ahern BM, Trinkle CA, Satin J, Abdel-Latif A, Berron BJ. Increased Retention of Cardiac Cells to a Glass Substrate through Streptavidin-Biotin Affinity. ACS OMEGA 2021; 6:17523-17530. [PMID: 34278138 PMCID: PMC8280672 DOI: 10.1021/acsomega.1c02003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
In vitro analysis of primary isolated adult cardiomyocyte physiological processes often involves optical imaging of dye-loaded cells on a glass substrate. However, when exposed to rapid solution changes, primary cardiomyocytes often move to compromise quantitative measures. Improved immobilization of cells to glass would permit higher throughput assays. Here, we engineer the peripheral membrane of cardiomyocytes with biotin to anchor cardiomyocytes to borosilicate glass coverslips functionalized with streptavidin. We use a rat cardiac myoblast cell line to determine general relationships between processing conditions, ligand density on the cell and the glass substrate, cellular function, and cell retention under shear flow. Use of the streptavidin-biotin system allows for more than 80% retention of cardiac myoblasts under conventional rinsing procedures, while unmodified cells are largely rinsed away. The adhesion system enables the in-field retention of cardiac cells during rapid fluid changes using traditional pipetting or a modern microfluidic system at a flow rate of 160 mL/min. Under fluid flow, the surface-engineered primary adult cardiomyocytes are retained in the field of view of the microscope, while unmodified cells are rinsed away. Importantly, the engineered cardiomyocytes are functional following adhesion to the glass substrate, where contractions are readily observed. When applying this adhesion system to cardiomyocyte functional analysis, we measure calcium release transients by caffeine induction at an 80% success rate compared to 20% without surface engineering.
Collapse
Affiliation(s)
- Kara A. Davis
- Department
of Chemical and Materials Engineering, University
of Kentucky, Lexington, Kentucky 40506, United States
| | - Jensen Z. Goh
- Department
of Physiology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Andrea H. Sebastian
- Department
of Physiology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Brooke M. Ahern
- Department
of Physiology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Christine A. Trinkle
- Department
of Mechanical Engineering, University of
Kentucky, Lexington, Kentucky 40506, United States
| | - Jonathan Satin
- Department
of Physiology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Ahmed Abdel-Latif
- Gill
Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical
Center, Lexington, Kentucky 40506, United
States
| | - Brad J. Berron
- Department
of Chemical and Materials Engineering, University
of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
5
|
Davis K, Peng H, Chelvarajan L, Abdel-Latif A, Berron BJ. Increased yield of gelatin coated therapeutic cells through cholesterol insertion. J Biomed Mater Res A 2021; 109:326-335. [PMID: 32491263 PMCID: PMC7710926 DOI: 10.1002/jbm.a.37025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 12/21/2022]
Abstract
Gelatin coatings are effective in increasing the retention of MSCs injected into the heart and minimizing the damage from acute myocardial infarction (AMI), but early studies suffered from low fractions of the MSCs coated with gelatin. Biotinylation of the MSC surface is a critical first step in the gelatin coating process, and in this study, we evaluated the use of biotinylated cholesterol "lipid insertion" anchors as a substitute for the covalent NHS-biotin anchors to the cell surface. Streptavidin-eosin molecules, where eosin is our photoinitiator, can then be bound to the cell surface through biotin-streptavidin affinity. The use of cholesterol anchors increased streptavidin density on the surface of MSCs further driving polymerization and allowing for an increased fraction of MSCs coated with gelatin (83%) when compared to NHS-biotin (52%). Additionally, the cholesterol anchors increased the uniformity of the coating on the MSC surface and supported greater numbers of coated MSCs even when the streptavidin density was slightly lower than that of an NHS-biotin anchoring strategy. Critically, this improvement in gelatin coating efficiency did not impact cytokine secretion and other critical MSC functions. Proper selection of the cholesterol anchor and the biotinylation conditions supports cellular function and densities of streptavidin on the MSC surface of up to ~105 streptavidin molecules/μm2 . In all, these cholesterol anchors offer an effective path towards the formation of conformal coatings on the majority of MSCs to improve the retention of MSCs in the heart following AMI.
Collapse
Affiliation(s)
- Kara Davis
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Hsuan Peng
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington KY, USA
| | - Lakshman Chelvarajan
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington KY, USA
| | - Ahmed Abdel-Latif
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington KY, USA
| | - Brad J. Berron
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
6
|
Peng H, Chelvarajan L, Donahue R, Gottipati A, Cahall CF, Davis KA, Tripathi H, Al-Darraji A, Elsawalhy E, Dobrozsi N, Srinivasan A, Levitan BM, Kong R, Gao E, Abdel-Latif A, Berron BJ. Polymer Cell Surface Coating Enhances Mesenchymal Stem Cell Retention and Cardiac Protection. ACS APPLIED BIO MATERIALS 2021; 4:1655-1667. [PMID: 35014513 DOI: 10.1021/acsabm.0c01473] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mesenchymal stem cell (MSC) therapy has been widely tested in clinical trials to promote healing post-myocardial infarction. However, low cell retention and the need for a large donor cell number in human studies remain a key challenge for clinical translation. Natural biomaterials such as gelatin are ideally suited as scaffolds to deliver and enhance cell engraftment after transplantation. A potential drawback of MSC encapsulation in the hydrogel is that the bulky matrix may limit their biological function and interaction with the surrounding tissue microenvironment that conveys important injury signals. To overcome this limitation, we adopted a gelatin methacrylate (gelMA) cell-coating technique that photocross-links gelatin on the individual cell surface at the nanoscale. The present study investigated the cardiac protection of gelMA coated, hypoxia preconditioned MSCs (gelMA-MSCs) in a murine myocardial infarction (MI) model. We demonstrate that the direct injection of gelMA-MSC results in significantly higher myocardial engraftment 7 days after MI compared to uncoated MSCs. GelMA-MSC further amplified MSC benefits resulting in enhanced cardioprotection as measured by cardiac function, scar size, and angiogenesis. Improved MSC cardiac retention also led to a greater cardiac immunomodulatory function after injury. Taken together, this study demonstrated the efficacy of gelMA-MSCs in treating cardiac injury with a promising potential to reduce the need for donor MSCs through enhanced myocardial engraftment.
Collapse
Affiliation(s)
- Hsuan Peng
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, Kentucky 40508, United States
| | - Lakshman Chelvarajan
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, Kentucky 40508, United States
| | - Renee Donahue
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, Kentucky 40508, United States
| | - Anuhya Gottipati
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Calvin F Cahall
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Kara A Davis
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Himi Tripathi
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, Kentucky 40508, United States
| | - Ahmed Al-Darraji
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, Kentucky 40508, United States
| | - Eman Elsawalhy
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, Kentucky 40508, United States
| | - Nicholas Dobrozsi
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, Kentucky 40508, United States
| | - Amrita Srinivasan
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, Kentucky 40508, United States
| | - Bryana M Levitan
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, Kentucky 40508, United States.,Department of Physiology, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Raymond Kong
- MilliporeSigma, Seattle, Washington 98119, United States
| | - Erhe Gao
- The Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Ahmed Abdel-Latif
- Gill Heart and Vascular Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, Kentucky 40508, United States
| | - Brad J Berron
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
7
|
Wu PJ, Peng H, Li C, Abdel-Latif A, Berron BJ. Adhesive stem cell coatings for enhanced retention in the heart tissue. ACS APPLIED BIO MATERIALS 2020; 3:2930-2939. [PMID: 33225239 DOI: 10.1021/acsabm.9b01198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Injection into the heart tissue is a direct route for optimally placing mesenchymal stem cells (MSC) to regulate local inflammation following a heart attack. The retention of MSCs at the injection site is severely limited by the fluid flows that rapidly wash cells away and minimize their capacity to modulate cardiac inflammation. To prevent this loss of MSCs and their function, antibody coatings were designed for the surface of MSCs to enhance their adhesion to the inflamed tissue. MSCs were biotinylated, and biotinylated antibodies against intercellular cell adhesion molecules were conjugated to the cell surface through an intermediate layer of streptavidin. MSC surfaces were modified with ~7,000 biotin/μm2 and ~23 antibodies/μm2. The heart tissue injection of antibody-coated MSCs offered a 3-fold increase of cell retention in an infarcted heart over the injection of uncoated MSCs. We supported the mechanism of adhesion through analysis of MSC adhesion to inflamed endothelial cells and also surfaces of purified adhesion molecules on glass under microfluidic shear flow.
Collapse
Affiliation(s)
- Pei-Jung Wu
- Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| | - Hsuan Peng
- College of medicine, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| | - Cong Li
- Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| | - Ahmed Abdel-Latif
- College of medicine, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| | - Brad J Berron
- Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, United States
| |
Collapse
|
8
|
Cahall CF, Kaur AP, Davis KA, Pham JT, Shin HY, Berron BJ. Cell Death Persists in Rapid Extrusion of Lysis-Resistant Coated Cardiac Myoblasts. ACTA ACUST UNITED AC 2019; 18. [PMID: 32864483 DOI: 10.1016/j.bprint.2019.e00072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
As the demand for organ transplants continues to grow faster than the supply of available donor organs, a new source of functional organs is needed. High resolution high throughput 3D bioprinting is one approach towards generating functional organs for transplantation. For high throughput printing, the need for increased print resolutions (by decreasing printing nozzle diameter) has a consequence: it increases the forces that cause cell damage during the printing process. Here, a novel cell encapsulation method provides mechanical protection from complete lysis of individual living cells during extrusion-based bioprinting. Cells coated in polymers possessing the mechanical properties finely-tuned to maintain size and shape following extrusion, and these encapsulated cells are protected from mechanical lysis. However, the shear forces imposed on the cells during extrusion still cause sufficient damage to compromise the cell membrane integrity and adversely impact normal cellular function. Cellular damage occurred during the extrusion process independent of the rapid depressurization.
Collapse
Affiliation(s)
- Calvin F Cahall
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Aman Preet Kaur
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Kara A Davis
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Jonathan T Pham
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Hainsworth Y Shin
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA
| | - Brad J Berron
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
9
|
Proctor CM, Chan CY, Porcarelli L, Udabe E, Sanchez-Sanchez A, del Agua I, Mecerreyes D, Malliaras GG. Ionic Hydrogel for Accelerated Dopamine Delivery via Retrodialysis. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:7080-7084. [PMID: 32063677 PMCID: PMC7011752 DOI: 10.1021/acs.chemmater.9b02135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/26/2019] [Indexed: 05/26/2023]
Abstract
Local drug delivery directly to the source of a given pathology using retrodialysis is a promising approach to treating otherwise untreatable diseases. As the primary material component in retrodialysis, the semipermeable membrane represents a critical point for innovation. This work presents a new ionic hydrogel based on polyethylene glycol and acrylate with dopamine counterions. The ionic hydrogel membrane is shown to be a promising material for controlled diffusive delivery of dopamine. The ionic nature of the membrane accelerates uptake of cationic species compared to a nonionic membrane of otherwise similar composition. It is demonstrated that the increased uptake of cations can be exploited to confer an accelerated transport of cationic species between reservoirs as is desired in retrodialysis applications. This effect is shown to enable nearly 10-fold increases in drug delivery rates from low concentration solutions. The processability of the membrane is found to allow for integration with microfabricated devices which will in turn accelerate adaptation into both existing and emerging device modalities. It is anticipated that a similar materials design approach may be broadly applied to a variety of cationic and anionic compounds for drug delivery applications ranging from neurological disorders to cancer.
Collapse
Affiliation(s)
- Christopher M. Proctor
- Electrical Engineering
Division, Department of Engineering, University
of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Chung Yuen Chan
- Electrical Engineering
Division, Department of Engineering, University
of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Luca Porcarelli
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Esther Udabe
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Ana Sanchez-Sanchez
- Electrical Engineering
Division, Department of Engineering, University
of Cambridge, Cambridge CB3 0FA, United Kingdom
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Isabel del Agua
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - George G. Malliaras
- Electrical Engineering
Division, Department of Engineering, University
of Cambridge, Cambridge CB3 0FA, United Kingdom
| |
Collapse
|
10
|
Deller RC, Richardson T, Richardson R, Bevan L, Zampetakis I, Scarpa F, Perriman AW. Artificial cell membrane binding thrombin constructs drive in situ fibrin hydrogel formation. Nat Commun 2019; 10:1887. [PMID: 31015421 PMCID: PMC6478844 DOI: 10.1038/s41467-019-09763-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Cell membrane re-engineering is emerging as a powerful tool for the development of next generation cell therapies, as it allows the user to augment therapeutic cells to provide additional functionalities, such as homing, adhesion or hypoxia resistance. To date, however, there are few examples where the plasma membrane is re-engineered to display active enzymes that promote extracellular matrix protein assembly. Here, we report on a self-contained matrix-forming system where the membrane of human mesenchymal stem cells is modified to display a novel thrombin construct, giving rise to spontaneous fibrin hydrogel nucleation and growth at near human plasma concentrations of fibrinogen. The cell membrane modification process is realised through the synthesis of a membrane-binding supercationic thrombin-polymer surfactant complex. Significantly, the resulting robust cellular fibrin hydrogel constructs can be differentiated down osteogenic and adipogenic lineages, giving rise to self-supporting monoliths that exhibit Young's moduli that reflect their respective extracellular matrix compositions.
Collapse
Affiliation(s)
- Robert C Deller
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- School of Engineering, University of Liverpool, Liverpool, L69 3GH, UK
| | - Thomas Richardson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, BS8 1FD, UK
| | - Rebecca Richardson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Laura Bevan
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Ioannis Zampetakis
- Bristol Composites Institute (ACCIS), University of Bristol, Bristol, BS8 1TR, UK
| | - Fabrizio Scarpa
- Bristol Composites Institute (ACCIS), University of Bristol, Bristol, BS8 1TR, UK
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
11
|
Davis KA, Wu PJ, Cahall CF, Li C, Gottipati A, Berron BJ. Coatings on mammalian cells: interfacing cells with their environment. J Biol Eng 2019; 13:5. [PMID: 30675178 PMCID: PMC6337841 DOI: 10.1186/s13036-018-0131-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022] Open
Abstract
The research community is intent on harnessing increasingly complex biological building blocks. At present, cells represent a highly functional component for integration into higher order systems. In this review, we discuss the current application space for cellular coating technologies and emphasize the relationship between the target application and coating design. We also discuss how the cell and the coating interact in common analytical techniques, and where caution must be exercised in the interpretation of results. Finally, we look ahead at emerging application areas that are ideal for innovation in cellular coatings. In all, cellular coatings leverage the machinery unique to specific cell types, and the opportunities derived from these hybrid assemblies have yet to be fully realized.
Collapse
Affiliation(s)
- Kara A. Davis
- Chemical and Materials Engineering, University of Kentucky, 177 FPAT, Lexington, KY 40506-0046 USA
| | - Pei-Jung Wu
- Chemical and Materials Engineering, University of Kentucky, 177 FPAT, Lexington, KY 40506-0046 USA
| | - Calvin F. Cahall
- Chemical and Materials Engineering, University of Kentucky, 177 FPAT, Lexington, KY 40506-0046 USA
| | - Cong Li
- Chemical and Materials Engineering, University of Kentucky, 177 FPAT, Lexington, KY 40506-0046 USA
| | - Anuhya Gottipati
- Chemical and Materials Engineering, University of Kentucky, 177 FPAT, Lexington, KY 40506-0046 USA
| | - Brad J. Berron
- Chemical and Materials Engineering, University of Kentucky, 177 FPAT, Lexington, KY 40506-0046 USA
| |
Collapse
|
12
|
Garcia Garcia C, Kiick KL. Methods for producing microstructured hydrogels for targeted applications in biology. Acta Biomater 2019; 84:34-48. [PMID: 30465923 PMCID: PMC6326863 DOI: 10.1016/j.actbio.2018.11.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
Abstract
Hydrogels have been broadly studied for applications in clinically motivated fields such as tissue regeneration, drug delivery, and wound healing, as well as in a wide variety of consumer and industry uses. While the control of mechanical properties and network structures are important in all of these applications, for regenerative medicine applications in particular, matching the chemical, topographical and mechanical properties for the target use/tissue is critical. There have been multiple alternatives developed for fabricating materials with microstructures with goals of controlling the spatial location, phenotypic evolution, and signaling of cells. The commonly employed polymers such as poly(ethylene glycol) (PEG), polypeptides, and polysaccharides (as well as others) can be processed by various methods in order to control material heterogeneity and microscale structures. We review here the more commonly used polymers, chemistries, and methods for generating microstructures in biomaterials, highlighting the range of possible morphologies that can be produced, and the limitations of each method. With a focus in liquid-liquid phase separation, methods and chemistries well suited for stabilizing the interface and arresting the phase separation are covered. As the microstructures can affect cell behavior, examples of such effects are reviewed as well. STATEMENT OF SIGNIFICANCE: Heterogeneous hydrogels with enhanced matrix complexity have been studied for a variety of biomimetic materials. A range of materials based on poly(ethylene glycol), polypeptides, proteins, and/or polysaccharides, have been employed in the studies of materials that by virtue of their microstructure, can control the behaviors of cells. Methods including microfluidics, photolithography, gelation in the presence of porogens, and liquid-liquid phase separation, are presented as possible strategies for producing materials, and their relative advantages and disadvantages are discussed. We also describe in more detail the various processes involved in LLPS, and how they can be manipulated to alter the kinetics of phase separation and to yield different microstructured materials.
Collapse
Affiliation(s)
- Cristobal Garcia Garcia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering, University of Delaware, Newark, DE 19176, USA; Delaware Biotechnology Institute, Newark, DE 19716, USA
| |
Collapse
|