1
|
Hettiarachchi E, Grassian VH. Impact of Surface Adsorption on DNA Structure and Stability: Implications for Environmental DNA Interactions with Iron Oxide Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27194-27205. [PMID: 39699067 DOI: 10.1021/acs.langmuir.4c02501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Environmental DNA (eDNA), i.e., DNA found in the environment, can interact with various geochemical surfaces, yet little is known about these interactions. Mineral surfaces may alter the structure, stability, and reactivity of eDNA, impacting the cycling of genetic information and the reliability of eDNA-based detection tools. Understanding how eDNA interacts with surfaces is crucial for predicting its fate in the environment. In this study, we examined the surface interaction and stability of herring testes DNA, a model system for eDNA, on two common iron oxide phases present in the environment: α-FeOOH (goethite) and α-Fe2O3 (hematite). Utilizing spectroscopic probes, including attenuated total reflection Fourier-transform infrared (ATR-FTIR) and UV-vis spectroscopy, we quantified the DNA adsorption capacity at pH 5 and determined its secondary structure. DNA adsorbed irreversibly at pH 5 and 25 °C, primarily through its phosphate groups, and retained the solution-phase B-form structure. However, the infrared data also indicated some distortion of the B-form likely due to additional interactions between nitrogenous bases when adsorbed on the α-Fe2O3 particle surfaces. The distortion in the double helical structure of adsorbed DNA on α-Fe2O3 led to a lower melting temperature (Tm) of 60 °C compared to 70 °C for DNA in solution. In contrast, DNA adsorbed on α-FeOOH melted at higher temperatures relative to solution-phase DNA and in two distinct phases. Upon testing adsorbed DNA stability at higher pH values, there were distinct differences between the two iron oxide phases. For α-FeOOH, nearly 50% of the DNA desorbed from the surface when the solution pH changed from 5 to 8, while less than 5% desorbed from α-Fe2O3 under the same conditions. Overall, these findings underscore the importance of mineral-specific eDNA-surface interactions and their role in adsorbed eDNA stability, in terms of DNA melting and the impact of solution-phase pH changes.
Collapse
Affiliation(s)
- Eshani Hettiarachchi
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Zarrabian M, Sherif SM. Silence is not always golden: A closer look at potential environmental and ecotoxicological impacts of large-scale dsRNA application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175311. [PMID: 39122031 DOI: 10.1016/j.scitotenv.2024.175311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
RNA interference (RNAi) technology has emerged as a pivotal strategy in sustainable pest management, offering a targeted approach that significantly mitigates the environmental and health risks associated with traditional insecticides. Originally implemented through genetically modified organisms (GMOs) to produce specific RNAi constructs, the technology has evolved in response to public and regulatory concerns over GMOs. This evolution has spurred the development of non-transgenic RNAi applications such as spray-induced gene silencing (SIGS), which employs double-stranded RNA (dsRNA) to silence pest genes directly without altering the plant's genetic makeup. Despite its advantages in specificity and reduced ecological footprint, SIGS faces significant obstacles, particularly the instability of dsRNA in field conditions, which limits its practical efficacy. To overcome these limitations, innovative delivery mechanisms have been developed. These include nanotechnology-based systems, minicells, and nanovesicles, which are designed to protect dsRNA from degradation and enhance its delivery to target organisms. While these advancements have improved the stability and application efficiency of dsRNA, comprehensive assessments of their environmental safety and the potential for increased exposure risks to non-target organisms remain incomplete. This comprehensive review aims to elucidate the environmental fate of dsRNA and evaluate the potential risks associated with its widespread application on non-target organisms, encompassing soil microorganisms, beneficial insects, host plants, and mammals. The objective is to establish a more refined framework for RNAi risk assessment within environmental and ecotoxicological contexts, thereby fostering the development of safer, non-transgenic RNAi-based pest control strategies.
Collapse
Affiliation(s)
- Mohammad Zarrabian
- Virginia Tech, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research, and Extension Center, Winchester, VA 22602, United States
| | - Sherif M Sherif
- Virginia Tech, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research, and Extension Center, Winchester, VA 22602, United States.
| |
Collapse
|
3
|
Skalny M, Rokowska A, Szuwarzynski M, Gajewska M, Dziewit L, Bajda T. Nanoscale surface defects of goethite governing DNA adsorption process and formation of the Goethite-DNA conjugates. CHEMOSPHERE 2024; 362:142602. [PMID: 38871190 DOI: 10.1016/j.chemosphere.2024.142602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
In urbanized areas, extracellular DNA (exDNA) is suspected of carrying genes with undesirable traits like virulence genes (VGs) or antibiotic resistance genes (ARGs), which can spread through horizontal gene transfer (HGT). Hence, it is crucial to develop novel approaches for the mitigation of exDNA in the environment. Our research explores the role of goethite, a common iron mineral with high adsorption capabilities, in exDNA adsorption processes. We compare well-crystalline, semi-crystalline, and nano goethites with varying particle sizes to achieve various specific surface areas (SSAs) (18.7-161.6 m2/g) and porosities. We conducted batch adsorption experiments using DNA molecules of varying chain lengths (DNA sizes: <11 Kb, <6 Kb, and <3 Kb) and assessed the impact of Ca2+ and biomacromolecules on the adsorption efficacy and mechanisms. Results show that porosity and pore structure significantly influence DNA adsorption capacity. Goethite with well-developed meso- and macroporosity demonstrated enhanced DNA adsorption. The accumulation of DNA on the goethite interface led to substantial aggregation in the system, thus the formation of DNA-goethite conjugates, indicating the bridging between mineral particles. DNA chain length, the presence of Ca2+, and the biomacromolecule matrix also affected the adsorption capacity and mechanism. Interactions between DNA and positively charged biomacromolecules or Ca2+ led to DNA compaction, allowing greater DNA accumulation in pores. However, a high concentration of biomacromolecules led to the saturation of the goethite surface, inhibiting DNA adsorption. AFM imaging of goethite particles after adsorption suggested the formation of the DNA multilayer. The study advances understanding of the environmental behavior of exDNA and its interaction with iron oxyhydroxides, offering insights into developing more effective methods for ARGs removal in wastewater treatment plants. By manipulating the textural properties of goethite, it's possible to enhance exDNA removal, potentially reducing the spread of biocontamination in urban and industrial environments.
Collapse
Affiliation(s)
- Mateusz Skalny
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, Mickiewicza 30, 30-059, Krakow, Poland.
| | - Anna Rokowska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Michal Szuwarzynski
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059, Krakow, Poland
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059, Krakow, Poland
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Bajda
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, Mickiewicza 30, 30-059, Krakow, Poland
| |
Collapse
|
4
|
Cochran JP, Zhang L, Parrott BB, Seaman JC. Plasmid size determines adsorption to clay and breakthrough in a saturated sand column. Heliyon 2024; 10:e29679. [PMID: 38707295 PMCID: PMC11066139 DOI: 10.1016/j.heliyon.2024.e29679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
Horizontal gene transfer (HGT) is a major factor in the spread of antibiotic resistant genes (ARG). Transformation, one mode of HGT, involves the acquisition and expression of extracellular DNA (eDNA). eDNA in soils is degraded rapidly by extracellular nucleases. However, if bound to a clay particle, eDNA can persist for long periods of time without losing its transformation ability. To better understand the mechanism of eDNA persistence in soil, this experiment assessed the effects of 1) clay mineralogy, 2) mixed salt solution, 3) plasmid size on DNA adsorption to clay and 4) breakthrough behavior of three differently sized plasmids in an environmentally relevant solution. Batch test methods were used to determine adsorption trends of three differently sized DNA plasmids, pUC19, pBR322, and pTYB21, to several pure clay minerals, goethite (α-FeOOH), illite, and kaolinite, and one environmental soil sample. Results show not all sorbents have equal adsorption capacity based on surface area with adsorption capacities decreasing from goethite > illite = kaolinite > bulk soil, and low ionic strength solutions will likely not significantly alter sorption trends. Additionally, plasmid DNA size (i.e., length) was shown to be a significant predictor of adsorption efficiency and that size affects DNA breakthrough, with breakthroughs occurring later with larger plasmids. Given that DNA persistence is linked to its adsorption to soil constituents and breakthrough, eDNA size is likely an important contributor to the spread of ARG within natural microbial communities.
Collapse
Affiliation(s)
- Jarad P. Cochran
- Savannah River Ecology Laboratory, Aiken, SC, United States
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States
| | - Liyun Zhang
- Savannah River Ecology Laboratory, Aiken, SC, United States
- Crops and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Benjamin B. Parrott
- Savannah River Ecology Laboratory, Aiken, SC, United States
- Odum School of Ecology, University of Georgia, Athens, GA, United States
| | - John C. Seaman
- Savannah River Ecology Laboratory, Aiken, SC, United States
- Crops and Soil Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
5
|
Wang T, Xu Y, Ling W, Mosa A, Liu S, Lin Z, Wang H, Hu X. Dissemination of antibiotic resistance genes is regulated by iron oxides: Insight into the influence on bacterial transformation. ENVIRONMENT INTERNATIONAL 2024; 185:108499. [PMID: 38368718 DOI: 10.1016/j.envint.2024.108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
The transportation of antibiotic resistance genes (ARGs) in manure-soil-plant continuums poses risks to human health. Horizontal gene transfer, particularly for bacterial transformation, is an important way for ARG dissemination. As crucial components in soils, iron oxides impacted the fates of various abiotic and biotic contaminants due to their active properties. However, whether they can influence the transformation of ARGs is unknown, which waits to be figured out to boost the assessment and control of ARG spread risks. In this study, we have investigated the effects of goethite, hematite, and magnetite (0-250 mg/L, with sizes < 100 nm and > 100 nm) on the transfer of ampicillin resistance genes to Escherichia coli cells. At lower iron oxide concentrations, the transformation of ARGs was first facilitated (transformation frequency reached up to 3.38-fold higher), but the facilitating effects gradually weakened and eventually disappeared as concentrations further increased. Particle size and iron oxide type were not the universal determinants controlling the transformation. At lower concentrations, iron oxides interacted with proteins and phospholipids in E. coli envelope structures, and induced the overgeneration of intracellular reactive oxygen species. Consequently, they led to pore formation and permeability enhancement on the cell membrane, thus promoting the transformation. The facilitation was also associated with the carrier-like effect of iron oxides for antibiotic resistance plasmids. At higher concentrations, the weakened facilitations were attributed to the aggregation of iron oxides. In this study, we highlight the crucial roles of the concentrations (contents) of iron oxides on the dissemination of ARGs in soils; this study may serve as a reference for ARG pollution control in future agricultural production.
Collapse
Affiliation(s)
- Tingting Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanxing Xu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Si Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhipeng Lin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hefei Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
6
|
Azimzadeh B, Nicholson LK, Martínez CE. In the presence of the other: How glyphosate and peptide molecules alter the dynamics of sorption on goethite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169264. [PMID: 38092207 DOI: 10.1016/j.scitotenv.2023.169264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The interactions with soil mineral surfaces are among the factors that determine the mobility and bioavailability of organic contaminants and of nutrients present in dissolved organic matter (DOM) in soil and aquatic environments. While most studies focus on high molar mass organic matter fractions (e.g., humic and fulvic acids), very few studies investigate the impact of DOM constituents in competitive sorption. Here we assess the sorption behavior of a heavily used herbicide (i.e., glyphosate) and a component of DOM (i.e., a peptide) at the water/goethite interface, inclusive of potential glyphosate-peptide interactions. We used in-situ ATR-FTIR (attenuated total reflectance Fourier-transform infrared) spectroscopy to study sorption kinetics and mechanisms of interaction as well as conformational changes to the secondary structure of the peptide. NMR (nuclear magnetic resonance) spectroscopy was used to assess the level of interaction between glyphosate and the peptide and changes to the peptide' secondary structure in solution. For the first time, we illustrate competition for sorption sites results in co-sorption of glyphosate and peptide molecules that affects the extent, kinetics, and mechanism of interaction of each with the surface. In the presence of the peptide, the formation of outer-sphere glyphosate-goethite complexes is favored albeit inner-sphere glyphosate-goethite bonds (i.e., POFe) are still formed. The presence of glyphosate induces secondary structural shifts of the sorbed peptide that maximizes the formation of H-bonds with the goethite surface. However, glyphosate and the peptide do not seem to interact with one another in solution nor at the goethite surface upon sorption. The results of this work highlight potential consequences of competition for sorption sites, for example the transport of organic contaminants and nutrient-rich (i.e., nitrogen) DOM components in relevant environmental systems. Predicting the rate and extent with which organic pollutants are removed from solution by a given solid is also one of the most critical factors for the design of effective sorption systems in engineering applications.
Collapse
Affiliation(s)
- Behrooz Azimzadeh
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Linda K Nicholson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Carmen Enid Martínez
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
7
|
Cecconello A, Tonolo F, Rilievo G, Molinari S, Talpe A, Cozza G, Venerando A, Kariyawasam IDH, Govardhan GT, Arusei RJ, Magro M, Vianello F. Highly specific colloidal ɣ-Fe 2O 3-DNA hybrids: From bioinspired recognition to large-scale lactoferrin purification. Colloids Surf B Biointerfaces 2024; 234:113700. [PMID: 38104467 DOI: 10.1016/j.colsurfb.2023.113700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
The industry transfer of laboratory-use magnetic separation is still hampered by the lack of suitable nanoparticles, both in terms of their features and large-scale availability. Surface Active Maghemite Nanoparticles (SAMNs) characterized by a unique surface chemistry, low environmental impact, scalable synthesis and functionalization were used to develop a bio-inspired lactoferrin (LF) recognition system. Based on the LF affinity for DNA, a self-assembly process was optimized for obtaining a SAMN@DNA hybrid displaying chemical and colloidal stability and LF specificity. SAMN@DNA was successfully tested for the affinity purification of LF from crude bovine whey. Advantages, such as high selectivity and loading capacity, nanoparticle re-usability, outstanding purity (96 ± 1%), preservation of protein conformation and short operational time, were highlighted. Finally, scalability was demonstrated by an automatic system performing continuous purification of LF from 100 liters day-1 of whey. This study responds to essential prerequisites, such as efficiency, re-usability and industrialization feasibility.
Collapse
Affiliation(s)
- Alessandro Cecconello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Federica Tonolo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Graziano Rilievo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Simone Molinari
- Museum of Nature and Humankind, Mineralogy Section Alessandro Guastoni, University of Padua, Via Giotto 1, 35121 Padua, Italy
| | - Arthur Talpe
- Catholic University of Leuven, Oude Markt 13, 3000 Leuven, Belgium
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padova, Italy
| | - Andrea Venerando
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, Via Palladio 8, 33100 Udine, Italy
| | | | - Gayathri Tiruchi Govardhan
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Ruth Jepchirchir Arusei
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| |
Collapse
|
8
|
Azimzadeh B, Martínez CE. Unraveling the role of polysaccharide-goethite associations on glyphosate' adsorption-desorption dynamics and binding mechanisms. J Colloid Interface Sci 2024; 653:1283-1292. [PMID: 37797504 DOI: 10.1016/j.jcis.2023.09.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/29/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
HYPOTHESIS Glyphosate retention at environmental interfaces is strongly governed by adsorption and desorption processes. In particular, glyphosate can react with organo-mineral associations (OMAs) in soils, sediments, and aquatic environments. We hypothesize mineral-adsorbed biomacromolecules modulate the extent and rate of glyphosate adsorption and desorption where electrostatic and noncovalent interactions with organo-mineral surfaces are favored. EXPERIMENTS Here we use in-situ attenuated total reflectance Fourier-transform infrared, X-ray photoelectron spectroscopy, and batch experiments to characterize glyphosate' adsorption and desorption mechanisms and kinetics at an organo-mineral interface. Model polysaccharide-goethite OMAs are prepared with a range of organic (polysaccharide, PS) surface loadings. Sequential adsorption-desorption studies are conducted by introducing glyphosate and background electrolyte solutions, respectively, to PS-goethite OMAs. FINDINGS We find the extent of glyphosate adsorption at PS-goethite interfaces was reduced compared to that at the goethite interface. However, increased polysaccharide surface loading resulted in lower relative glyphosate desorption. At the same time, increased PS surface loading yielded slower glyphosate adsorption and desorption kinetics compared to corresponding processes at the goethite interface. We highlight that adsorbed PS promotes the formation of weak noncovalent interactions between glyphosate and PS-goethite OMAs, including the evolution of hydrogen bonds between (i) the amino group of glyphosate and PS and (ii) the phosphonate group of glyphosate and goethite. It is also observed that glyphosate' phosphonate group preferentially forms inner-sphere monodentate complexes with goethite in PS-goethite whereas bidentate configurations are favored on goethite.
Collapse
Affiliation(s)
- Behrooz Azimzadeh
- Soil and Crop Sciences, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Carmen Enid Martínez
- Soil and Crop Sciences, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
9
|
Sodnikar K, Kaegi R, Christl I, Schroth MH, Sander M. Transport of double-stranded ribonucleic acids (dsRNA) and deoxyribonucleic acids (DNA) in sand and iron oxide-coated sand columns under varying solution chemistries. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2067-2080. [PMID: 37870439 DOI: 10.1039/d3em00294b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Assessing ecological risks associated with the use of genetically modified RNA interference crops demands an understanding of the fate of crop-released insecticidal double-stranded RNA (dsRNA) molecules in soils. We studied the adsorption of one dsRNA and two double-stranded DNA as model nucleic acids (NAs) during transport through sand- and iron oxide-coated sand (IOCS)-filled columns over a range of solution pH and ionic compositions. Consistent with NA-sand electrostatic repulsion, we observed only slight retention of NAs in sand columns. Conversely, pronounced NA retention in IOCS columns is consistent with strong and irreversible NA adsorption involving electrostatic attraction to and inner-sphere complex formation of NAs with iron oxide coatings. Adsorption of NAs to iron oxides revealed a fast and a slow kinetic adsorption regime, possibly caused by the excluded-area effect. Adsorption of NAs to sand and IOCS increased in the presence of dissolved Mg2+ and with increasing ionic strength, reflecting cation-bridging and screening of repulsive electrostatics, respectively. The co-solute phosphate and a pre-adsorbed dissolved organic matter isolate competitively suppressed dsRNA adsorption to IOCS. Similar adsorption characteristics of dsRNA and similarly sized DNA suggest that existing information on DNA adsorption to soil particles helps in predicting adsorption and fate of dsRNA molecules in soils.
Collapse
Affiliation(s)
- Katharina Sodnikar
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.
| | - Ralf Kaegi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Iso Christl
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.
| | - Martin Herbert Schroth
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
10
|
Sit I, Young MA, Kubicki JD, Grassian VH. Distinguishing different surface interactions for nucleotides adsorbed onto hematite and goethite particle surfaces through ATR-FTIR spectroscopy and DFT calculations. Phys Chem Chem Phys 2023. [PMID: 37470700 PMCID: PMC10395000 DOI: 10.1039/d3cp01200j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Geochemical interfaces can impact the fate and transport of aqueous species in the environment including biomolecules. In this study, we investigate the surface chemistry of adsorbed nucleotides on two different minerals, hematite and goethite, using infrared spectroscopy and density functional theory (DFT) calculations. Attenuated total reflectance-Fourier transform infrared spectroscopy is used to probe the adsorption of deoxyadenosine monophosphate (dAMP), deoxyguanosine monophosphate (dGMP), deoxycytidine monophosphate (dCMP), and deoxythymidine monophosphate (dTMP) onto either hematite or goethite particle surfaces. The results show preferential adsorption of the phosphate group to either surface. Remarkably, surface adsorption of the four nucleotides onto either hematite or goethite have nearly identical experimental spectra in the phosphate region (900 to 1200 cm-1) for each mineral surface yet are distinctly different between the two minerals, suggesting differences in binding of these nucleotides to the two mineral surfaces. The experimental absorption frequencies in the phosphate region were compared to DFT calculations for nucleotides adsorbed through the phosphate group to binuclear clusters in either a monodentate or bidentate bridging coordination. Although the quality of the fits suggests that both binding modes may be present, the relative amounts differ on the two surfaces with preferential bonding suggested to be monodentate coordination on hematite and bidentate bridging on goethite. Possible reasons for these differences are discussed.
Collapse
Affiliation(s)
- Izaac Sit
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Mark A Young
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA.
| | - Vicki H Grassian
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
11
|
Zhang K, Ho KP, Chatterjee A, Park G, Li Z, Catalano JG, Parker KM. RNA Hydrolysis at Mineral-Water Interfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37216349 DOI: 10.1021/acs.est.3c01407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
As an essential biomolecule for life, RNA is ubiquitous across environmental systems where it plays a central role in biogeochemical processes and emerging technologies. The persistence of RNA in soils and sediments is thought to be limited by enzymatic or microbial degradation, which occurs on timescales that are orders of magnitude faster than known abiotic pathways. Herein, we unveil a previously unreported abiotic pathway by which RNA rapidly hydrolyzes on the timescale of hours upon adsorption to iron (oxyhydr)oxide minerals such as goethite (α-FeOOH). The hydrolysis products were consistent with iron present in the minerals acting as a Lewis acid to accelerate sequence-independent hydrolysis of phosphodiester bonds comprising the RNA backbone. In contrast to acid- or base-catalyzed RNA hydrolysis in solution, mineral-catalyzed hydrolysis was fastest at circumneutral pH, which allowed for both sufficient RNA adsorption and hydroxide concentration. In addition to goethite, we observed that RNA hydrolysis was also catalyzed by hematite (α-Fe2O3) but not by aluminum-containing minerals (e.g., montmorillonite). Given the extensive adsorption of nucleic acids to environmental surfaces, we anticipate previously overlooked mineral-catalyzed hydrolysis of RNA may be prevalent particularly in iron-rich soils and sediments, which must be considered across biogeochemical applications of nucleic acid analysis in environmental systems.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Kun-Pu Ho
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Anamika Chatterjee
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Grace Park
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Zhiyao Li
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jeffrey G Catalano
- Department of Earth & Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Kimberly M Parker
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
12
|
Bañuelos JL, Borguet E, Brown GE, Cygan RT, DeYoreo JJ, Dove PM, Gaigeot MP, Geiger FM, Gibbs JM, Grassian VH, Ilgen AG, Jun YS, Kabengi N, Katz L, Kubicki JD, Lützenkirchen J, Putnis CV, Remsing RC, Rosso KM, Rother G, Sulpizi M, Villalobos M, Zhang H. Oxide- and Silicate-Water Interfaces and Their Roles in Technology and the Environment. Chem Rev 2023; 123:6413-6544. [PMID: 37186959 DOI: 10.1021/acs.chemrev.2c00130] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.
Collapse
Affiliation(s)
- José Leobardo Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gordon E Brown
- Department of Earth and Planetary Sciences, The Stanford Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Randall T Cygan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - James J DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Patricia M Dove
- Department of Geosciences, Department of Chemistry, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lynn Katz
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Johannes Lützenkirchen
- Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung─INE, Eggenstein-Leopoldshafen 76344, Germany
| | - Christine V Putnis
- Institute for Mineralogy, University of Münster, Münster D-48149, Germany
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Marialore Sulpizi
- Department of Physics, Ruhr Universität Bochum, NB6, 65, 44780, Bochum, Germany
| | - Mario Villalobos
- Departamento de Ciencias Ambientales y del Suelo, LANGEM, Instituto De Geología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
13
|
Huang Q, Zhu J, Qu C, Wang Y, Hao X, Chen W, Cai P, Huang Q. Dichotomous Role of Humic Substances in Modulating Transformation of Antibiotic Resistance Genes in Mineral Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:790-800. [PMID: 36516830 DOI: 10.1021/acs.est.2c06410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Widespread antibiotic resistance genes (ARGs) have emerged as a focus of attention for public health. Transformation is essential for ARGs dissemination in soils and associated environments; however, the mechanisms of how soil components contribute to the transformation of ARGs remain elusive. Here we demonstrate that three representative mineral-humic acid (HA) composites exert contrasting influence on the transformation of plasmid-borne ARGs in Bacillus subtilis. Mineral surface-bound HA facilitated transformation in kaolinite and montmorillonite systems, while an inhibitory effect of HA was observed for goethite. The elevated transformation by HA-coated kaolinite was mainly attributed to the enhanced activity of competence-stimulating factor (CSF), while increased transformation by montmorillonite-HA composites was assigned to the weakened adsorption affinity of DNA and enhanced gene expression induced by flagella-driven cell motility. In goethite system, HA played an overriding role in suppressing transformation via alleviation of cell membrane damage. The results obtained offer insights into the divergent mechanisms of humic substances in modulating bacterial transformation by soil minerals. Our findings would help for a better understanding on the fate of ARGs in soil systems and provide potentials for the utilization of soil components, particularly organic matter, to mitigate the spread of ARGs in a range of settings.
Collapse
Affiliation(s)
- Qiong Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaojiao Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenchen Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunhao Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Chen D, Chen N, Liu F, Wang Y, Liang H, Yang Y, Yuan Q. Flexible Point-of-Care Electrodes for Ultrasensitive Detection of Bladder Tumor-Relevant miRNA in Urine. Anal Chem 2023; 95:1847-1855. [PMID: 36607132 DOI: 10.1021/acs.analchem.2c03156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Portable point-of-care testing (POCT) is currently drawing enormous attention owing to its great potential for disease diagnosis and personal health management. Electrochemical biosensors, with the intrinsic advantages of cost-effectiveness, fast response, ease of miniaturization, and integration, are considered as one of the most promising candidates for POCT application. However, the clinical application of electrochemical biosensors-based POCT is hindered by the decreased detection sensitivity due to the low abundance of disease-relevant biomolecules in extremely complex biological samples. Herein, we construct a flexible electrochemical biosensor based on single-stranded DNA functionalized single-walled carbon nanotubes (ssDNA-SWNTs) for high sensitivity and stability detection of miRNA-21 in human urine to achieve bladder cancer (BCa) diagnosis and classification. The ssDNA-SWNT electrodes with a 2D interconnected network structure exhibit a high electrical conductivity, thus enabling the ultrasensitive detection of miRNA-21 with a detection limit of 3.0 fM. Additionally, the intrinsic flexibility of ssDNA-SWNT electrodes endows the biosensors with the capability to achieve high stability detection of miRNA-21 even under large bending deformations. In a cohort of 40 BCa patients at stages I-III and 44 negative control samples, the constructed ssDNA-SWNT biosensors could detect BCa with a 92.5% sensitivity, an 88.6% specificity, and classify the cancer stages with an overall accuracy of 81.0%. Additionally, the flexible ssDNA-SWNT biosensors could also be utilized for treatment efficiency assessment and cancer recurrence monitoring. Owing to their excellent sensitivity and stability, the designed flexible ssDNA-SWNT biosensors in this work propose a strategy to realize point-of-care detection of complex clinical samples to achieve personalized healthcare.
Collapse
Affiliation(s)
- Duo Chen
- College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Na Chen
- College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Fangning Liu
- Urology Department, Union Hospital, Tongji Medical College of Huazhong Science and Technology University, Wuhan 430000, P. R. China
| | - Yiming Wang
- College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Huageng Liang
- Urology Department, Union Hospital, Tongji Medical College of Huazhong Science and Technology University, Wuhan 430000, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
15
|
Zhang X, Yao MC, Chen L, Sheng GP. Lewis Acid-Base Interaction Triggering Electron Delocalization to Enhance the Photodegradation of Extracellular Antibiotic Resistance Genes Adsorbed on Clay Minerals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17684-17693. [PMID: 36455257 DOI: 10.1021/acs.est.2c05785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The transformation of extracellular antibiotic resistance genes (eARGs) is largely influenced by their inevitable photodegradation in environments where they tend to be adsorbed by ubiquitous clay minerals instead of being in a free form. However, the photodegradation behaviors and mechanisms of the adsorbed eARGs may be quite different from those of the free form and still remain unclear. Herein, we found that kaolinite, a common 1:1-type clay, markedly enhanced eARG photodegradation and made eARGs undergo direct photodegradation under UVA. The decrease in the transformation efficiency of eARGs caused by photodegradation was also promoted. Spectroscopy methods combined with density functional theory calculations revealed that the Lewis acid-base interaction between P-O in eARGs and Al-OH on kaolinite delocalized electrons of eARGs, thus resulting in increased photon absorption ability of eARGs. This ultimately led to enhanced photodegradation of kaolinite-adsorbed eARGs. Additionally, divalent Ca2+ could reduce the Lewis acid-base interaction-mediated adsorption of eARGs by kaolinite, thereby weakening the enhanced photodegradation of eARGs caused by electron delocalization. In contrast, the 2:1-type clay montmorillonite without strong Lewis acid sites was unable to delocalize the electrons to enhance the photodegradation of eARGs. This work allowed us to better evaluate eARGs' fate and risk in real aqueous environments.
Collapse
Affiliation(s)
- Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Mu-Cen Yao
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Lin Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
16
|
Sit I, Quirk E, Hettiarachchi E, Grassian VH. Differential Surface Interactions and Surface Templating of Nucleotides (dGMP, dCMP, dAMP, and dTMP) on Oxide Particle Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15038-15049. [PMID: 36445255 PMCID: PMC9753757 DOI: 10.1021/acs.langmuir.2c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The fate of biomolecules in the environment depends in part on understanding the surface chemistry occurring at the biological-geochemical (bio-geo) interface. Little is known about how environmental DNA (eDNA) or smaller components, like nucleotides and oligonucleotides, persist in aquatic environments and the role of surface interactions. This study aims to probe surface interactions and adsorption behavior of nucleotides on oxide surfaces. We have investigated the interactions of individual nucleotides (dGMP, dCMP, dAMP, and dTMP) on TiO2 particle surfaces as a function of pH and in the presence of complementary and noncomplementary base pairs. Using attenuated total reflectance-Fourier transform infrared spectroscopy, there is an increased number of adsorbed nucleotides at lower pH with a preferential interaction of the phosphate group with the oxide surface. Additionally, differential adsorption behavior is seen where purine nucleotides are preferentially adsorbed, with higher surface saturation coverage, over their pyrimidine derivatives. These differences may be a result of intermolecular interactions between coadsorbed nucleotides. When the TiO2 surface was exposed to two-component solutions of nucleotides, there was preferential adsorption of dGMP compared to dCMP and dTMP, and dAMP compared to dTMP and dCMP. Complementary nucleotide base pairs showed hydrogen-bond interactions between a strongly adsorbed purine nucleotide layer and a weaker interacting hydrogen-bonded pyrimidine second layer. Noncomplementary base pairs did not form a second layer. These results highlight several important findings: (i) there is differential adsorption of nucleotides; (ii) complementary coadsorbed nucleotides show base pairing with a second layer, and the stability depends on the strength of the hydrogen bonding interactions and; (iii) the first layer coverage strongly depends on pH. Overall, the importance of surface interactions in the adsorption of nucleotides and the templating of specific interactions between nucleotides are discussed.
Collapse
Affiliation(s)
- Izaac Sit
- Department
of Nanoengineering and Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Eleanor Quirk
- Department
of Nanoengineering and Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Eshani Hettiarachchi
- Department
of Nanoengineering and Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Vicki H. Grassian
- Department
of Nanoengineering and Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
17
|
Xia Z, Patchin M, McKay CP, Drndić M. Deoxyribonucleic Acid Extraction from Mars Analog Soils and Their Characterization with Solid-State Nanopores. ASTROBIOLOGY 2022; 22:992-1008. [PMID: 35731031 DOI: 10.1089/ast.2021.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Life detection on Mars is an important topic that includes a direct search for biomarkers. This requires instruments for in situ biomarker detection that are compact, lightweight, and able to withstand operations in space. Solid-state nanopores are excellent candidates that allow fast single-molecule detection. They can withstand high temperatures and be sterilized to minimize planetary contamination. The instruments are portable with low-power requirements. We demonstrate a few key results in advancing the use of nanopores for in-space applications. First, we developed modified deoxyribonucleic acid (DNA) extraction protocols to extract DNA from Mars analog soils. Second, we used silicon nitride nanopores to demonstrate the detection of extracted DNA and corresponding current characteristics. The yields and properties of extracted DNA (e.g., estimated diameters) varied somewhat by soil types, extraction methods, and nanopores used. The yields varied from a minimum of 0.9 ng DNA/g soil for a magnesium carbonate sample from Lake Salda to a maximum of 210 ng DNA/g soil for a calcium carbonate sample from Trona Pinnacles. For a given soil type, yields from different methods varied by a factor of up to 50. These observations motivate future studies with a broader range of Mars-like soils and improved instruments to increase signal-to-noise-ratio at higher measurement bandwidths.
Collapse
Affiliation(s)
- Zehui Xia
- Goeppert LLC, Pennovation Works, Philadelphia, Pennsylvania, USA
| | - Margaret Patchin
- Goeppert LLC, Pennovation Works, Philadelphia, Pennsylvania, USA
| | - Christopher P McKay
- Space Science Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Marija Drndić
- David Rittenhouse Laboratory, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Mauvisseau Q, Harper LR, Sander M, Hanner RH, Kleyer H, Deiner K. The Multiple States of Environmental DNA and What Is Known about Their Persistence in Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5322-5333. [PMID: 35435663 PMCID: PMC9069692 DOI: 10.1021/acs.est.1c07638] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Increased use of environmental DNA (eDNA) analysis for indirect species detection has spurred the need to understand eDNA persistence in the environment. Understanding the persistence of eDNA is complex because it exists in a mixture of different states (e.g., dissolved, particle adsorbed, intracellular, and intraorganellar), and each state is expected to have a specific decay rate that depends on environmental parameters. Thus, improving knowledge about eDNA conversion rates between states and the reactions that degrade eDNA in different states is needed. Here, we focus on eukaryotic extraorganismal eDNA, outline how water chemistry and suspended mineral particles likely affect conversion among each eDNA state, and indicate how environmental parameters affect persistence of states in the water column. On the basis of deducing these controlling parameters, we synthesized the eDNA literature to assess whether we could already derive a general understanding of eDNA states persisting in the environment. However, we found that these parameters are often not being measured or reported when measured, and in many cases very few experimental data exist from which to draw conclusions. Therefore, further study of how environmental parameters affect eDNA state conversion and eDNA decay in aquatic environments is needed. We recommend analytic controls that can be used during the processing of water to assess potential losses of different eDNA states if all were present in a water sample, and we outline future experimental work that would help determine the dominant eDNA states in water.
Collapse
Affiliation(s)
- Quentin Mauvisseau
- Natural
History Museum, University of Oslo, Sars’ gate 1, 0562 Oslo, Norway
| | - Lynsey R. Harper
- Nature
Metrics Ltd, CABI Site, Bakeham Lane, Egham, Surrey TW20 9TY, United Kingdom
| | - Michael Sander
- Department
of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| | - Robert H. Hanner
- Department
of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hannah Kleyer
- Department
of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| | - Kristy Deiner
- Department
of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| |
Collapse
|
19
|
Huang Q, Chen J, Zhu J, Hao X, Dao G, Chen W, Cai P, Huang Q. Divergent bacterial transformation exerted by soil minerals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147173. [PMID: 34088059 DOI: 10.1016/j.scitotenv.2021.147173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
As one of the horizontal gene transfer processes, transformation provides bacteria flexible adaptation to changing environmental conditions. Soil minerals have been shown to inhibit bacterial transformation efficiency due to their high adsorption affinity for DNA molecules. However, the intrinsic mechanisms in regulating genetic transformation by soil components remain elusive. Little is known whether bacterial exposure to minerals may influence competence development which is regarded as a prerequisite of bacterial transformation. In this study, we examined the effects of kaolinite, montmorillonite, and goethite on the transformation of B. subtilis via chemical adsorption, Live-Dead staining, β-galactosidase assay, and qPCR. Results showed that kaolinite and montmorillonite reduced the transformability of B. subtilis by strong adsorption of CSF (competence-stimulating factor), a signaling molecule of cell competence, and the down-regulated transcriptional genes resulting from suppressed competence development. Conversely, goethite depressed bacterial transformation only at low mineral content by DNA adsorption. The striking membrane damage on B. subtilis in presence of high content of goethite yielded a marked increase of bacterial transformation. This finding subverted our previous view regarding the impact of soil minerals on bacterial transformation. Three mechanisms were thus proposed governing bacterial transformation in mineral systems: adsorption of CSF, gene expression and membrane damage. This work has advanced our understanding on the genetic transformation of bacteria as influenced by minerals in a wide range of soils and associated environments.
Collapse
Affiliation(s)
- Qiong Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaojiao Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Guohua Dao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
20
|
Sit I, Wu H, Grassian VH. Environmental Aspects of Oxide Nanoparticles: Probing Oxide Nanoparticle Surface Processes Under Different Environmental Conditions. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:489-514. [PMID: 33940931 DOI: 10.1146/annurev-anchem-091420-092928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surface chemistry affects the physiochemical properties of nanoparticles in a variety of ways. Therefore, there is great interest in understanding how nanoparticle surfaces evolve under different environmental conditions of pH and temperature. Here, we discuss the use of vibrational spectroscopy as a tool that allows for in situ observations of oxide nanoparticle surfaces and their evolution due to different surface processes. We highlight oxide nanoparticle surface chemistry, either engineered anthropogenic or naturally occurring geochemical nanoparticles, in complex media, with a focus on the impact of (a) pH on adsorption, intermolecular interactions, and conformational changes; (b) surface coatings and coadsorbates on protein adsorption kinetics and protein conformation; (c) surface adsorption on the temperature dependence of protein structure phase changes; and (d) the use of two-dimensional correlation spectroscopy to analyze spectroscopic results for complex systems. An outlook of the field and remaining challenges is also presented.
Collapse
Affiliation(s)
- Izaac Sit
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA; ,
| | - Haibin Wu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA;
| | - Vicki H Grassian
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA; ,
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA;
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
21
|
Sodnikar K, Parker KM, Stump SR, ThomasArrigo LK, Sander M. Adsorption of double-stranded ribonucleic acids (dsRNA) to iron (oxyhydr-)oxide surfaces: comparative analysis of model dsRNA molecules and deoxyribonucleic acids (DNA). ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:605-620. [PMID: 33723564 DOI: 10.1039/d1em00010a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Double-stranded ribonucleic acid (dsRNA) molecules are novel plant-incorporated protectants expressed in genetically modified RNA interference (RNAi) crops. Ecological risk assessment (ERA) of RNAi crops requires a heretofore-missing detailed understanding of dsRNA adsorption in soils, a key fate process. Herein, we systematically study the adsorption of a model dsRNA molecule and of two double-stranded deoxyribonucleic acid (DNA) molecules of varying lengths to three soil iron (oxyhydr-)oxides - goethite, lepidocrocite, and hematite - over a range of solution pH (4.5-10), ionic strength (I = 10-100 mM NaCl) and composition (0.5, 1, and 3 mM MgCl2) and in the absence and presence of phosphate (0.05-5 mM) as co-adsorbate. We hypothesized comparable adsorption characteristics of dsRNA and DNA based on their structural similarities. Consistently, the three nucleic acids (NAs) showed high adsorption affinities to the iron (oxyhydr-)oxides with decreasing adsorption in the order goethite, lepidocrocite, and hematite, likely reflecting a decrease in the hydroxyl group density and positive charges of the oxide surfaces in the same order. NA adsorption also decreased with increasing solution pH, consistent with weakening of NA electrostatic attraction to and inner-sphere complex formation with the iron (oxyhydr-)oxides surfaces as pH increased. Adsorbed NA concentrations increased with increasing I and in the presence of Mg2+, consistent with adsorbed NA molecules adopting more compact conformations. Strong NA-phosphate adsorption competition demonstrates that co-adsorbates need consideration in assessing dsRNA fate in soils. Comparable adsorption characteristics of dsRNA and DNA molecules to iron (oxyhydr-)oxides imply that information on DNA adsorption to soil particle surfaces can inform dsRNA ERA.
Collapse
Affiliation(s)
- Katharina Sodnikar
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, DUSYS, IBP, Universitätsstrasse 16, CHN H50.3, 8092 Zurich, Switzerland.
| | - Kimberly M Parker
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Simona R Stump
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, DUSYS, IBP, Universitätsstrasse 16, CHN H50.3, 8092 Zurich, Switzerland.
| | - Laurel K ThomasArrigo
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, DUSYS, IBP, Universitätsstrasse 16, CHN H50.3, 8092 Zurich, Switzerland.
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, DUSYS, IBP, Universitätsstrasse 16, CHN H50.3, 8092 Zurich, Switzerland.
| |
Collapse
|