1
|
Ali SS, Elsamahy T, Al-Tohamy R, Sun J. A critical review of microplastics in aquatic ecosystems: Degradation mechanisms and removing strategies. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100427. [PMID: 38765892 PMCID: PMC11099331 DOI: 10.1016/j.ese.2024.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024]
Abstract
Plastic waste discarded into aquatic environments gradually degrades into smaller fragments, known as microplastics (MPs), which range in size from 0.05 to 5 mm. The ubiquity of MPs poses a significant threat to aquatic ecosystems and, by extension, human health, as these particles are ingested by various marine organisms including zooplankton, crustaceans, and fish, eventually entering the human food chain. This contamination threatens the entire ecological balance, encompassing food safety and the health of aquatic systems. Consequently, developing effective MP removal technologies has emerged as a critical area of research. Here, we summarize the mechanisms and recently reported strategies for removing MPs from aquatic ecosystems. Strategies combining physical and chemical pretreatments with microbial degradation have shown promise in decomposing MPs. Microorganisms such as bacteria, fungi, algae, and specific enzymes are being leveraged in MP remediation efforts. Recent advancements have focused on innovative methods such as membrane bioreactors, synthetic biology, organosilane-based techniques, biofilm-mediated remediation, and nanomaterial-enabled strategies, with nano-enabled technologies demonstrating substantial potential to enhance MP removal efficiency. This review aims to stimulate further innovation in effective MP removal methods, promoting environmental and social well-being.
Collapse
Affiliation(s)
- Sameh S. Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
2
|
Macktuf MAA, Rutan SC, Bautista J, Collinson MM. Continuous stationary phase gradient preparation on planar chromatographic media using vapor phase deposition of silane. J Chromatogr A 2024; 1730:465090. [PMID: 38955129 DOI: 10.1016/j.chroma.2024.465090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
A new, versatile, and straightforward vapor phase deposition (VPD) approach was used to prepare continuous stationary phase gradients (cSPGs) on silica thin-layer chromatography (TLC) plates using phenyldimethylchlorosilane (PDCS) as a precursor. A mixture of paraffin oil and PDCS was placed at the bottom of an open-ended rectangular chamber, allowing the reactive silanes to evaporate and freely diffuse under a controlled atmosphere. As the volatile silane diffused across the length of the TLC plate, it reacted with the surface silanol groups thus functionalizing the surface in a gradient fashion. Characterization of the gradient TLC plates was done through UV visualization and diffuse reflectance spectroscopy (DRS). Visualizing the fluorescent gradient plates under UV radiation shows the clear presence of a gradient with the side closest to the vapor source undergoing the most modification. More quantitative characterization of the shape of the gradient was provided by DRS. The DRS showed that the degree of modification and shape of the gradient was dependent on the concentration of silane, VPD time, and relative humidity. To evaluate the chromatographic performance, a mixture of three aromatic compounds (acetaminophen (A), aspirin (As), and 3-hydroxy-2-naphthoic acid (3H)) was spotted on the high (GHP) and low phenyl (GLP) ends of the gradient TLC plates and the results compared to the separations carried out on unmodified and uniformly modified plates. The GHP TLC plates showed retention factors (Rf) of 0.060 ± 0.006, 0.391 ± 0.006, and 0.544 ± 0.006, whereas the unmodified plate displayed Rf values of 0.059 ± 0.006, 0.092 ± 0.003, and 0.037 ± 0.002 for the analytes A, As, and 3H, respectively. From the Rf values, it was observed that each modified plate exhibited different selectivity for the analytes. The GHP TLC plates exhibited better separation performance, and improved resolution compared to the GLP, unmodified, and uniformly modified plates. Overall, VPD is a new, cost-effective method for creating a gradient on the stationary phase which has the potential to advance chromatographic separation capabilities.
Collapse
Affiliation(s)
| | - Sarah C Rutan
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Judith Bautista
- Dow Chemical, 230 Abner Jackson Pkwy, Lake Jackson, TX 77566, USA
| | - Maryanne M Collinson
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
3
|
Xue J, Wu T, Qiu J, Xia Y. Accelerating Cell Migration along Radially Aligned Nanofibers through the Addition of Electrosprayed Nanoparticles in a Radial Density Gradient. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2022; 39:2100280. [PMID: 36091327 PMCID: PMC9455824 DOI: 10.1002/ppsc.202100280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Scaffolds capable of promoting cell migration from the periphery towards the center along the radial direction hold promises for tissue regeneration. Here we report a simple and general method based on masked electrospray for the fabrication of such scaffolds by depositing collagen nanoparticles on radially-aligned nanofibers in a radial density gradient. Placed between the metallic needle and the collector, an aperture with tunable opening sizes serves as the mask. By increasing the size of the opening at a fixed speed, the electrosprayed particles take a radial density gradient that decreases from the center to the periphery. When deposited on a glass slide, the radial density gradient of collagen nanoparticles promotes the migration of fibroblasts from the periphery towards the center. By replacing the glass slide with a scaffold comprised of radially-aligned nanofibers, a synergetic effect arises to further accelerate cell migration along the radial direction. The synergistic effect can be attributed to a unique combination of the topographic cue arising from the aligned nanofibers and the haptotactic cue enabled by the graded nanoparticles. This work demonstrates a method to maximize cell migration from the periphery towards the center through a combination of topographic and haptotactic cues.
Collapse
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Howard RL, Bernardi F, Leff M, Abele E, Allbritton NL, Harris DM. Passive Control of Silane Diffusion for Gradient Application of Surface Properties. MICROMACHINES 2021; 12:1360. [PMID: 34832772 PMCID: PMC8620173 DOI: 10.3390/mi12111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 11/30/2022]
Abstract
Liquid lithography represents a robust technique for fabricating three-dimensional (3D) microstructures on a two-dimensional template. Silanization of a surface is often a key step in the liquid lithography process and is used to alter the surface energy of the substrate and, consequently, the shape of the 3D microfeatures produced. In this work, we present a passive technique that allows for the generation of silane gradients along the length of a substrate. The technique relies on a secondary diffusion chamber with a single opening, leading to a directional introduction of silane to the substrate via passive diffusion. The secondary chamber geometry influences the deposited gradient, which is shown to be well captured by Monte Carlo simulations that incorporate the passive diffusion and grafting processes. The technique ultimately allows the user to generate a range of substrate wettabilities on a single chip, enhancing throughput for organ-on-a-chip applications by mimicking the spatial variability of tissue topographies present in vivo.
Collapse
Affiliation(s)
- Riley L. Howard
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Francesca Bernardi
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Matthew Leff
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Emma Abele
- School of Engineering, Brown University, Providence, RI 02912, USA; (E.A.); (D.M.H.)
| | - Nancy L. Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA;
| | - Daniel M. Harris
- School of Engineering, Brown University, Providence, RI 02912, USA; (E.A.); (D.M.H.)
| |
Collapse
|
5
|
Usman A, Weatherbee SL, Collinson MM, Hohn KL, Higgins DA. Single Molecule Spectroscopy Studies of Acid-Base Chemical Gradients Using Nile Red as a Probe of Local Surface Acidity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12138-12147. [PMID: 34606716 DOI: 10.1021/acs.langmuir.1c02059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single molecule spectroscopy studies of local acidity along bifunctional acid-base gradients are reported. Gradients are prepared by directional vapor phase diffusion and subsequent reaction of 3-aminopropyl-trimethoxysilane with a uniform silica film. Gradient formation is confirmed by spectroscopic ellipsometry and by static water contact angle measurements. X-ray photoelectron spectroscopy is used to characterize the nitrogen content and degree of nitrogen protonation along the gradient. Nile Red is employed as the probe dye in single molecule spectroscopy studies of these gradients. While Nile Red is well-known for its solvent sensitivity, it is used here, for the first time, to sense the acid/base properties of the film in two-color wide-field fluorescence imaging experiments. The data reveal broad bimodal distributions of Nile Red emission spectra that vary along the gradient direction. The single molecule results are consistent with solution phase ensemble acid/base studies of the dye. The former reveal a gradual transition from a surface dominated by basic aminosilane sites at the high-amine end of the gradient to one dominated by acidic silanol sites at the low-amine end. The sub-diffraction-limited spatial resolution afforded by superlocalization of the single molecules reveals spatial correlations in the acid/base properties of the gradient over ∼200 nm distances. These studies provide data relevant to the use of aminosilane-modified silica in bifunctional, cooperative chemical catalysis.
Collapse
Affiliation(s)
- Abdulhafiz Usman
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Shelby L Weatherbee
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Maryanne M Collinson
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Keith L Hohn
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| | - Daniel A Higgins
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
6
|
Enteshari Najafabadi M, Bagheri H, Rostami A. Amine/phenyl gradient derived base layer as a comprehensive extractive phase for headspace cooled in-tube microextraction of volatile organic compounds in saliva. J Pharm Biomed Anal 2020; 191:113599. [PMID: 32957064 DOI: 10.1016/j.jpba.2020.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 10/23/2022]
Abstract
A gradient derived base layer extractive phase was synthesized and applied for the determination of volatile organic compounds (VOCs) in saliva samples using the headspace cooled in-tube microextraction (HS-CITME) method. The base layers from three different sols of phenyltriethoxysilane (PTES), octyltrimethoxysilane (OTMS) and methyltrimethoxysilane (MTMS) as nonpolar precursors were individually dip coated on the stainless steel wires (SSW). Then, the hydrolyzed polar precursor aminopropyltriethoxysilane (APTES) reacted with the silanol groups already formed on the surface of SSWs via controlled rate infusion (CRI) method. The presence of polar and non-polar functional groups on the surface of substrate was evaluated by Fourier-transform infrared spectroscopy (FTIR) while the morphology and thickness of the most suitable gradient coating (amine/phenyl) were also investigated by scanning electron microscopy (SEM). Assessment of the gradient extractive phase efficiency was carried out determining a group of VOCs with different polarities coupled with gas chromatography-mass spectrometry (GCMS) and the improved performance of the synthesized base layer coatings was observed. Furthermore, a cooling device was designed and implemented to the extracting system to improve the efficiency by influencing the exothermic nature of process. The data were analyzed by principal component analysis (PCA), and hierarchical cluster analysis (HCA) and the results were interpreted by polarities of analytes. Finally, under the optimized conditions, the limits of detection (LOD) and limits of quantification (LOQ) were 0.15 and 0.50 ng L-1, respectively. The intra-day and inter-day relative standard deviations (RSDs) at 5 and 50 ng L-1 (n = 3) using a single extractive phase were 2-6 and 10-17, respectively. The data associated with RSDs% for three extractive phases were between 16 and 19 %. Eventually, the method was conveniently applied to the extraction of VOCs from saliva samples of smokers and satisfactory relative recoveries (RR%) (95-108 %) were achieved and low quantities of VOCs were detected.
Collapse
Affiliation(s)
- Marzieh Enteshari Najafabadi
- Environmental and Bio-Analytical Laboratories, Department of Chemistry Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran
| | - Habib Bagheri
- Environmental and Bio-Analytical Laboratories, Department of Chemistry Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran.
| | - Akram Rostami
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran; NanoAlvand Co., Avicenna Tech. Park, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Ashraf K, Roy K, Higgins DA, Collinson MM. On the Importance of Silane Infusion Order on the Microscopic and Macroscopic Properties of Multifunctional Charge Gradients. ACS OMEGA 2020; 5:21897-21905. [PMID: 32905528 PMCID: PMC7469646 DOI: 10.1021/acsomega.0c03068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Four multicomponent charge gradients containing acidic and basic functionalities were prepared via sol-gel processes and the controlled-rate infusion (CRI) method to more clearly understand how preparation conditions influence macroscopic properties. CRI is used to form gradients by infusing reactive alkoxysilanes into a glass vial housing a vertically oriented modified silicon wafer. The concentration and time of infusion of the silane solutions were kept constant. Only the sequence of infusion of the silane solutions was changed. The first set of samples was prepared by initially infusing a solution containing 3-aminopropyltriethoxysilane (APTES) followed by a mercaptopropyltrimethoxysilane (MPTMS) solution. The individual gradients were formed either in an aligned or opposed fashion with respect to the initial gradient. The second set of samples was prepared by infusing the MPTMS solution first followed by the APTES solution, again in either an aligned or opposed fashion. To create charge gradients (NH3 +, SO3 -), the samples were immersed into H2O2. The extent of modification, the degree of protonation of the amine, and the thicknesses of the individual layers were examined by X-ray photoelectron spectroscopy (XPS) and spectroscopic ellipsometry. The wettability of the individual gradients was assessed via static contact angle measurements. The results demonstrate the importance of infusion order and how it influences the macroscopic and microscopic properties of gradient surfaces including the surface concentration, packing density, degree of protonation, and ultimately wettability. When the gradient materials are prepared via infusion of the APTES sol first, it results in increased deposition of both the amine and thiol groups as evidenced by XPS. Interestingly, the total thickness evaluated from ellipsometry was independent of the infusion order for the aligned gradients, indicative of significant differences in the film density. For the opposed gradients, however, the infusion of APTES first leads to a significantly thicker composite film. Furthermore, it also leads to a more pronounced gradient in the protonation of the amine, which introduces a very different surface wettability. The use of aminosilanes provides a viable approach to create gradient surfaces with different functional group distributions. These studies demonstrate that the controlled placement of functional groups on a surface can provide a new route to prepare gradient materials with improved performance.
Collapse
Affiliation(s)
- Kayesh
M. Ashraf
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Kallol Roy
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Daniel A. Higgins
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| | - Maryanne M. Collinson
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| |
Collapse
|
8
|
Cain CN, Weatherbee SL, Forzano AV, Rutan SC, Collinson MM. Fabrication and Characterization of a Reversed-Phase/Strong Cation Exchange Stationary Phase Gradient. J Chromatogr A 2020; 1623:461177. [DOI: 10.1016/j.chroma.2020.461177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
|
9
|
Ko Y, Christau S, von Klitzing R, Genzer J. Charge Density Gradients of Polymer Thin Film by Gaseous Phase Quaternization. ACS Macro Lett 2020; 9:158-162. [PMID: 35638676 DOI: 10.1021/acsmacrolett.9b00930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on the rapid formation of charge density gradients in polymer films by exposing poly([2-dimethylaminoethyl] methacrylate) (PDMAEMA) films resting on flat silica substrates to methyl iodide (i.e., MI, also known as iodomethane) vapors. We adjust the charge gradient by varying the MI concentration in solution and the process time. The thickness of the parent PDMAEMA film does not affect the diffusion of MI through and the reaction kinetics in the films. Instead, the diffusion of MI through the gaseous phase constitutes the limiting step in the overall process.
Collapse
Affiliation(s)
- Yeongun Ko
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Stephanie Christau
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Regine von Klitzing
- Department of Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education Hokkaido University, Sapporo, 060-0808, Japan
| |
Collapse
|
10
|
Gulina LB, Gurenko VE, Tolstoy VP, Mikhailovskii VY, Koroleva AV. Interface-Assisted Synthesis of the Mn 3-xFe xO 4 Gradient Film with Multifunctional Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14983-14989. [PMID: 31702162 DOI: 10.1021/acs.langmuir.9b02338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Anisotropic gradient materials are considered as promising and novel in that they have numerous functional properties and are able to transform into hierarchical microstructures. We report a facile method of gradient inorganic thin film synthesis through diffusion-controlled deposition at the gas-solution interface. To investigate the reaction of interfacial phase boundary controllable hydrolysis by gaseous ammonium, an aqueous solution of FeCl3 and MnCl2 was chosen, as the precipitation pH values for the hydroxides of these metals differ gradually. As a result of synthesis using the gas-solution interface technique (GSIT), a thin film is formed on the surface of the solution that consists of Mn2+(Fe,Mn)23+O4 nanoparticles with hausmannite crystal structure. The ratio between iron and manganese in the film can be adjusted over a wide range by varying the synthetic procedure. Specific conditions are determined that allow the formation of a Mn-Fe mixed oxide film with a gradient of composition, morphology, and properties, as well as its further transformation into microscrolls with a diameter of 10-20 μm and a length of up to 300 μm, showing weak superparamagnetic properties. The technique reported provides a new interfacial route for the development of functional gradient materials with tubular morphology.
Collapse
Affiliation(s)
- Larisa B Gulina
- Saint Petersburg State University , 7/9 Universitetskaya Nab. , St. Petersburg 199034 , Russia
| | - Vladislav E Gurenko
- Saint Petersburg State University , 7/9 Universitetskaya Nab. , St. Petersburg 199034 , Russia
| | - Valeri P Tolstoy
- Saint Petersburg State University , 7/9 Universitetskaya Nab. , St. Petersburg 199034 , Russia
| | | | - Alexandra V Koroleva
- Saint Petersburg State University , 7/9 Universitetskaya Nab. , St. Petersburg 199034 , Russia
| |
Collapse
|
11
|
Cain CN, Forzano AV, Rutan SC, Collinson MM. Experimental- and simulation-based investigations of coupling a mobile phase gradient with a continuous stationary phase gradient. J Chromatogr A 2019; 1602:237-245. [PMID: 31147155 DOI: 10.1016/j.chroma.2019.05.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/12/2019] [Accepted: 05/18/2019] [Indexed: 12/23/2022]
Abstract
This work seeks to explore and understand the effects of column orientation and degree of modification of continuous stationary phase gradient columns under a mobile phase gradient using both simulations and experiments. Peak parameters such as retention times, peak widths and resolution are obtained for five phenolic compounds on a C18-silica gradient stationary phase. Simulations show that peak widths for the solutes are dependent upon the fractional composition of C18 and orientation of the stationary phase gradient when coupled to a mobile phase gradient. Also, when compared to a simulated uniform mixed-mode column, peak widths reach a minimum on the gradient column with a coverage higher than 50% C18 where the column is oriented to have the C18 dense region at the end. Experimentally, continuous stationary phase gradients were fabricated to have a total C18 composition of 78% of the original uniform column with an exponential profile using a previously described destructive controlled rate infusion method. Under gradient mobile phase conditions, experimental retention times for the gradient column showed a significant increase compared to the original 100% C18 column. Simulations with a similar C18 composition, however, predicted decreased retention times from the original C18 column. A statistical increase in the retention time of protocatechuic acid and decrease in the peak width of tyrosol, caffeic acid, and coumaric acid were noted when the gradient column was oriented to have the C18 dense region located near the detector. Collectively, combining gradients in both the mobile and stationary phases can yield interesting neighboring ligand effects and peak broadening/focusing effects.
Collapse
Affiliation(s)
- Caitlin N Cain
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main St., Richmond, VA, 23284-2006, USA
| | - Anna V Forzano
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main St., Richmond, VA, 23284-2006, USA
| | - Sarah C Rutan
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main St., Richmond, VA, 23284-2006, USA.
| | - Maryanne M Collinson
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main St., Richmond, VA, 23284-2006, USA.
| |
Collapse
|
12
|
Gasvoda RJ, Wang S, Hausmann DM, Hudson EA, Agarwal S. Gas Phase Organic Functionalization of SiO 2 with Propanoyl Chloride. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14489-14497. [PMID: 30375874 DOI: 10.1021/acs.langmuir.8b02449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The reaction mechanism of propanoyl chloride (C2H5COCl) with -SiOH-terminated SiO2 films was studied using in situ surface infrared spectroscopy. We show that this surface functionalization reaction is temperature dependent. At 230 °C, C2H5COCl reacts with isolated surface -SiOH groups to form the expected ester linkage. Surprisingly, as the temperature is lowered to 70 °C, the ketone groups are transformed into the enol tautomer, but if the temperature is increased back to the starting exposure temperature of 230 °C, the ketone tautomer is not recovered, indicating that the enol form is thermally stable over a wide range of temperatures. Further, the enol form is directly formed after exposure of a SiO2 surface to C2H5COCl at 70 °C. We speculate that the enol form, which is energetically unfavorable, is stabilized because of hydrogen bonding with adjacent enol groups or through hydrogen bonding with unreacted surface -SiOH groups. The surface coverage of hydrocarbon molecules is calculated as ∼6 × 1012 cm-2, assuming each reacted -SiOH group contributes to one hydrocarbon linkage on the surface. At a substrate temperature of 70 °C, the enol form is unreactive with H2O, and H2O molecules simply physisorb on the surface. At higher temperatures, H2O converts the ketone to the enol tautomer and reacts with Si-O-Si bridges, forming more -SiOH reactive sites. The overall hydrocarbon coverage on the surface can then be further increased through cycling H2O and C2H5COCl doses.
Collapse
Affiliation(s)
- Ryan J Gasvoda
- Department of Chemical and Biological Engineering , Colorado School of Mines , Golden , Colorado 80401 , United States
| | - Scott Wang
- Lam Research Corporation , 4650 Cushing Parkway , Fremont , California 94538 , United States
| | - Dennis M Hausmann
- Lam Research Corporation , 11155 SW Leveton Drive , Tualatin , Oregon 97062 , United States
| | - Eric A Hudson
- Lam Research Corporation , 4650 Cushing Parkway , Fremont , California 94538 , United States
| | - Sumit Agarwal
- Department of Chemical and Biological Engineering , Colorado School of Mines , Golden , Colorado 80401 , United States
| |
Collapse
|
13
|
Bautista-Gomez J, Forzano AV, Austin JM, Collinson MM, Higgins DA. Vapor-Phase Plotting of Organosilane Chemical Gradients. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9665-9672. [PMID: 30044095 DOI: 10.1021/acs.langmuir.8b01977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vapor-phase plotting of organosilane-based self-assembled monolayer (SAM) gradients is demonstrated for the first time. Patterned SAMs are formed by delivering gas-phase organotrichlorosilane precursors to a reactive silica surface using a heated glass capillary. The capillary is attached via a short flexible tube to a reservoir containing the precursor dissolved in toluene. The proximal end of the capillary is positioned at an experimentally optimized distance of 30 μm above the substrate during film deposition. The capillary is mounted to a stepper-motor-driven X, Y plotter for raster scanning above the surface. Two different organotrichlorosilane precursors are employed in this initial demonstration: n-octyltrichlorosilane and 3-cyanopropyltrichlorosilane. The dependence of SAM deposition on ambient relative humidity, capillary-substrate separation, raster-scanning speed, and solvent viscosity and volatility is explored and optimum deposition conditions are identified. The optimized procedures are used to plot uniformly modified square "pads" and gradients of the silanes. Film formation is verified and the gradient profiles are obtained by sessile drop water contact angle measurements, spectroscopic ellipsometry measurements of film thickness, and X-ray photoelectron spectroscopy mapping. The resolution of the plotting process is currently in the millimeter range and depends on capillary diameter and distance from the substrate surface. Vapor-phase plotting affords a unique direct-write method for producing patterned and chemically graded SAMS that may find applications in microfluidic devices, planar chromatography, and optical and electronic devices.
Collapse
Affiliation(s)
- Judith Bautista-Gomez
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506-0401 , United States
| | - Anna V Forzano
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284-2006 , United States
| | - Joshua M Austin
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506-0401 , United States
| | - Maryanne M Collinson
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284-2006 , United States
| | - Daniel A Higgins
- Department of Chemistry , Kansas State University , Manhattan , Kansas 66506-0401 , United States
| |
Collapse
|
14
|
Li Z, Kumarasinghe R, Collinson MM, Higgins DA. Probing the Local Dielectric Constant of Plasmid DNA in Solution and Adsorbed on Chemically Graded Aminosilane Surfaces. J Phys Chem B 2018; 122:2307-2313. [DOI: 10.1021/acs.jpcb.8b00077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zi Li
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| | - Ruwandi Kumarasinghe
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| | - Maryanne M. Collinson
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Daniel A. Higgins
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| |
Collapse
|