1
|
Xiao S, Mu M, Feng C, Pan S, Chen N. The application of bacteria-nanomaterial hybrids in antitumor therapy. J Nanobiotechnology 2024; 22:536. [PMID: 39227831 PMCID: PMC11373302 DOI: 10.1186/s12951-024-02793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Adverse effects and multidrug resistance remain significant obstacles in conventional cancer therapy. Nanomedicines, with their intrinsic properties such as nano-sized dimensions and tunable surface characteristics, have the potential to mitigate the side effects of traditional cancer treatments. While nanomaterials have been widely applied in cancer treatment, challenges such as low targeting efficiency and poor tumor penetration persist. Recent research has shown that anaerobic bacteria exhibit high selectivity for primary tumors and metastatic cancers, offering good safety and superior tumor penetration capabilities. This suggests that combining nanomaterials with bacteria could complement their respective limitations, opening vast potential applications in cancer therapy. The use of bacteria in combination with nanomaterials for anticancer treatments, including chemotherapy, radiotherapy, and photothermal/photodynamic therapy, has contributed to the rapid development of the field of bacterial oncology treatments. This review explores the mechanisms of bacterial tumor targeting and summarizes strategies for synthesizing bacterial-nanomaterial and their application in cancer therapy. The combination of bacterial-nanomaterial hybrids with modern therapeutic approaches represents a promising avenue for future cancer treatment research, with the potential to improve treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Susu Xiao
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Mu
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chenqian Feng
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shulin Pan
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nianyong Chen
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Ijaz M, Hasan I, Chaudhry TH, Huang R, Zhang L, Hu Z, Tan Q, Guo B. Bacterial derivatives mediated drug delivery in cancer therapy: a new generation strategy. J Nanobiotechnology 2024; 22:510. [PMID: 39182109 PMCID: PMC11344338 DOI: 10.1186/s12951-024-02786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
Cancer is measured as a major threat to human life and is a leading cause of death. Millions of cancer patients die every year, although a burgeoning number of researchers have been making tremendous efforts to develop cancer medicine to fight against cancer. Owing to the complexity and heterogeneity of cancer, lack of ability to treat deep tumor tissues, and high toxicity to the normal cells, it complicates the therapy of cancer. However, bacterial derivative-mediated drug delivery has raised the interest of researchers in overcoming the restrictions of conventional cancer chemotherapy. In this review, we show various examples of tumor-targeting bacteria and bacterial derivatives for the delivery of anticancer drugs. This review also describes the advantages and limitations of delivering anticancer treatment drugs under regulated conditions employing these tumor-targeting bacteria and their membrane vesicles. This study highlights the substantial potential for clinical translation of bacterial-based drug carriers, improve their ability to work with other treatment modalities, and provide a more powerful, dependable, and distinctive tumor therapy.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Tamoor Hamid Chaudhry
- Antimicrobial Resistance (AMR) Containment & Infection Prevention & Control (IPC) Program, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Rui Huang
- Department of Blood Transfusion, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Lan Zhang
- Department of Blood Transfusion, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Ziwei Hu
- Institute of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, China.
| | - Qingqin Tan
- Department of Blood Transfusion, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Shin Y, Lim Y, Lee AR, Lee LP, Kim D, Cho ML, Kang T. Electron-Transport-Chain-Mediated Selective Growth of Gold Nanocrystals in the Intermembrane Space of Live Microbial Cells. ACS NANO 2024; 18:10045-10053. [PMID: 38527965 DOI: 10.1021/acsnano.3c11776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Hybridization of microbial cells with inorganic nanoparticles that could dramatically improve cellular functions such as electron transfer has been realized by the random attachment or stochastic entry of the nanoparticles. Clearly, the selective growth of inorganic nanoparticles on target functional organelles is ideal for such hybridization. Here, we report the selective growth of gold nanocrystals in the intermembrane space (IMS) of Escherichia coli by exploiting the electron transport chain (ETC). We systematically show that gold ions are permeated through porins in the outer membrane of E. coli and further reduced to gold nanocrystals by the ETC in live E. coli. We directly observe that the resulting gold nanocrystals exist only in the IMS by transmission electron microscopy measurements of cross-sectioned E. coli. Molecular dynamics simulations suggest that once gold ions are reduced to small nuclei by the ETC, the nuclei can be stably physisorbed onto ETC complexes, further supporting the ETC-mediated growth. Finally, we show that the ATP synthesis of E. coli where gold nanocrystals are formed in the IMS is up to 9 times higher than that of E. coli alone. We believe that our work can significantly contribute to not only improving microbial metabolic functions for biological energy conversion but also restoring physiological dysfunctions of microbial cells for biomedicine.
Collapse
Affiliation(s)
- Yonghee Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Republic of Korea
| | - Youngwook Lim
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - A Ram Lee
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, California 94720, United States
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dongchoul Kim
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Mi-La Cho
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
4
|
Zhu J, Wang B, Zhang Y, Wei T, Gao T. Living electrochemical biosensing: Engineered electroactive bacteria for biosensor development and the emerging trends. Biosens Bioelectron 2023; 237:115480. [PMID: 37379794 DOI: 10.1016/j.bios.2023.115480] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Bioelectrical interfaces made of living electroactive bacteria (EAB) provide a unique opportunity to bridge biotic and abiotic systems, enabling the reprogramming of electrochemical biosensing. To develop these biosensors, principles from synthetic biology and electrode materials are being combined to engineer EAB as dynamic and responsive transducers with emerging, programmable functionalities. This review discusses the bioengineering of EAB to design active sensing parts and electrically connective interfaces on electrodes, which can be applied to construct smart electrochemical biosensors. In detail, by revisiting the electron transfer mechanism of electroactive microorganisms, engineering strategies of EAB cells for biotargets recognition, sensing circuit construction, and electrical signal routing, engineered EAB have demonstrated impressive capabilities in designing active sensing elements and developing electrically conductive interfaces on electrodes. Thus, integration of engineered EAB into electrochemical biosensors presents a promising avenue for advancing bioelectronics research. These hybridized systems equipped with engineered EAB can promote the field of electrochemical biosensing, with applications in environmental monitoring, health monitoring, green manufacturing, and other analytical fields. Finally, this review considers the prospects and challenges of the development of EAB-based electrochemical biosensors, identifying potential future applications.
Collapse
Affiliation(s)
- Jin Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Baoguo Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yixin Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
5
|
Hostert J, Spitzer QA, Giammattei P, Renner JN. Scalable Production of Peptides for Enhanced Struvite Formation via Expression on the Surface of Genetically Engineered Microbes. ACS MATERIALS AU 2023; 3:548-556. [PMID: 38089095 PMCID: PMC10510520 DOI: 10.1021/acsmaterialsau.3c00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 11/19/2024]
Abstract
A promising method for recycling phosphate from wastewater is through precipitation of struvite (MgNH4PO4·6H2O), a slow-release fertilizer. Peptides have been shown to increase the yield of struvite formation, but producing peptides via solid phase synthesis is cost prohibitive. This work investigates the effects of peptide-expressing bacteria on struvite precipitation to provide a sustainable and cost-efficient means to enhance struvite precipitation. A peptide known for increased struvite yield was expressed on a membrane protein in Escherichia coli(E. coli), and then 5 mL precipitation reactions were performed in 50 mL culture tubes for at least 15 min. The yield of struvite crystals was examined, with the presence of peptide-expressing E. coli inducing significantly higher yields than nonpeptide-expressing E. coli when normalized to the amount of bacteria. The precipitate was identified as struvite through Fourier transform infrared spectroscopy and energy dispersive spectroscopy, while the morphology and size of the crystals were analyzed through optical microscopy and scanning electron microscopy. Crystals were found to have a larger area when precipitated with the peptide-expressing bacteria. Additionally, bacteria-struvite samples were thermogravimetrically analyzed to quantify their purity and determine their thermal decomposition behavior. Overall, this study presents the benefits of a novel, microbe-driven method of struvite precipitation, offering a means for scalable implementation.
Collapse
Affiliation(s)
- Jacob
D. Hostert
- Department
of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Quincy A. Spitzer
- Department
of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Paola Giammattei
- Department
of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Julie N. Renner
- Department
of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
6
|
Bader LPE, Klok HA. Chemical Approaches for the Preparation of Bacteria - Nano/Microparticle Hybrid Systems. Macromol Biosci 2023; 23:e2200440. [PMID: 36454518 DOI: 10.1002/mabi.202200440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Bacteria represent a class of living cells that are very attractive carriers for the transport and delivery of nano- and microsized particles. The use of cell-based carriers, such as for example bacteria, may allow to precisely direct nano- or microsized cargo to a desired site, which would greatly enhance the selectivity of drug delivery and allow to mitigate side effects. One key step towards the use of such nano-/microparticle - bacteria hybrids is the immobilization of the cargo on the bacterial cell surface. To fabricate bacteria - nano-/microparticle biohybrid microsystems, a wide range of chemical approaches are available that can be used to immobilize the particle payload on the bacterial cell surface. This article presents an overview of the various covalent and noncovalent chemistries that are available for the preparation of bacteria - nano-/microparticle hybrids. For each of the different chemical approaches, an overview will be presented that lists the bacterial strains that have been modified, the type and size of nanoparticles that have been immobilized, as well as the methods that have been used to characterize the nanoparticle-modified bacteria.
Collapse
Affiliation(s)
- Lisa Patricia Elisabeth Bader
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| |
Collapse
|
7
|
Han SI, Sarkes DA, Hurley MM, Renberg R, Huang C, Li Y, Jahnke JP, Sumner JJ, Stratis-Cullum DN, Han A. Identification of Microorganisms that Bind Specifically to Target Materials of Interest Using a Magnetophoretic Microfluidic Platform. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11391-11402. [PMID: 36847552 PMCID: PMC10848205 DOI: 10.1021/acsami.2c15192] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Discovery of microorganisms and their relevant surface peptides that specifically bind to target materials of interest can be achieved through iterative biopanning-based screening of cellular libraries having high diversity. Recently, microfluidics-based biopanning methods have been developed and exploited to overcome the limitations of conventional methods where controlling the shear stress applied to remove cells that do not bind or only weakly bind to target surfaces is difficult and the overall experimental procedure is labor-intensive. Despite the advantages of such microfluidic methods and successful demonstration of their utility, these methods still require several rounds of iterative biopanning. In this work, a magnetophoretic microfluidic biopanning platform was developed to isolate microorganisms that bind to target materials of interest, which is gold in this case. To achieve this, gold-coated magnetic nanobeads, which only attached to microorganisms that exhibit high affinity to gold, were used. The platform was first utilized to screen a bacterial peptide display library, where only the cells with surface peptides that specifically bind to gold could be isolated by the high-gradient magnetic field generated within the microchannel, resulting in enrichment and isolation of many isolates with high affinity and high specificity toward gold even after only a single round of separation. The amino acid profile of the resulting isolates was analyzed to provide a better understanding of the distinctive attributes of peptides that contribute to their specific material-binding capabilities. Next, the microfluidic system was utilized to screen soil microbes, a rich source of extremely diverse microorganisms, successfully isolating many naturally occurring microorganisms that show strong and specific binding to gold. The results show that the developed microfluidic platform is a powerful screening tool for identifying microorganisms that specifically bind to a target material surface of interest, which can greatly accelerate the development of new peptide-driven biological materials and hybrid organic-inorganic materials.
Collapse
Affiliation(s)
- Song-I Han
- Department
of Electrical and Computer Engineering, Texas A&M University, College
Station, Texas 77843, USA
| | - Deborah A. Sarkes
- Biotechnology
Branch, U.S. Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory (ARL), Adelphi, Maryland 20783, USA
| | - Margaret M. Hurley
- Biotechnology
Branch, U.S. Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory (ARL), Adelphi, Maryland 20783, USA
| | - Rebecca Renberg
- Biotechnology
Branch, U.S. Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory (ARL), Adelphi, Maryland 20783, USA
| | - Can Huang
- Department
of Electrical and Computer Engineering, Texas A&M University, College
Station, Texas 77843, USA
| | - Yuwen Li
- Department
of Electrical and Computer Engineering, Texas A&M University, College
Station, Texas 77843, USA
| | - Justin P. Jahnke
- Biotechnology
Branch, U.S. Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory (ARL), Adelphi, Maryland 20783, USA
| | - James J. Sumner
- Biotechnology
Branch, U.S. Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory (ARL), Adelphi, Maryland 20783, USA
| | - Dimitra N. Stratis-Cullum
- Biotechnology
Branch, U.S. Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory (ARL), Adelphi, Maryland 20783, USA
| | - Arum Han
- Department
of Electrical and Computer Engineering, Texas A&M University, College
Station, Texas 77843, USA
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, USA
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
8
|
Surveying membrane landscapes: a new look at the bacterial cell surface. Nat Rev Microbiol 2023:10.1038/s41579-023-00862-w. [PMID: 36828896 DOI: 10.1038/s41579-023-00862-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/26/2023]
Abstract
Recent studies applying advanced imaging techniques are changing the way we understand bacterial cell surfaces, bringing new knowledge on everything from single-cell heterogeneity in bacterial populations to their drug sensitivity and mechanisms of antimicrobial resistance. In both Gram-positive and Gram-negative bacteria, the outermost surface of the bacterial cell is being imaged at nanoscale; as a result, topographical maps of bacterial cell surfaces can be constructed, revealing distinct zones and specific features that might uniquely identify each cell in a population. Functionally defined assembly precincts for protein insertion into the membrane have been mapped at nanoscale, and equivalent lipid-assembly precincts are suggested from discrete lipopolysaccharide patches. As we review here, particularly for Gram-negative bacteria, the applications of various modalities of nanoscale imaging are reawakening our curiosity about what is conceptually a 3D cell surface landscape: what it looks like, how it is made and how it provides resilience to respond to environmental impacts.
Collapse
|
9
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. Bacteria associated with glioma: a next wave in cancer treatment. Front Cell Infect Microbiol 2023; 13:1164654. [PMID: 37201117 PMCID: PMC10185885 DOI: 10.3389/fcimb.2023.1164654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023] Open
Abstract
Malignant gliomas occur more often in adults and may affect any part of the central nervous system (CNS). Although their results could be better, surgical excision, postoperative radiation and chemotherapy, and electric field therapy are today's mainstays of glioma care. However, bacteria can also exert anti-tumor effects via mechanisms such as immune regulation and bacterial toxins to promote apoptosis, inhibit angiogenesis, and rely on their natural characteristics to target the tumor microenvironment of hypoxia, low pH, high permeability, and immunosuppression. Tumor-targeted bacteria expressing anticancer medications will go to the cancer site, colonize the tumor, and then produce the therapeutic chemicals that kill the cancer cells. Targeting bacteria in cancer treatment has promising prospects. Rapid advances have been made in the study of bacterial treatment of tumors, including using bacterial outer membrane vesicles to load chemotherapy drugs or combine with nanomaterials to fight tumors, as well as the emergence of bacteria combined with chemotherapy, radiotherapy, and photothermal/photodynamic therapy. In this study, we look back at the previous years of research on bacteria-mediated glioma treatment and move forward to where we think it is headed.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
- *Correspondence: Yiming Meng, ; Tao Yu, ; Haozhe Piao,
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
- *Correspondence: Yiming Meng, ; Tao Yu, ; Haozhe Piao,
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Shenyang, China
- *Correspondence: Yiming Meng, ; Tao Yu, ; Haozhe Piao,
| |
Collapse
|
10
|
Karoń K, Zabłocka-Godlewska E, Krukiewicz K. Recent advances in the design of bacteria-based supercapacitors: Current limitations and future opportunities. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Jiménez-Jiménez C, Moreno VM, Vallet-Regí M. Bacteria-Assisted Transport of Nanomaterials to Improve Drug Delivery in Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:288. [PMID: 35055305 PMCID: PMC8781131 DOI: 10.3390/nano12020288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Currently, the design of nanomaterials for the treatment of different pathologies is presenting a major impact on biomedical research. Thanks to this, nanoparticles represent a successful strategy for the delivery of high amounts of drugs for the treatment of cancer. Different nanosystems have been designed to combat this pathology. However, the poor penetration of these nanomaterials into the tumor tissue prevents the drug from entering the inner regions of the tumor. Some bacterial strains have self-propulsion and guiding capacity thanks to their flagella. They also have a preference to accumulate in certain tumor regions due to the presence of different chemo-attractants factors. Bioconjugation reactions allow the binding of nanoparticles in living systems, such as cells or bacteria, in a simple way. Therefore, bacteria are being used as a transport vehicle for nanoparticles, facilitating their penetration and the subsequent release of the drug inside the tumor. This review would summarize the literature on the anchoring methods of diverse nanosystems in bacteria and, interestingly, their advantages and possible applications in cancer therapy.
Collapse
Affiliation(s)
- Carla Jiménez-Jiménez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain;
| | - Víctor M. Moreno
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, 28040 Madrid, Spain;
| | - María Vallet-Regí
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain;
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, 28040 Madrid, Spain;
| |
Collapse
|
12
|
Vázquez-Arias A, Pérez-Juste J, Pastoriza-Santos I, Bodelon G. Prospects and applications of synergistic noble metal nanoparticle-bacterial hybrid systems. NANOSCALE 2021; 13:18054-18069. [PMID: 34726220 DOI: 10.1039/d1nr04961e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hybrid systems composed of living cells and nanomaterials have been attracting great interest in various fields of research ranging from materials science to biomedicine. In particular, the interfacing of noble metal nanoparticles and bacterial cells in a single architecture aims to generate hybrid systems that combine the unique physicochemical properties of the metals and biological attributes of the microbial cells. While the bacterial cells provide effector and scaffolding functions, the metallic component endows the hybrid system with multifunctional capabilities. This synergistic effort seeks to fabricate living materials with improved functions and new properties that surpass their individual components. Herein, we provide an overview of this research field and the strategies for obtaining hybrid systems, and we summarize recent biological applications, challenges and current prospects in this exciting new arena.
Collapse
Affiliation(s)
- Alba Vázquez-Arias
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Gustavo Bodelon
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| |
Collapse
|
13
|
Xie S, Zhang P, Zhang Z, Liu Y, Chen M, Li S, Li X. Bacterial navigation for tumor targeting and photothermally-triggered bacterial ghost transformation for spatiotemporal drug release. Acta Biomater 2021; 131:172-184. [PMID: 34171461 DOI: 10.1016/j.actbio.2021.06.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Cancer chemotherapy is confronted with challenges regarding the effective delivery of chemotherapeutics into tumor cells after systemic administration. Herein, we propose a strategy to load drugs into probiotic E. coli Nissle 1917 (EcN) for self-guided navigation to tumor tissues and subsequently release the drugs with in situ transformation into bacterial ghosts (BGs). Chemotherapeutic agent 5-fluorouracil (FU) and macrophage phenotype regulator zoledronic acid (ZOL) are loaded into EcN through electroporation, followed by decoration of Au nanorods on the ECN surface to construct EcNZ/F@Au. High loading levels of 5FU (8.8%) and ZOL (10.5%) are achieved as well as high retention rates of bacterial viability (87%) and motion velocity (88%). Under near infrared (NIR) illumination the photothermal effect of Au nanorods elevates the local temperature to induce the transformation of live EcN into BGs. The created transmembrane channels initiate the gradual drug release from BGs, thus representing the first attempt to control the drug release via a biological evolution. An intermittent NIR illumination causes stepwise increases in the BG formation and drug release, which could implement an external on-off control and spatiotemporal drug release. Self-guided motion of EcN promotes efficient extravasation across blood vessels and preferential accumulation of drugs in tumors. In addition to the chemotherapeutic effect of FU, the local release of ZOL from EcNZ/F@Au enhances valid polarization of tumor-associated macrophages toward the M1 phenotype and an effective production of proinflammatory cytokines, leading to a synergistic efficacy on tumor growth inhibition. Thus, this study demonstrates a feasible strategy to integrate chemotherapy, immunotherapy, and photothermal effects in a concise manner for effective cancer treatment with few side effects. STATEMENT OF SIGNIFICANCE: Bacteria are capable to trace and colonize in hypoxic tumor tissues. Bacterial drug carriers indicate limitations in efficient drug loading and effective release modulation. Herein, we propose a strategy to load drugs into bacteria for self-guided delivery and subsequently release the drugs in tumors with in situ transformation into bacterial ghost (BGs). Drugs are loaded into live bacteria through electroporation and Au nanorods are decorated on the bacterial surface, wherein the photothermal effect, chemotherapy, and immunotherapy are integrated in a concise manner. NIR illmumination of Au nanorods elevates the local temparature, induces the BG tranformation, and activates the spatiotemporal drug release, representing the first attempt of release modulation via a biological evolution.
Collapse
|
14
|
Improved Microbial Fuel Cell Performance by Engineering E. coli for Enhanced Affinity to Gold. ENERGIES 2021. [DOI: 10.3390/en14175389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microorganism affinity for surfaces can be controlled by introducing material binding motifs into proteins such as fimbrial tip and outer membrane proteins. Here, controlled surface affinity is used to manipulate and enhance electrical power production in a typical bioelectrochemical system, a microbial fuel cell (MFC). Specifically, gold-binding motifs of various affinity were introduced into two scaffolds in Escherichia coli: eCPX, a modified version of outer membrane protein X (OmpX), and FimH, the tip protein of the fimbriae. The behavior of these strains on gold electrodes was examined in small-scale (240 µL) MFCs and 40 mL U-tube MFCs. A clear correlation between the affinity of a strain for a gold surface and the peak voltage produced during MFC operation is shown in the small-scale MFCs; strains displaying peptides with high affinity for gold generate potentials greater than 80 mV while strains displaying peptides with minimal affinity to gold produce potentials around 30 mV. In the larger MFCs, E. coli strains with high affinity to gold exhibit power densities up to 0.27 mW/m2, approximately a 10-fold increase over unengineered strains lacking displayed peptides. Moreover, in the case of the modified FimH strains, this increased power production is sustained for five days.
Collapse
|
15
|
Terrell JL, Tschirhart T, Jahnke JP, Stephens K, Liu Y, Dong H, Hurley MM, Pozo M, McKay R, Tsao CY, Wu HC, Vora G, Payne GF, Stratis-Cullum DN, Bentley WE. Bioelectronic control of a microbial community using surface-assembled electrogenetic cells to route signals. NATURE NANOTECHNOLOGY 2021; 16:688-697. [PMID: 33782589 DOI: 10.1038/s41565-021-00878-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 02/15/2021] [Indexed: 05/15/2023]
Abstract
We developed a bioelectronic communication system that is enabled by a redox signal transduction modality to exchange information between a living cell-embedded bioelectronics interface and an engineered microbial network. A naturally communicating three-member microbial network is 'plugged into' an external electronic system that interrogates and controls biological function in real time. First, electrode-generated redox molecules are programmed to activate gene expression in an engineered population of electrode-attached bacterial cells, effectively creating a living transducer electrode. These cells interpret and translate electronic signals and then transmit this information biologically by producing quorum sensing molecules that are, in turn, interpreted by a planktonic coculture. The propagated molecular communication drives expression and secretion of a therapeutic peptide from one strain and simultaneously enables direct electronic feedback from the second strain, thus enabling real-time electronic verification of biological signal propagation. Overall, we show how this multifunctional bioelectronic platform, termed a BioLAN, reliably facilitates on-demand bioelectronic communication and concurrently performs programmed tasks.
Collapse
Affiliation(s)
- Jessica L Terrell
- U.S. Army Combat Capabilities Development Command (DEVCOM)-Army Research Laboratory, Adelphi, MD, USA
| | - Tanya Tschirhart
- Center for Biomolecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Justin P Jahnke
- U.S. Army Combat Capabilities Development Command (DEVCOM)-Army Research Laboratory, Adelphi, MD, USA
| | - Kristina Stephens
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Yi Liu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Hong Dong
- U.S. Army Combat Capabilities Development Command (DEVCOM)-Army Research Laboratory, Adelphi, MD, USA
| | - Margaret M Hurley
- U.S. Army Combat Capabilities Development Command (DEVCOM)-Army Research Laboratory, Aberdeen, MD, USA
| | - Maria Pozo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Ryan McKay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Chen Yu Tsao
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Hsuan-Chen Wu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Gary Vora
- Center for Biomolecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Gregory F Payne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Dimitra N Stratis-Cullum
- U.S. Army Combat Capabilities Development Command (DEVCOM)-Army Research Laboratory, Adelphi, MD, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA.
| |
Collapse
|
16
|
Dong H, Sarkes DA, Stratis-Cullum DN, Hurley MM. Direct conjugation of fluorescent quantum dots with E. coli via surface-displayed histidine-containing peptides. Colloids Surf B Biointerfaces 2021; 203:111730. [PMID: 33853002 DOI: 10.1016/j.colsurfb.2021.111730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/27/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Biocompatible approaches to labeling bacteria with fluorescent nanoparticles are essential in order to create living bacterial bioconjugates for imaging, biosensors, medicine, and other applications. Herein we report the direct conjugation of carboxyl quantum dots (QDs) with E. coli outer membrane via surface-displayed binding peptides. The histidine-containing peptide H6G9 was displayed at the N-terminus of membrane-embedded enhanced circularly permuted outer membrane protein X (eCPX) scaffold, which was expressed upon chemical induction. The presence of the binding peptide creates an environment distinct from the negatively charged E. coli surface and provides strong binding affinity to carboxyl quantum dots (QDs). Transmission electron microscopy (TEM) analysis of E. coli-QD bioconjugates revealed high loading densities of these QDs immobilized on the cell surface, even when adding a very low concentration (10 μg/mL) of QDs in order to reduce the cell exposure. These hybrid cells strongly fluoresce with each of the distinct colors of loaded QDs with different emission wavelengths, which can be easily visualized by fluorescence microscopy or differentiated using flow cytometry. Importantly, the E. coli-QD bioconjugates were highly viable and maintained the ability to grow and divide. This study demonstrates a simple, direct, and highly efficient method for labelling bacteria with QDs, without significantly compromising the vitality of the cells.
Collapse
Affiliation(s)
- Hong Dong
- DEVCOM Army Research Laboratory, Biotechnology Branch, 2800 Powder Mill Road, Adelphi, MD, 20783, United States.
| | - Deborah A Sarkes
- DEVCOM Army Research Laboratory, Biotechnology Branch, 2800 Powder Mill Road, Adelphi, MD, 20783, United States
| | - Dimitra N Stratis-Cullum
- DEVCOM Army Research Laboratory, Biotechnology Branch, 2800 Powder Mill Road, Adelphi, MD, 20783, United States
| | - Margaret M Hurley
- DEVCOM Army Research Laboratory, Biotechnology Branch, 2800 Powder Mill Road, Adelphi, MD, 20783, United States
| |
Collapse
|
17
|
Huo M, Wang L, Zhang L, Wei C, Chen Y, Shi J. Photosynthetic Tumor Oxygenation by Photosensitizer-Containing Cyanobacteria for Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2019; 59:1906-1913. [PMID: 31721383 DOI: 10.1002/anie.201912824] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/03/2019] [Indexed: 12/28/2022]
Abstract
Sustained tumor oxygenation is of critical importance during type-II photodynamic therapy (PDT), which depends on the intratumoral oxygen level for the generation of reactive oxygen species. Herein, the modification of photosynthetic cyanobacteria with the photosensitizer chlorin e6 (ce6) to form ce6-integrated photosensitive cells, termed ceCyan, is reported. Upon 660 nm laser irradiation, sustained photosynthetic O2 evolution by the cyanobacteria and the immediate generation of reactive singlet oxygen species (1 O2 ) by the integrated photosensitizer could be almost simultaneously achieved for tumor therapy using type-II PDT both in vitro and in vivo. This work contributes a conceptual while practical paradigm for biocompatible and effective PDT using hybrid microorganisms, displaying a bright future in clinical PDT by microbiotic nanomedicine.
Collapse
Affiliation(s)
- Minfeng Huo
- State Key Laboratory of High Performance Ceramics, and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liying Wang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Linlin Zhang
- State Key Laboratory of High Performance Ceramics, and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Chenyang Wei
- State Key Laboratory of High Performance Ceramics, and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics, and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics, and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Huo M, Wang L, Zhang L, Wei C, Chen Y, Shi J. Photosynthetic Tumor Oxygenation by Photosensitizer‐Containing Cyanobacteria for Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912824] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Minfeng Huo
- State Key Laboratory of High Performance Ceramics, and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Liying Wang
- Shanghai Tenth People's HospitalTongji University School of Medicine Shanghai 200072 P. R. China
| | - Linlin Zhang
- State Key Laboratory of High Performance Ceramics, and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
| | - Chenyang Wei
- State Key Laboratory of High Performance Ceramics, and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics, and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics, and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|