1
|
Raßmann N, Weber M, Glaß REJ, Kreger K, Helfricht N, Schmidt HW, Papastavrou G. Electrogelation: Controlled Fast Formation of Micrometer-Thick Films from Low-Molecular Weight Hydrogelators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17190-17200. [PMID: 37976397 DOI: 10.1021/acs.langmuir.3c02270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The controlled electrochemical deposition of hydrogels from low-molecular weight hydrogelators (LMWHGs) allows for the defined formation of thin films on electrodes. Here, the deposition of fibrillar networks consisting of N,N',N″-tris(4-carboxyphenylene)-1,3,5-benzenetricarboxamide (BTA) onto ultraflat gold electrodes has been studied. This process, also termed electrogelation, is based on a local change in the pH due to electrolysis of water at the electrode. The protonation of the BTA sodium salt leads to self-assembly into supramolecular fibrillar structures mainly via hydrogen bonding of the uncharged molecules. The resulting hydrogel film was characterized in terms of its thickness by atomic force microscopy (AFM). Two different AFM-based techniques have been used: ex situ imaging of dried films and in situ nanoindentation of the hydrated hydrogel films. The deposition process was studied as a function of gelator concentration, applied potential, and gelation time. These parameters allow control of the film thickness to a high degree of accuracy within a few tenths of nanometers. Film formation takes place in a few seconds at moderate applied potentials, which is beneficial for biomedical applications. The results obtained for the BTA presented here can be transferred to any type of pH-responsive LMWHG and many reversibly formed hydrogel films.
Collapse
Affiliation(s)
- Nadine Raßmann
- Department of Physical Chemistry II, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Melina Weber
- Department of Macromolecular Chemistry I, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Roman E J Glaß
- Department of Physical Chemistry II, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Klaus Kreger
- Department of Macromolecular Chemistry I, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Nicolas Helfricht
- Department of Physical Chemistry II, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Hans-Werner Schmidt
- Department of Macromolecular Chemistry I, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
- Bavarian Polymer Institute, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Georg Papastavrou
- Department of Physical Chemistry II, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
- Bavarian Polymer Institute, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| |
Collapse
|
2
|
Tangsombun C, Smith DK. Fabricating Shaped and Patterned Supramolecular Multigelator Objects via Diffusion-Adhesion Gel Assembly. J Am Chem Soc 2023; 145:24061-24070. [PMID: 37885219 PMCID: PMC10636748 DOI: 10.1021/jacs.3c07376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
We report the use of acid-diffusion to assemble core-shell supramolecular gel beads with different low-molecular-weight gelators (LMWGs) in the core and shell. These gel beads grow a shell of dibenzylidenesorbitol-based DBS-COOH onto a core comprising DBS-CONHNH2 and agarose that has been loaded with acetic acid. Diffusion of the acid from the core triggers shell assembly. The presence of DBS-CONHNH2 enables the gel core to be loaded with metal nanoparticles (NPs) as acyl hydrazide reduces metal salts in situ. The pH-responsiveness of DBS-COOH allows responsive assembly of the shell with both temporal and spatial control. By fixing multiple gel beads in a Petri dish, the cores become linked to one another by the assembled DBS-COOH gel shell─a process we describe as diffusion-adhesion assembly. By controlling the geometry of the beads with respect to one another, it is possible to pattern the structures, and using a layer-by-layer approach, 3D objects can be fabricated. If some of the beads are loaded with basic DBS-carboxylate instead of CH3COOH, they act as a "sink" for diffusing protons, preventing DBS-COOH shell assembly in the close proximity. Those beads do not adhere to the remainder of the growing gel object and can be simply removed once diffusion-assembly is complete, acting as templates, and enabling the fabrication of 3D "imprinted" multigel architectures. Preloading the gel beads with AuNPs or AgNPs suspends these functional units within the cores at precisely defined locations within a wider gel object. In summary, this approach enables the dynamic fabrication of shaped and patterned gels with embedded metal NPs─such objects have potential next-generation applications in areas including soft nanoelectronics and regenerative medicine.
Collapse
Affiliation(s)
- Chayanan Tangsombun
- Department of Chemistry, University
of York, Heslington, York YO10 5DD, U.K.
| | - David K. Smith
- Department of Chemistry, University
of York, Heslington, York YO10 5DD, U.K.
| |
Collapse
|
3
|
Taylor CJ, Manson JA, Clemens G, Taylor BA, Chamberlain TW, Bourne RA. Modern advancements in continuous-flow aided kinetic analysis. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00467k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although kinetic analysis has traditionally been conducted in a batch vessel, continuous-flow aided kinetic analysis continues to swell in popularity.
Collapse
Affiliation(s)
- Connor J. Taylor
- Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Jamie A. Manson
- Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Graeme Clemens
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Brian A. Taylor
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Thomas W. Chamberlain
- Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard A. Bourne
- Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
4
|
Cooke HS, Schlichter L, Piras CC, Smith DK. Double diffusion for the programmable spatiotemporal patterning of multi-domain supramolecular gels. Chem Sci 2021; 12:12156-12164. [PMID: 34667581 PMCID: PMC8457394 DOI: 10.1039/d1sc03155d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/05/2021] [Indexed: 01/24/2023] Open
Abstract
To achieve spatial resolution of a multi-component gel, a double diffusion approach is used which enables the precise programming of self-assembled patterned domains with well-defined shapes and sizes. The low-molecular-weight gelators (LMWGs) used in this study are pH-responsive DBS-CO2H and thermally-responsive DBS-CONHNH2 (both based on 1,3:2,4-dibenzylidenesorbitol, DBS). A DBS-CONHNH2 gel was initially assembled in a tray, and then loaded at carefully-selected positions with either basified DBS-CO2H (i.e. DBS-carboxylate) or an acid. These soluble components subsequently diffuse through the pre-formed gel matrix, and in the domains when/where they mix, protonation of the DBS-carboxylate induces self-assembly of the DBS-CO2H network, leading to a patterned gel-in-gel object with well-defined shape and dimensions. Using a strong acid achieves fast gelation kinetics, creating smaller, better-defined macroscale objects but with less nanoscale order. Using a weak acid source with slow kinetics, gives slightly larger objects, but on the nanoscale the DBS-CO2H network formation is better controlled, giving more homogeneous nanoscale structures and stiffer objects. The patterned objects can be further reinforced by the presence of agarose polymer gelator. The shape of the patterning is programmed by both the shape of the central reservoir and the starting geometry in which the reservoirs are organised, with the balance between factors depending on assembly kinetics, as dictated by the choice of acid. This simple methodology therefore enables programming of patterned gels with spatiotemporal control and emergent patterning characteristics. To achieve spatial resolution of a multi-component gel, a double diffusion approach is used which enables the precise programming of emergent self-assembled patterned domains with well-defined shapes and sizes.![]()
Collapse
Affiliation(s)
- Hannah S Cooke
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Lisa Schlichter
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Carmen C Piras
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - David K Smith
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
5
|
Huyke DA, Ramachandran A, Ramirez-Neri O, Guerrero-Cruz JA, Gee LB, Braun A, Sokaras D, Garcia-Estrada B, Solomon EI, Hedman B, Delgado-Jaime MU, DePonte DP, Kroll T, Santiago JG. Millisecond timescale reactions observed via X-ray spectroscopy in a 3D microfabricated fused silica mixer. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1100-1113. [PMID: 34212873 PMCID: PMC8284405 DOI: 10.1107/s1600577521003830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/09/2021] [Indexed: 06/13/2023]
Abstract
Determination of electronic structures during chemical reactions remains challenging in studies which involve reactions in the millisecond timescale, toxic chemicals, and/or anaerobic conditions. In this study, a three-dimensionally (3D) microfabricated microfluidic mixer platform that is compatible with time-resolved X-ray absorption and emission spectroscopy (XAS and XES, respectively) is presented. This platform, to initiate reactions and study their progression, mixes a high flow rate (0.50-1.5 ml min-1) sheath stream with a low-flow-rate (5-90 µl min-1) sample stream within a monolithic fused silica chip. The chip geometry enables hydrodynamic focusing of the sample stream in 3D and sample widths as small as 5 µm. The chip is also connected to a polyimide capillary downstream to enable sample stream deceleration, expansion, and X-ray detection. In this capillary, sample widths of 50 µm are demonstrated. Further, convection-diffusion-reaction models of the mixer are presented. The models are experimentally validated using confocal epifluorescence microscopy and XAS/XES measurements of a ferricyanide and ascorbic acid reaction. The models additionally enable prediction of the residence time and residence time uncertainty of reactive species as well as mixing times. Residence times (from initiation of mixing to the point of X-ray detection) during sample stream expansion as small as 2.1 ± 0.3 ms are also demonstrated. Importantly, an exploration of the mixer operational space reveals a theoretical minimum mixing time of 0.91 ms. The proposed platform is applicable to the determination of the electronic structure of conventionally inaccessible reaction intermediates.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | | | - Edward I. Solomon
- Stanford University, Stanford, CA 94305, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | | | - Daniel P. DePonte
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | | |
Collapse
|
6
|
Khoeini D, Scott TF, Neild A. Microfluidic enhancement of self-assembly systems. LAB ON A CHIP 2021; 21:1661-1675. [PMID: 33949588 DOI: 10.1039/d1lc00038a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dynamic, kinetically-controlled, self-assembly processes are commonly observed in nature and are capable of creating intricate, functional architectures from simple precursors. However, notably, much of the research into molecular self-assembly has been performed using conventional bulk techniques where the resultant species are dictated by thermodynamic stability to yield relatively simple assemblies. Whereas, the environmental control offered by microfluidic systems offers methods to achieve non-equilibrium reaction conditions capable of increasingly sophisticated self-assembled structures. Alterations to the immediate microenvironment during the assembly of the molecules is possible, providing the basis for kinetically-controlled assembly. This review examines the key mechanism offered by microfluidic systems and the architectures required to access them. The mechanisms include diffusion-led mixing, shear gradient alignment, spatial and temporal confinement, and structural templates in multiphase systems. The works are selected and categorised in terms of the microfluidic approaches taken rather than the chemical constructs which are formed.
Collapse
Affiliation(s)
- Davood Khoeini
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Timothy F Scott
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia and Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Adrian Neild
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
7
|
Kanzaki C, Matoba S, Inagawa A, Fukuhara G, Okada T, Narushima T, Okamoto H, Numata M. Linear Momentum of a Microfluid Realizes an Anisotropic Reaction at the Ends of a Supramolecular Nanofiber. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chisako Kanzaki
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Shota Matoba
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Arinori Inagawa
- Graduate School of Regional Development and Creativity, Utsunomiya University, Utsunomiya, Tochigi 321-8585, Japan
| | - Gaku Fukuhara
- Department of Chemistry, Tokyo Institute of Technology, Tokyo 152-8551, Japan
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Tetsuo Okada
- Department of Chemistry, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Tetsuya Narushima
- Institute for Molecular Science and The Graduate University for Advanced Studies (Sokendai), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Hiromi Okamoto
- Institute for Molecular Science and The Graduate University for Advanced Studies (Sokendai), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Munenori Numata
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
8
|
Schlichter L, Piras CC, Smith DK. Spatial and temporal diffusion-control of dynamic multi-domain self-assembled gels. Chem Sci 2021; 12:4162-4172. [PMID: 34163689 PMCID: PMC8179439 DOI: 10.1039/d0sc06862d] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The dynamic assembly of a pH-responsive low-molecular-weight gelator (LMWG) within the pre-formed matrix of a second LMWG has been achieved via diffusion of an acid from a reservoir cut into the gel. Self-assembly of the acid-triggered LMWG as it converts from micellar aggregates at basic pH into gel nanofibers at lower pH values can be both spatially and temporally controlled. The pH-responsive LMWG has an impact on the stiffness of the pre-formed gel in the domains in which it assembles. When low acid concentrations are used, LMWG assembly is transient – after the initial proton diffusion phase, the pH rises and disassembly occurs as the system equilibrates. Re-application of additional acid as ‘fuel’ can then re-assemble the LMWG network. Using glucono-δ-lactone (which slowly hydrolyses to gluconic acid) instead of HCl gives slower, more spatially-restricted assembly, and creates longer-lasting pH gradients within the gel. The presence of an agarose polymer gel network improves the mechanical strength of the gels and appears to slightly enhance the rate of proton diffusion. More sophisticated reservoir shapes can be cut into these more mechanically robust gels, enabling the creation of diffusion waves with different geometries, and hence different patterns of LMWG activation. Multiple reservoirs can be used to create overlapping proton diffusion waves, hence achieving differentiated pH patterns in the gel. Using acid diffusion in this way within gels is an intriguing and powerful way of dynamic patterning. The ability to temporally-evolve spatially-resolved patterns using biocompatible weak acids, and the change in rheological performance of the triggered domains, suggest potential future applications of this strategy in tissue engineering. The assembly of a pH-sensitive LMWG within a pre-formed network of a second LMWG can be achieved by diffusing acids from pre-cut reservoirs, giving rise to patterned gels in which the rheological properties evolve with spatial and temporal control.![]()
Collapse
Affiliation(s)
- Lisa Schlichter
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Carmen C Piras
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - David K Smith
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
9
|
Frank A, Bernet A, Kreger K, Schmidt HW. Supramolecular microtubes based on 1,3,5-benzenetricarboxamides prepared by self-assembly upon heating. SOFT MATTER 2020; 16:4564-4568. [PMID: 32242882 DOI: 10.1039/d0sm00268b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A series of three 1,3,5-benzenetricarboxamides with peripheral tertiary N,N-dialkyl-ethylamino substituents with different length of the alkyl groups is reported. In particular, the N1,N3,N5-tris[2-(diethylamino)-ethyl]-1,3,5-benzenetricarboxamide exhibits phase separation followed by self-assembly upon heating from aqueous solution into well-defined supramolecular fiber-like structures in the form of microtubes.
Collapse
Affiliation(s)
- Andreas Frank
- Macromolecular Chemistry, Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | | | | | | |
Collapse
|
10
|
Kanzaki C, Inagawa A, Fukuhara G, Okada T, Numata M. Proton‐Gradient‐Driven Self‐Assembly of Porphyrin and In Situ Dynamic Analysis in a Microflow Platform. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chisako Kanzaki
- Department of Biomolecular Chemistry Graduate School of Life and Environmental SciencesKyoto Prefectural University, Shimogamo Sakyo-ku Kyoto 606-8522 Japan
| | - Arinori Inagawa
- Graduate School of Regional Development and CreativityUtsunomiya University Tochigi 321-8585 Japan
| | - Gaku Fukuhara
- Department of ChemistryTokyo Institute of Technology Tokyo 152-8551 Japan
- JST, PRESTO Saitama 332-0012 Japan
| | - Tetsuo Okada
- Department of ChemistryTokyo Institute of Technology Tokyo 152-8551 Japan
| | - Munenori Numata
- Department of Biomolecular Chemistry Graduate School of Life and Environmental SciencesKyoto Prefectural University, Shimogamo Sakyo-ku Kyoto 606-8522 Japan
| |
Collapse
|
11
|
Trojanowicz M. Flow Chemistry in Contemporary Chemical Sciences: A Real Variety of Its Applications. Molecules 2020; 25:E1434. [PMID: 32245225 PMCID: PMC7146634 DOI: 10.3390/molecules25061434] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
Flow chemistry is an area of contemporary chemistry exploiting the hydrodynamic conditions of flowing liquids to provide particular environments for chemical reactions. These particular conditions of enhanced and strictly regulated transport of reagents, improved interface contacts, intensification of heat transfer, and safe operation with hazardous chemicals can be utilized in chemical synthesis, both for mechanization and automation of analytical procedures, and for the investigation of the kinetics of ultrafast reactions. Such methods are developed for more than half a century. In the field of chemical synthesis, they are used mostly in pharmaceutical chemistry for efficient syntheses of small amounts of active substances. In analytical chemistry, flow measuring systems are designed for environmental applications and industrial monitoring, as well as medical and pharmaceutical analysis, providing essential enhancement of the yield of analyses and precision of analytical determinations. The main concept of this review is to show the overlapping of development trends in the design of instrumentation and various ways of the utilization of specificity of chemical operations under flow conditions, especially for synthetic and analytical purposes, with a simultaneous presentation of the still rather limited correspondence between these two main areas of flow chemistry.
Collapse
Affiliation(s)
- Marek Trojanowicz
- Laboratory of Nuclear Analytical Methods, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03–195 Warsaw, Poland;
- Department of Chemistry, University of Warsaw, Pasteura 1, 02–093 Warsaw, Poland
| |
Collapse
|
12
|
Chu C, Stricker L, Kirse TM, Hayduk M, Ravoo BJ. Light-Responsive Arylazopyrazole Gelators: From Organic to Aqueous Media and from Supramolecular to Dynamic Covalent Chemistry. Chemistry 2019; 25:6131-6140. [PMID: 30791165 PMCID: PMC6593461 DOI: 10.1002/chem.201806042] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 01/09/2023]
Abstract
Versatile photoresponsive gels based on tripodal low molecular weight gelators (LMWGs) are reported. A cyclohexane-1,3,5-tricarboxamide (CTA) core provides face-to-face hydrogen bonding and a planar conformation, inducing the self-assembly of supramolecular polymers. The CTA core was substituted with three arylazopyrazole (AAP) arms. AAP is a molecular photoswitch that isomerizes reversibly under alternating UV and green light irradiation. The E isomer of AAP is planar, favoring the self-assembly, whereas the Z isomer has a twisted structure, leading to a disassembly of the supramolecular polymers. By using tailor-made molecular design of the tripodal gelator, light-responsive organogels and hydrogels were obtained. Additionally, in the case of the hydrogels, AAP was coupled to the core through hydrazones, so that the hydrogelator and, hence, the photoresponsive hydrogel could also be assembled and disassembled by using dynamic covalent chemistry.
Collapse
Affiliation(s)
- Chih‐Wei Chu
- Organic Chemistry Institute and Center for Soft Nanoscience (SoN)Westfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Lucas Stricker
- Organic Chemistry Institute and Center for Soft Nanoscience (SoN)Westfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Thomas M. Kirse
- Organic Chemistry Institute and Center for Soft Nanoscience (SoN)Westfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Matthias Hayduk
- Organic Chemistry Institute and Center for Soft Nanoscience (SoN)Westfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience (SoN)Westfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
13
|
Asano S, Maki T, Sebastian V, Jensen KF, Mae K. Revealing the Formation Mechanism of Alloyed Pd-Ru Nanoparticles: A Conversion Measurement Approach Utilizing a Microflow Reactor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2236-2243. [PMID: 30642186 DOI: 10.1021/acs.langmuir.8b03516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The synthesis of alloyed nanoparticles has been studied extensively; however, the formation mechanisms involved remain unclear. Here, we reveal the detailed formation mechanism of alloyed nanoparticles in a Pd-Ru system, using a semibatch polyol method in which the simultaneous rapid reduction of both precursors was assumed to be the critical mechanism. We employed a microflow reactor to realize rapid heating and cooling. A significant difference in the reaction rate between the two precursors was observed. Pd was reduced within seconds, but the reduction of Ru was 2 orders of magnitude slower than that of Pd and was not as rapid as previously assumed. Further investigation of the semibatch method was performed to trace changes in the particle sizes and composition. Through quantitative and multilateral evidence, we concluded that the formation of low-crystallinity seeds, followed by solid-state diffusion, is the governing mechanism for the formation of alloyed Pd-Ru nanoparticles.
Collapse
Affiliation(s)
- Shusaku Asano
- Department of Chemical Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Taisuke Maki
- Department of Chemical Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Victor Sebastian
- Department of Chemical & Environmental Engineering , Aragon Institute of Nanoscience (INA), University of Zaragoza , Campus Rio Ebro , 50018 Zaragoza , Spain
- Centro de Investigación Biomédica en Red , CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , C/Monforte de Lemos 3-5, Pabellón 11 , 28029 Madrid , Spain
| | - Klavs F Jensen
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Kazuhiro Mae
- Department of Chemical Engineering , Kyoto University , Kyoto 615-8510 , Japan
| |
Collapse
|
14
|
Millisecond CdS nanocrystal nucleation and growth studied by microfluidics with in situ spectroscopy. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.10.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|